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Summary

In the past two decades, wavelet frames are preferred over wavelet bases in image and

signal processing applications as they yield redundant and �exible representations of square-

integrable functions. As such, Chapter 1 provides preliminaries on MRA-based wavelet frames

for L2(R), wavelet frame-based image restoration models. To facilitate the discussion in

subsequent chapters, introductions to the spherical harmonic functions and Sobolev spaces

on the sphere are also provided.

Building upon the wavelet bases constructions for Hilbert spaces in [46], Chapter 2 con-

structs tight wavelet frames for the space of (symmetric) square-integrable real-valued func-

tions de�ned on the unit sphere, by considering special linear and weighted combinations of

(modi�ed) spherical harmonics.

In Chapter 3, we describe how these wavelet frames can be applied to denoise signals in

High Angular Resolution Di�usion Imaging (HARDI) [83], a relatively recent non-invasive

brain imaging technique. Tight framelet �lters can also be used to impose spatial regulariza-

tion of HARDI signals to improve denoising performances. The proposed wavelet frame-based

approach generally denoises highly corrupted HARDI signals more cost-e�ectively than the

spherical harmonics-based and spherical ridgelets-based approaches.

In Chapter 4, the HARDI denoising performances are further improved through adap-

tive spatial regularization, which can be modelled by optimization on Stiefel manifolds, i.e.,

orthogonality constrained problems. The resulting optimization problems are solved by the

proximal alternating minimized augmented Lagrangian (PAMAL) method, which is a hy-

bridization of the augmented Lagrangian method and the proximal alternating minimization

method. Convergence analysis is also provided for the PAMAL method.

In Chapter 5, the PAMAL method is applied to a class of `1-regularized optimization

problems with orthogonality constraints, which includes the compressed modes problem [69].

Convergence analysis of the PAMAL method is also provided in this case. Numerical results

illustrate that the PAMAL method is noticeably faster than the splitting of orthogonality

constraints (SOC) method [53] in producing compressed modes with comparable quality.
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S2 The unit sphere in R3.

Z The set of all integers.

N0 The set of all natural numbers and the integer 0.

RN+ The set of all N × 1 column vectors with positive entries.

RN≥0 The set of all N × 1 column vectors with non-negative entries.

δjk The Kronecker delta function.

≡ Equality of two functions pointwise up to a set of Lebesgue measure zero.

L2(S2) The space of all complex-valued square-integrable functions on S2.

`2(Z) The space of all complex square-summable sequences.

T 1
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diag(x) The diagonal matrix de�ned by x ∈ Rn, i.e., [diag(x)]i,i = xi, i = 1, 2, . . . , n.
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√∑
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|Xi,j |2.
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CHAPTER 1

Preliminaries

To facilitate understanding of subsequent chapters, some background is provided in this

chapter which is organized as follows. Section 1.1 brie�y surveys how the multiresolution

analysis (MRA) framework introduced by Mallat in [59] and the extension principles by [75]

can be used to obtain (quasi-a�ne) wavelet frames for L2(R) and their corresponding wavelet

�lters for image processing.

Section 1.2 explains how the derived wavelet �lters can be used in wavelet frame-based

image restoration models. Due to its suitability for bio-imaging applications in subsequent

chapters, this thesis focuses on the analysis-based model [26]. Its resulting optimization

problem is then solved by the split Bregman method developed by Goldstein and Osher in

[49].

In section 1.3, we give an introduction to the properties of the classical and modi�ed

spherical harmonics (SH), which form orthonormal bases for L2(S2) and L2
sym(S2) respectively,

where L2(S2) is the space of square-integrable functions de�ned on S2, and L2
sym(S2) is the

space of square-integrable antipodally symmetric functions de�ned on S2. These properties

of the classical and modi�ed SH will be useful to the construction of wavelet frames on the

sphere in Chapters 2 and 3.

Finally, section 1.4 provides preliminaries and useful properties of the respective Sobolev

spaces Hs(S2) and Hs
sym(S2), s ∈ R, and their dual spaces. This background will be instru-

mental to establish that the wavelet systems used to represent HARDI signals in Chapter 3

are actually frame systems for some Sobolev space with a particular exponent.

1.1. Multiresolution Analysis-based Wavelet Frames for L2(R)

In order to enhance understanding of the construction of wavelet frames on the unit

sphere, in this section, we brie�y review the concepts of multiresolution analysis (MRA)

and wavelet frames for L2(R). The notion of an MRA was �rst introduced by Mallat [59]

and Meyer [63] as a framework to yield easier constructions of orthonormal wavelet bases

2



1.1. MULTIRESOLUTION ANALYSIS-BASED WAVELET FRAMES FOR L2(R) 3

for L2(R). In 1988, Daubechies [36] used the (orthonormal) MRA to construct families of

compactly supported orthonormal wavelet bases.

MRA-based wavelet frames, especially MRA-based tight wavelet frames, can be viewed

as a generalization of the MRA-based orthonormal wavelets of [36,59]. In [11], the notion

of a frame MRA was formulated and it gave rise to the construction of bandlimited wavelet

frames with narrow frequency bands. In [75], starting from a generalized MRA (we shall use

this version in the current chapter), Ron and Shen developed extension principles to construct

compactly supported tight wavelet frames for L2(R).

The MRA framework also enables e�cient decomposition and reconstruction of signals

and images, making wavelets a very powerful tool in image processing. In the past decade,

it is used successfully in image denoising [21], image deblurring [25], and image inpainting

[22], etc.

1.1.1. Multiresolution analysis (MRA).

A sequence of subspaces {Vk}k∈Z in L2(R) is said to form a multiresolution analysis

(MRA) for L2(R), if the following conditions are satis�ed:

(MR1) Vk ⊂ Vk+1, k ∈ Z;
(MR2) closL2(R)

(⋃
k∈Z Vk

)
= L2(R);

(MR3)
⋂
k∈Z Vk = {0}.

A common way of obtaining an MRA is to seek a scaling function φ ∈ L2(R) and de�ne its

corresponding family of 2−k-shift invariant subspaces

Vk := closL2(R)

(
span

{
φ(2k · −j) : j ∈ Z

})
, k ∈ Z. (1.1.1)

The problem then becomes �nding conditions on the scaling function φ that allows {Vk}k∈Z
to satisfy (MR1), (MR2) and (MR3).

To ensure that (MR1) holds, note that the generator φ lies in V0. Therefore, to have

V0 ⊂ V1, it is natural for φ to be re�nable, i.e., a function φ ∈ L2(R) is re�nable if

φ = 2
∑
j∈Z

h0[j]φ(2 · −j),

for some sequence h0 ∈ `2(Z). The sequence h0 is called a re�nement mask of φ. In the

Fourier domain, the re�nability of φ can be expressed as

φ̂(2·) = ĥ0φ̂,
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where φ̂ denotes the Fourier transform of φ, and ĥ0 denotes the Fourier series of the sequence

h0. The Fourier transform of a function f ∈ L1(R) is de�ned by

f̂(ξ) =

ˆ
R
f(x) exp(−iξx) dx, ξ ∈ R,

which can be extended to L2(R) in the usual manner. The Fourier series of a sequence

h0 ∈ `2(Z) is de�ned as

ĥ0(ξ) =
∑
j∈Z

h0[j] exp(−ijξ), ξ ∈ R.

Examples of re�nable functions include B-splines. A (centered) B-spline of order m, denoted

as Bm, is de�ned in the Fourier domain as

B̂m(0) = 1, B̂m(ξ) = exp(−iσmξ/2)

(
sin(ξ/2)

(ξ/2)

)m
, ξ ∈ R\{0},

where σm = 0 when m is even, and σm = 1 when m is odd. The Fourier series of the

corresponding re�nement mask of Bm is

ĥ0(ξ) = exp(−iσmξ/2) cosm(ξ/2), ξ ∈ R.

The B-spline Bm is a compactly supported function in Cm−2(R) with the length of its support

equals to m. The interested reader may refer to [19] for more detailed discussions about B-

splines.

As for (MR2), we recall an important theorem �rst proved in [20].

Theorem 1.1.1. Let {Vk}k∈Z be a nested sequence of subspaces in L2(R), i.e., (MR1) is

satis�ed. Then,

closL2(R)

(⋃
k∈Z

Vk

)
= L2(R)

if and only if Ω0 :=
⋃
k∈Z supp φ̂(2k·) = R (modulo a null set).

Note that any re�nable φ ∈ L2(R) with φ̂ continuous and non-zero at the origin satis�es

the above theorem. This includes compactly supported re�nable functions φ with φ̂(0) = 1,

e.g., B-splines.

It turns out that the (MR3) condition can be automatically satis�ed, as shown in the

following theorem from [20].

Theorem 1.1.2. Given any φ ∈ L2(R), for {Vk}k∈Z de�ned by φ as in (1.1.1), there holds⋂
k∈Z

Vk = {0} .
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Daubechies [36] started with an MRA generated by a class of orthonormal re�nable

functions which she constructed, and thereafter obtained families of compactly supported

orthonormal wavelet bases for L2(R), now commonly known as Daubechies' wavelets. The

Daubechies' wavelet bases have been used extensively in applications including image com-

pression, image and signal denoising, etc. However, in applications such as image and signal

denoising, it is actually even more advantageous to use more functions than necessary to

represent the image or signal. This prompted intense research e�orts in the development of

alternative function representation systems such as the wavelet frames, which are explained

in the next subsection.

1.1.2. Tight wavelet (a�ne) frames for L2(R).

In this subsection, we �rst introduce the idea of a (tight) wavelet frame for L2(R), with

other basic concepts and notations. We then describe how the MRA could be used to construct

tight wavelet frames for L2(R).

We say that a countable set of functions X forms a frame for L2(R) with frame bounds

C1 and C2 if the inequality

C1‖f‖2 ≤
∑
g∈X
|〈f, g〉|2 ≤ C2‖f‖2 (1.1.2)

holds for all f ∈ L2(R). When C1 = C2 = 1, X is said to form a normalized tight frame for

L2(R), which also yields the Parseval's identity

f =
∑
g∈X
〈f, g〉g, (1.1.3)

for all f ∈ L2(R). From (1.1.3), it is evident that an orthonormal basis for L2(R) is also a

normalized tight frame for L2(R).

For a given set of functions Ψ := {ψ1, . . . , ψr} ⊂ L2(R), de�ne the wavelet system (or

a�ne system) as

X(Ψ) := {ψl,k,j : 1 ≤ l ≤ r; k, j ∈ Z} , (1.1.4)

where ψl,k,j := 2k/2ψl(2
k · −j) is a dilated and translated version of a single function f (with

f = ψl), which also can be denoted as

fk,j = 2k/2f(2k · −j), k, j ∈ Z.

The system X(Ψ) is called a wavelet frame (or also commonly known as an a�ne frame or

framelets) for L2(R) if X(Ψ) satis�es (1.1.2). The system X(Ψ) is a normalized tight wavelet
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frame (or also commonly known as tight a�ne frame or tight framelets) if the frame bounds

in (1.1.2) are both equal to one.

Compactly supported tight framelets constructed from an MRA are very handy to use,

because of the existence of fast decomposition and reconstruction algorithms. This motivates

the study of MRA-based tight wavelet frames in [75] as we shall present next, where the key

lies in extension principles, e.g., the unitary extension principle (UEP).

Let {Vk}k∈Z be the MRA generated by a re�nable function φ with re�nement mask h0.

The construction of normalized tight wavelet frame systems starts with the constructon of

Ψ ⊂ L2(R). The idea of MRA-based construction of normalized tight wavelet frames is to

�nd Ψ = {ψ1, . . . , ψr} ⊂ V1 such that X(Ψ) forms a normalized tight frame for L2(R). Since

V1 is a 1
2 -shift invariant subspace generated by φ(2·), �nding Ψ ⊂ V1 is the same as �nding

sequences hl, l = 1, . . . , r such that

ψl = 2
∑
j∈Z

hl[j]φ(2 · −j), l = 1, . . . , r. (1.1.5)

The sequences h1, . . . , hr are called wavelet masks, or the high-pass �lters of the system, and

the re�nement mask h0 is also known as the low-pass �lter. In the Fourier domain, (1.1.5)

can be written as

ψ̂l(2·) = ĥlφ̂, l = 1, . . . , r, (1.1.6)

where ĥ1, . . . , ĥr are 2π-periodic functions.

The univariate version of the UEP of [75] can be stated as follows.

Theorem 1.1.3. (Unitary Extension Principle (UEP) [75]). Let φ ∈ L2(R) be a re�nable

function with re�nement mask h0 and {h1, . . . , hr} be a set of wavelet masks. Assume that

the re�nable function φ and the masks {h0, h1, . . . , hr} satisfy the following conditions:

(a) Each mask in {hl : l = 0, 1, . . . , r} is a sequence in `2(Z) and its Fourier series ĥl is

measurable and (essentially) bounded.

(b) The re�nement mask h0 satis�es |ĥ0(ξ)− 1| ≤ C|ξ|, ξ ∈ R.
(c) The function [φ̂, φ̂] :=

∑
l∈Z |φ̂(·+ 2πl)|2 is essentially bounded.

Then the system X(Ψ) given by (1.1.4), where Ψ = {ψ1, . . . , ψr} de�ned in (1.1.6), forms a

normalized tight frame for L2(R) provided that the equations

r∑
l=0

|ĥl(ξ)|2 = 1 and

r∑
l=0

ĥl(ξ)ĥl(ξ + π) = 0 (1.1.7)
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hold for almost all ξ ∈ σ(V0), where

σ(V0) :=
{
ξ ∈ R : [φ̂, φ̂](ξ) 6= 0

}
.

Furthermore, if r = 1 and ‖φ‖L2(R) = 1, then X(Ψ) is an orthonormal wavelet basis for

L2(R).

In practice, a given function is usually decomposed to a certain level instead of down to

negative in�nity. The following corollary states that when one only decomposes a function

down to some given level K, then the system

X(φ,Ψ;K) := {φK,j , ψl,k,j : 1 ≤ l ≤ r, k ≥ K, j ∈ Z} (1.1.8)

forms a normalized tight frame for L2(R). The proof of the corollary follows directly from

the well known result that∑
j∈Z
〈f, φK,j〉φK,j =

r∑
l=1

∑
k<K

∑
j∈Z
〈f, ψl,k,j〉ψl,k,j ,

and that X(Ψ) is a normalized tight frame for L2(R).

Corollary 1.1.4. Let Ψ = {ψl : 1 ≤ l ≤ r} be the set of functions constructed from

the UEP with φ as the corresponding re�nable function. Then for any given K ∈ Z, the
system X(φ,Ψ;K) de�ned in (1.1.8) forms a normalized tight frame for L2(R), i.e., for any

f ∈ L2(R),

f =
∑
j∈Z
〈f, φK,j〉φK,j +

r∑
l=1

∑
k≥K

∑
j∈Z
〈f, ψl,k,j〉ψl,k,j .

The UEP condition (1.1.7) means that the matrix

M(ξ) :=

(
ĥ0(ξ) ĥ1(ξ) . . . ĥr(ξ)

ĥ0(ξ + π) ĥ1(ξ + π) . . . ĥr(ξ + π)

)
has its two rows orthonormal to each other, for a.e. ξ ∈ R.

Next, we present how B-spline-based tight wavelet frames can be constructed. Consider

a (centered) B-spline of order m. Recall that the corresponding re�nement mask ĥ0 is given

by

ĥ0(ξ) = exp(−iσmξ/2) cosm(ξ/2),

with σm = 0 when m is even and σm = 1 when m is odd. We then de�ne m wavelet masks as

ĥl(ξ) := −il exp(−iσmξ/2)

√√√√(m
l

)
sinl(ξ/2) cosm−l(ξ/2), l = 1, . . . ,m.
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It can be shown that the scaling function as well as the re�nement and wavelet masks satisfy

the conditions of the UEP. Therefore, by (1.1.6), the m wavelets ψl, l = 1, . . . ,m, are given

respectively in the Fourier domain as

ψ̂l(ξ) = −il exp(−iσmξ/2)

√√√√(m
l

)
cosm−l(ξ/4) sinm+l(ξ/4)

(ξ/4)m
, ξ 6= 0, ψ̂l(0) = 0,

and they generate a normalized tight frame for L2(R). The cases for m = 1 and m = 2

are given in the following two examples. Note that in the wavelet literature, a �nite �lter

h = {h(n)}n∈Z ∈ `2(Z) is commonly de�ned with a vector v := [v0 . . . vN ] for some N ∈ N as

follows:

h(n) = vn, 0 ≤ n ≤ N, h(n) = 0, otherwise. (1.1.9)

Example 1.1.5. (Haar orthonormal wavelet basis) Let h0 be a �nite �lter de�ned by [1
2 ,

1
2 ]

according to (1.1.9). Note that h0 is the re�nement mask of the characteristic function on

[0, 1], i.e., B1(x) = χ[0,1](x), x ∈ R. Let h1 be another �nite �lter de�ned by [1
2 ,−

1
2 ] according

to (1.1.9). Then h0 and h1 satisfy the conditions of the UEP. Since r = 1, with Ψ := {ψ1}
de�ned in (1.1.5) by h1 and φ, the system X(Ψ) is an orthonormal wavelet basis for L2(R)

by Theorem 1.1.3. This system is also widely known as the Haar orthonormal wavelet basis.

See Figure 1.1.1 for an illustration of the scaling function φ and wavelet function ψ1.

Example 1.1.6. Let h0 be a �nite �lter de�ned by [1
4 ,

1
2 ,

1
4 ] according to (1.1.9). Note

that here, h0 is the re�nement mask of the piecewise linear B-spline B2(x) = max(1− |x|, 0),

x ∈ R. De�ne respectively the wavelet masks h1 and h2 according to (1.1.9) by the vectors

[−1

4
,
1

2
,−1

4
] and [

√
2

4
, 0,−

√
2

4
].

Then h0, h1 and h2 satisfy the conditions of the UEP. Hence, the corresponding system X(Ψ)

is a normalized tight wavelet frame for L2(R), where Ψ := {ψ1, ψ2} de�ned in (1.1.5) with h1,

h2 and φ. See Figure 1.1.2 for an illustration of the scaling function φ and wavelet functions

ψ1, ψ2.

1.1.3. Quasi-a�ne wavelet systems.

Notice that the wavelet (a�ne) system X(Ψ) de�ned by (1.1.4) is not shift invariant.

Recall that a system X, that contains countably many elements, is τ -shift invariant with

τ ∈ R, if for any k ∈ Z, g ∈ X, we have g(· − τk) ∈ X. In particular, if a system is 1-shift

invariant, it is simply called shift invariant.
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Figure 1.1.1. Piecewise constant re�nable spline φ = B1 and correspond-

ing wavelet generator ψ1.

Figure 1.1.2. Piecewise linear re�nable spline φ = B2 and corresponding

wavelet frame generators ψ1, ψ2.

However, in the context of signal and image processing, it is usually preferred to use

wavelet systems that are shift invariant. For instance, the associated wavelet �lters enable

more e�ective capture of adjacent spatial information around each pixel of processed images.

In order to achieve shift invariance, we need to over-sample the a�ne system X(Ψ) below

level 0. This over-sampled system is called a quasi-a�ne system, which was �rst introduced

in [75]. Its resultant wavelet transform is also known as the undecimated wavelet transform

which is shown to be very e�ective in image restoration.

Definition 1.1.7. Let Ψ := {ψ1, . . . , ψr} be a set of functions. A quasi-a�ne system

from level K is de�ned as

Xq(Ψ;K) :=
{
ψql,k,j : 1 ≤ l ≤ r, k, j ∈ Z

}
,
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where ψql,k,j is de�ned by

ψql,k,j :=

DkTjψl, k ≥ K,

2
k−K

2 T2−KjDkψl, k < K,
(1.1.10)

where for a given function f ∈ L2(R), the dyadic dilation operator D is de�ned by Df :=
√

2f(2·) and the translation operator Tt is de�ned by Ttf := f(· − t) for t ∈ R. Note

that in contrast to the quasi-a�ne system Xq(Ψ;K), the a�ne system X(Ψ) is of the form

{DkTjψl : 1 ≤ l ≤ r; j, k ∈ Z}. Similar to the quasi-a�ne system Xq(Ψ;K) which is spanned

by wavelet functions de�ned in (1.1.10), we also de�ne V q,K
k := span{φqk,j : j ∈ Z}, where

φqk,j :=

DkTjφ, k ≥ K,

2
k−K

2 T2−KjDkφ, k < K.
(1.1.11)

The quasi-a�ne system is obtained by over-sampling the wavelet frame system starting

from level K − 1 and below. Hence, the entire quasi-a�ne system is a 2−K-shift invariant

system. The quasi-a�ne system from level 0 was �rst introduced in [75] to convert a non-

shift invariant system to a shift invariant system. Furthermore, it was shown in [75, Theorem

5.5] that a wavelet system X(Ψ) is a tight frame for L2(R) if and only if its corresponding

quasi-a�ne counterpart Xq(Ψ;K) is a tight frame for L2(R), for any K ∈ Z. We also have

the following result.

Theorem 1.1.8. Let X(Ψ), where Ψ := {ψ1, . . . , ψr}, be the a�ne tight frame system

obtained from the UEP with the corresponding re�nable function φ. Then, for any given

K ∈ Z, the quasi-a�ne system Xq(Ψ;K) is a normalized tight frame for L2(R). Furthermore,

∑
j∈Z
〈f, φqK,j〉φ

q
K,j =

r∑
l=1

∑
k<K

∑
j∈Z
〈f, ψql,k,j〉ψ

q
l,k,j ,

where φqK,j, j ∈ Z, is given by (1.1.11) and thus

Xq(φ,Ψ;K) :=
{
φqK,j , ψ

q
l,k,j : 1 ≤ l ≤ r, k ≥ K, j ∈ Z

}
is also a normalized tight frame for L2(R), i.e., for any f ∈ L2(R),

f =
∑
j∈Z
〈f, φqK,j〉φ

q
K,j +

r∑
l=1

∑
k≥K

∑
j∈Z
〈f, ψql,k,j〉ψ

q
l,k,j ,

for all f ∈ L2(R).
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Remark 1.1.9. (Haar Framelets) When the Haar orthonormal wavelet basis X(Ψ) in

Example 1.1.5 is chosen as the a�ne tight frame system in Theorem 1.1.3, then both its

corresponding quasi-a�ne wavelet systems Xq(Ψ;K) and Xq(φ,Ψ;K) form normalized tight

wavelet frame systems (but not orthonormal wavelet bases!) for L2(R). These quasi-a�ne

wavelet systems are also known as Haar framelets.

In practical calculations, K is usually set as 0, and the decomposition of the function∑
j∈Z〈f, φ

q
0,j〉φ

q
0,j (approximating f ∈ L2(R)) is performed L times, L ∈ N0. Then the

decomposition and reconstruction formula can be written as

∑
j∈Z
〈f, φq0,j〉φ

q
0,j =

∑
j∈Z
〈f, φq−L,j〉φ

q
−L,j +

r∑
l=1

−1∑
k=−L

∑
j∈Z
〈f, ψql,k,j〉ψ

q
l,k,j .

This process corresponds to the so-called undecimated wavelet decomposition and reconstruc-

tion which we will brie�y describe in the next subsection.

1.1.4. Algorithms for quasi-a�ne tight frames.

For simplicity, in this thesis, we consider only framelet algorithms designed for periodically

extended signal ṽ from a �nite length signal v, i.e.,

ṽ[j] := v[jmod N ],

where N is the length of the �nite signal v, N ∈ N. The framelet �lters {h0, h1, . . . , hr}
are then applied to perform decomposition on the extended signal ṽ, by de�ning the dilated

�lters hl,k, k ≤ 0,

hl,k[j] =

hl[2kj], if j ∈ 2−kZ,

0, if j ∈ Z\2−kZ,

and the corresponding circulant �lter matrices Hl,k

Hl,k := (Hl,k[j, j
′]) := (hl,k[j′ − j]mod N),

where the (j, j′)-th entry in Hl,k is fully determined by the (j − j′)th entry in hl,k. Then for

any N -periodic vector ṽ, we have

(Hl,kṽ)[jmod N ] =
∑
j′∈Z

hl,k[j′ − j]ṽ[j].

It can be shown that
r∑
l=0

∑
j∈Z

hl,k[j]hl,k[j − j′] = δ0,j′ , j′ ∈ Z,



1.1. MULTIRESOLUTION ANALYSIS-BASED WAVELET FRAMES FOR L2(R) 12

which is equivalent to
r∑
l=0

H∗l,kHl,k = I or W ∗kWk = I,

where

Wk :=


H0,k

H1,k

...

Hr,k

 ∈ R(r+1)N×N .

In the case where the Haar �lters h0, h1 are used, then

W0 =
1

2



1 1

1 1
. . .

. . .

1 1

−1 1

1 −1
. . .

. . .

1 −1



∈ R2N×N .

Therefore, a single-level decomposition process on the signal ṽ by the matrix Wk yields

a single low-pass component H0,kṽ and r high-pass components H1,kṽ, . . . , Hr,kṽ. As for

the corresponding single-level reconstruction step, simply multiply the matrix H∗l,k to the

component Hl,kṽ for each l and sum the resultant vectors together to restore ṽ, i.e.,

ṽ =

r∑
l=0

H∗l,k(Hl,kṽ).

We now provide the L-level quasi-a�ne framelet decomposition and reconstruction algorithm.

Quasi-a�ne Framelet Decomposition and Reconstruction Algorithm

Given a signal v ∈ RN with N ∈ N, denote v0,0 := ṽ with ṽ being the N -periodic extension

of v. Then the L-level quasi-a�ne framelet decomposition and reconstruction are given as

follows:

(1) Decomposition: For each k = 1, 2, . . . , L,

(a) Obtain low frequency approximation to ṽ at level k:

ṽ0,k = H0,1−kṽ0,k−1;
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(b) Obtain framelet coe�cients of ṽ at level k:

ṽl,k = Hl,1−kṽ0,k−1, l = 1, 2, . . . , r;

(2) Reconstruction: For each k = L, L− 1, . . . , 1,

ṽ0,k−1 =
r∑
l=0

H∗l,1−kṽl,k.

Remark 1.1.10. In the ideal scenario, the above algorithm performs a perfect recovery of

the signal ṽ from its decomposition components ṽl,k, l = 1, 2, . . . , r, k = 1, 2, . . . , L. However,

if the signal ṽ is corrupted with noise, a thresholding step, involving a thresholding operator

is usually performed on the decomposition components ṽl,k (to �lter out noise) before the

reconstruction step. In this thesis, we focus on the soft-thresholding operator T 1
α which is

applied to a n×m matrix X with threshold level vector α := (α1, . . . , αn)>, de�ned by

T 1
α(X) := [T 1

αi(Xi,j)]i,j , where T
1
αi(Xi,j) = sign(Xi,j) ·max(|Xi,j | − αi, 0), ∀i, j. (1.1.12)

However, during the past decade, in order to achieve more e�ective signal/image denoising,

the above algorithm is gradually replaced by optimization models (such as the wavelet frame-

based restoration models) which are equipped with an in-built thresholding mechanism. We

shall discuss these optimization models for image restoration in the next section.

1.2. `1-Regularized Wavelet Frame-based Image Restoration

Image restoration is often formulated as an inverse problem. For ease of notation, images

are denoted as vectors in Rn with n being the total number of pixels. The aim is to approxi-

mate as best as possible the unknown true image/signal u ∈ Rn from an observed image (or

measurements) f ∈ Rl de�ned by

f = Au+ e, (1.2.1)

where e is a vector of white Gaussian noise (each entry ei is normally distributed with mean

0) with variance σ2, and A ∈ Rl×n is a linear operator, typically a convolution operator

for image deblurring problems, a projection operator for image inpainting and the identity

operator for image denoising.

As discussed in the previous subsection, the framelet decomposition and reconstruction

algorithms involve linear operators. When signals are considered to be in Rn, these linear

operators have matrix representations. Here we simply denote the framelet decomposition
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as a matrix W ∈ Rm×n with m ≥ n, and reconstruction as W>. Recall from the previous

subsection that W>W = I, thus for every vector u ∈ Rn,

u = W>(Wu).

The components of the vector Wu are called the canonical coe�cients representing u. The

matrix W is generated from the masks {hl : l = 0, 1, . . . , r} constructed from the univariate

UEP. It should be emphasized that the image is viewed as a column vector and the corre-

sponding tight wavelet frame transform as the matrix W merely for simplicity.

This section is organized as follows. Subsection 1.2.1 introduces wavelet frame-based

image restoration models where the tight wavelet frame transform plays a central role. Par-

ticular emphasis is placed on the analysis-based model [26] as it is well suited for bio-imaging

applications in subsequent chapters of this thesis. In order to solve the resulting optimiza-

tion problems from the analysis-based model, subsection 1.2.2 provides details on the split

Bregman method, which is developed by Goldstein and Osher in [49].

1.2.1. Wavelet frame-based image restoration models.

Since tight wavelet frame systems are redundant systems (i.e., m ≥ n), the mapping from

the image u to its coe�cients is not one-to-one, i.e., the representation of u in the frame

domain is not unique. Therefore, there are three formulations for the sparse approximation

of the underlying image, namely the analysis-based approach, the synthesis-based approach

and the balanced approach, which can be integrated into a single minimization problem as

follows:

min
α∈Rm

1

2
‖AW>α− f‖2D +

κ

2
‖(I −WW>)α‖22 + ‖diag(λ)α‖1, (1.2.2)

where 0 ≤ κ ≤ ∞, ‖x‖D :=
√
x>Dx, D is some appropriately chosen symmetric positive

de�nite matrix and λ is a given vector de�ned as

λ := (λ1, . . . , λm)>.

The model (1.2.2) is called the (single-system) general balanced approach.

When 0 < κ < ∞, the system (1.2.2) is called the balanced approach. When κ = 0, the

system (1.2.2) is reduced to a synthesis-based approach:

min
α∈Rm

1

2
‖AW>α− f‖2D + ‖diag(λ)α‖1.

When κ = ∞, the problem (1.2.2) is reduced to an analysis-based approach. Note that

the term ‖(I −WW>)α‖ must be zero when κ = ∞. This implies that α is in the range of
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W , i.e., α = Wu for some u ∈ Rn, so we can rewrite (1.2.2) as

min
u∈Rn

1

2
‖Au− f‖2D + ‖diag(λ)Wu‖1, (1.2.3)

which is referred as the analysis-based approach. We remark that the analysis-based approach

does not require the use of the left-inverse of W . Hence, it can be generalized to any linear

transform W .

Note that for redundant tight frame system W , the analysis-based, synthesis-based and

balanced approaches cannot be derived from one another. Indeed, all the approaches have

their own favourable datasets and applications. In general, it is di�cult to draw de�nitive

conclusions on which approach is better without specifying the applications and datasets.

For frame-based image restoration, the synthesis-based and balanced approaches tend to

explore more on the sparse representation of the underlying solution in terms of the given

frame system by utilizing the redundancy. Thus the synthesis-based and balanced approaches

usually enhance and sharpen edges, though they may introduce some artifacts as shown in

[22].

Numerical simulations in [26] show that the analysis-based approach tends to capture the

geometrical orientations of the objects in the image better than the other two approaches.

This is because the coe�cientWu is often linked to the geometrical orientations of the objects

in the image. Due to this reason, we focus on the analysis-based approach, which is applied

to bio-image denoising in Chapter 3 of this thesis where we shall see that, the bio-images have

rich geometrical structures.

Furthermore, the split Bregman method was used to develop a fast algorithm for the

analysis-based approach in frame-based image restoration in [26], where numerical simula-

tions showed that the split Bregman method is e�cient for image deblurring, inpainting and

denoising. The split Bregman method was �rst proposed in [49] which was shown to be

powerful in [49,89] when it is applied to various PDE based image restoration approaches,

e.g., total variation (TV) models. Convergence analysis of the split Bregman method was

provided in [26].

1.2.2. The split Bregman method.

The `1-term involved in the analysis-based model (1.2.3) is non-smooth and non-separable,

making direct optimization of (1.2.3) challenging. To overcome this, the main idea of the split

Bregman method is that one can transfer (1.2.3) to a relatively simpler problem involving
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only separable non-smooth terms. In particular, one introduces an auxiliary variable d = Wu

for (1.2.3), leading to the equivalent problem

min
u,d

H(u) + ‖diag(λ)d‖1 subject to d = Wu, (1.2.4)

where H(u) := 1
2‖Au − f‖2D is a convex function. In order to solve (1.2.4), an iterative

algorithm based on the Bregman distance with an inexact solver was proposed in [49]. The

split Bregman method can also be understood as a special case of the alternating direction of

multipliers (ADMM) [43], which is a variant of the augmented Lagrangian method (see e.g.,

[45]) when applied to (1.2.4). Here we shall derive the split Bregman algorithm based on an

augmented Lagrangian of (1.2.4). Note that (1.2.4) is equivalent to the following optimization

problem

min
u,d

H(u) + ‖diag(λ)d‖1 +
µ

2
‖Wu− d‖22 subject to d = Wu, (1.2.5)

for some pre-de�ned positive constant µ. The Lagrangian for (1.2.5), also known as the

augmented Lagrangian for (1.2.4), is given as

Lµ(u, d, p) := H(u) + ‖diag(λ)d‖1 + 〈p, d−Wu〉+
µ

2
‖Wu− d‖22.

The saddle points of Lµ(u, d, p) can be obtained by the following iterative procedure:(uk+1, dk+1) = argminu,d Lµ(u, d, pk),

pk+1 = pk + µ(dk+1 − dk),

which consists of one step of joint optimization of the variables (u, d) followed by one update

of the Lagrange multiplier p. Now letting bk = −pk/µ, we then have the equivalent problem(uk+1, dk+1) = argminu,dH(u) + ‖diag(λ)d‖1 + µ
2‖Wu− d+ bk‖22,

bk+1 = bk + (Wuk+1 − dk+1).

Now if one alternately optimizes the variables u and d in the �rst equation above, we will

have the split Bregman algorithm as follows:
uk+1 = argminuH(u) + µ

2‖Wu− dk + bk‖22,

dk+1 = argmind‖diag(λ)d‖1 + µ
2‖d−Wuk+1 − bk‖22,

bk+1 = bk + (Wuk+1 − dk+1).

Since H(u) is convex and di�erentiable, the subproblem in the �rst line is easy to solve explic-

itly. The second subproblem above can be solved analytically by soft-thresholding given in

(1.1.12). Both of these analytical solutions to the two subproblems make the iteration e�cient



1.3. SPHERICAL HARMONICS 17

and fast for many problems that are di�cult to solve by other means. Besides its speed, the

split Bregman method has several advantages. It generally performs well at the early stages

with satisfactory results for applications in imaging sciences, where highly accurate solutions

are not really needed. The method is also easy to code. Both these characteristics make

the split Bregman method a practical algorithm for large scale problems in imaging sciences.

Split Bregman Algorithm

(1) Set initial guess d0 and b0.

(2) For k = 0, 1, . . . , perform the following iterations till convergence:
uk+1 = (A>DA+ µI)−1(A>Df + µW>(dk − bk));

dk+1 = T 1
λ/µ(Wuk+1 + bk);

bk+1 = bk +Wuk+1 − dk+1.

Note that the �rst equation in the split Bregman algorithm can be solved e�ciently by

the fast Fourier transform (FFT) when A is diagonalizable by the discrete Fourier transform,

e.g., a convolution matrix. A deblurring result of the image �barbara� is displayed in Figure

1.2.1, where the matrix A in (1.2.1) is taken to be a convolution matrix with corresponding

kernel a Gaussian function (generated in MATLAB by �fspecial(`gaussian',15,1.5);�) and the

noise vector e is generated from a zero mean Gaussian distribution with σ = 3.

As a �nal remark, the convergence proof for the split Bregman method in [49] remains

true in the case where the function H is merely convex (not necessarily di�erentiable) and

the matrix W does not satisfy W>W = I, assuming the existence of saddle points for (1.2.5)

and solutions to all subproblems arising within the split Bregman algorithm.

1.3. Spherical Harmonics

One way of constructing wavelet frames to represent square-integrable functions de�ned

on the unit sphere involves the use of spherical harmonics (the spherical analogue of Fourier

bases), which we shall see in Chapter 2. Therefore, this section presents some useful properties

of the spherical harmonics (SH) and modi�ed spherical harmonics (modi�ed SH) respectively

in subsections 1.3.1 and 1.3.2.
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Figure 1.2.1. Deblurring results for the test image �barbara�. Columns

1 to 3 contain respectively the original image, blurred image and deblurred

image.

1.3.1. Spherical harmonics on L2(S2).

Let S2 denote the unit sphere centered at the origin in R3, parametrized as follows:

S2 := {(sin θ cosφ, sin θ sinφ, cos θ) | θ ∈ [0, π], φ ∈ [0, 2π)} , (1.3.1)

where φ, θ represent the azimuth and zenith respectively. The space L2(S2) denotes the set

of all square-integrable functions on S2, i.e.,

L2(S2) :=

{
f :

ˆ 2π

0

ˆ π

0
|f(θ, φ)|2 sin θ dθdφ <∞

}
,

and it is also a Hilbert space endowed with the inner product

〈f, g〉L2(S2) :=

ˆ 2π

0

ˆ π

0
f(θ, φ)g(θ, φ) sin θ dθdφ, f, g ∈ L2(S2). (1.3.2)

The classical spherical harmonics (SH) {Y m
l }m,l are de�ned as

Y m
l (θ, φ) = Nm,lP

m
l (cos θ) exp(imφ), θ ∈ [0, π], φ ∈ [0, 2π), (1.3.3)

where m is the degree of the SH, l is the order of the SH,

Nm,l := (−1)m

√
(2l + 1) · (l −m)!

4π · (l +m)!
, |m| ≤ l, l ∈ N0, (1.3.4)

Pml (x) are the associated Legendre functions, de�ned in terms of derivatives of Legendre

polynomials Pl on [−1, 1]:

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x), 0 ≤ m ≤ l, l ∈ N0,

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x), 0 ≤ m ≤ l, l ∈ N0, (1.3.5)
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and {Pl}l∈N0
are the ordinary Legendre polynomials which can be expressed as the following

by Rodrigues' formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, x ∈ [−1, 1], l ∈ N0. (1.3.6)

The normalization constant Nm,l in (1.3.4) has a handy relation:

Nm,l

N−m,l
· (l +m)!

(l −m)!
= 1, |m| ≤ l, l ∈ N0, (1.3.7)

which can be used to show that the spherical harmonics also have a useful property of complex

conjugation, namely

Y m
l = (−1)mY −ml , |m| ≤ l, l ∈ N0. (1.3.8)

An alternative expression for the spherical harmonics that will be useful is

Y m
l (θ, φ) := Θm

l (cos θ)Φm(φ), θ ∈ [0, π], φ ∈ [0, 2π), |m| ≤ l, l ∈ N0, (1.3.9)

where

Θm
l (cos θ) := (−1)m

√
(2l + 1)(l −m)!

2(l +m)!
Pml (cos θ), Φm(φ) :=

1√
2π

exp(imφ), (1.3.10)

It can be shown [5, Pages 69-71] that the SH {Y m
l }m,l actually form an orthonormal

basis for L2(S2). To see why they are orthonormal, observe that after a change of variables

x = cos θ, the inner product 〈Y m
l , Y m′

l′ 〉L2(S2) can be expressed as a product of two integrals

given by

〈Y m
l , Y m′

l′ 〉L2(S2) =

{ˆ 2π

0
Φm(φ)Φm′(φ) dφ

}{ˆ 1

−1
Θm
l (x)Θm

l′ (x) dx

}
. (1.3.11)

It is easy to see from the exponential de�nition of Φm in (1.3.10) and a standard calculation

that ˆ 2π

0
Φm(φ)Φm′(φ) dφ = δm,m′ ,

where δm,m′ denotes the Kronecker delta function, i.e., δm,m′ equals 1 if m = m′, and zero

otherwise. Therefore, to see that {Y m
l }m,l is an orthonormal family, i.e.,

〈Y m
l , Y m′

l′ 〉L2(S2) = δm,m′δl,l′ ,

we consider m = m′ in the second integral in (1.3.11) and obtain

ˆ 1

−1
Θm
l (x)Θm

l′ (x) dx = δl,l′ , (1.3.12)
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where the above orthonormality relation can be established by proving that {Θm
l (cos ·)}l are

eigenfunctions of the associated Legendre di�erential equation (l ∈ N0, and a �xed integer m

such that |m| ≤ l) given by

d2Θ

dθ2
+

cos θ

sin θ

dΘ

dθ
− m2

sin2 θ
Θ = λlΘ,

with eigenvalues λl = −l(l + 1). It can be shown [37, Theorems 5.9.7 to 5.9.10] that this

di�erential equation is a special case of a Sturm-Liouville system, where its eigenfunctions

{Θm
l }l are orthonormal.

It is also known [5, Proposition 3.5] that the spherical harmonics {Y m
l }m,l are eigenfunc-

tions of the Laplace-Beltrami operator on S2 (also known as the Laplacian operator on the

unit sphere) de�ned as

∆b :=
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
, (1.3.13)

with eigenvalues λl = −l(l + 1), i.e.,

∆bY
m
l = −l(l + 1)Y m

l , |m| ≤ l, l ∈ N0. (1.3.14)

This relation will be helpful in the remainder of the thesis when spherical harmonics are

applied to computational problems on the sphere.

One last useful property of the spherical harmonics is their antipodally (anti)-symmetric

behaviour: for θ ∈ [0, π], φ ∈ [0, 2π),

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ), |m| ≤ l, l ∈ N0, (1.3.15)

i.e., for u ∈ S2 with the standard spherical parametrization in (1.3.1), we have

Y m
l (−u) = (−1)lY m

l (u), |m| ≤ l, l ∈ N0. (1.3.16)

This means that the spherical harmonics of even/odd order are antipodally symmetric/anti-

symmetric respectively. To visualize spherical harmonics, Figure 1.3.1 provides a 3D-surface

plot of Re[Y m
l (θ, φ)] of the spherical harmonics {Y m

l }m,l up to order 3.

Remark 1.3.1. In this thesis, visualization of a bounded function F on the sphere is

made as follows: we �rst express F in terms of spherical coordinates, say F (θ, φ). Then

F is visualized by means of a 3D-surface plot, whose Cartesian coordinates are given by

(R sin θ cosφ, R sin θ sinφ, R cos θ), where R = |F (θ, φ)|. This 3D-surface plot projects away
from the origin of R3 in the directions along which the function |F | has large relative values,
while staying close to the origin in the directions where the function |F | has small relative

values near zero.
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Figure 1.3.1. A 3D-surface plot of the real part Re[Y m
l (θ, φ)] of the spher-

ical harmonics up to order 3 (see Remark 1.3.1 on how to visualize this plot).

1.3.2. Modi�ed spherical harmonics on L2
sym

(S2).

In certain applications where the functions or signals are de�ned on the sphere such as

High Angular Resolution Di�usion Imaging (HARDI) [83], the signal is assumed to be real

and antipodally symmetric. Therefore, it is preferable to obtain a modi�ed spherical harmonic

basis that is also real and antipodally symmetric. To obtain the symmetric property in the

modi�ed basis, only spherical harmonics of even order are considered. As explained earlier,

only spherical harmonics of even order are antipodally symmetric. To obtain the real-valued

property, real and imaginary parts of the spherical harmonics are selected accordingly to the

degree m.

For l ∈ 2N0, |m| ≤ l, the modi�ed spherical harmonics (modi�ed SH) are de�ned by

Ỹ m
l :=


√

2 · Re[Y m
l ], if m < 0,

Y m
l , if m = 0,
√

2 · Im[Y m
l ], if m > 0,

(1.3.17)

where Re[Y m
l ] and Im[Y m

l ] are respectively the real and imaginary parts of Y m
l . The normal-

ization factor
√

2 in (1.3.17) makes this modi�ed basis orthonormal. Plots of some selected

modi�ed SH are provided in Figure 1.3.2. Modi�ed SH are used to represent HARDI signals

in [38].

Let L2
sym(S2) be the set of antipodally symmetric, square-integrable functions de�ned on

the sphere, i.e.,

L2
sym(S2) :=

{
f ∈ L2(S2) : f(−u) = f(u), u ∈ S2 a.e.

}
. (1.3.18)



1.3. SPHERICAL HARMONICS 22

Figure 1.3.2. 3D-surface plots of the modi�ed SH, Ỹ m
l (θ, φ), |m| ≤ l,

l = 0, 2, 4 (see Remark 1.3.1 on how to visualize these plots).

We shall show that the modi�ed spherical harmonics
{
Ỹ m
l

}
m,l

forms an orthonormal basis

of L2
sym(S2), which also implies that

L2
sym(S2) = closL2(S2)

(
span

{
Ỹ m
l : |m| ≤ l, l ∈ 2N0

})
.

Consider any continuous function g which is antipodally symmetric on the sphere, i.e.,

g(−u) = g(u), u ∈ S2. Clearly, g ∈ L2(S2) and we have the expansion in spherical harmonics

g =
∞∑
l=0

l∑
m=−l

ĝm,lY
m
l , ĝm,l =

ˆ
S2
g(u)Y m

l (u) dσ(u),

where dσ(u) := sin θdθdφ, and u ∈ S2 has corresponding spherical co-ordinates (θ, φ) as

de�ned in (1.3.1). We wish to show that the coe�cients ĝm,l are zero when |m| ≤ l, l is an

odd positive integer. To do so, we �rst describe the sphere S2 as a union of its two hemispheres

(up to a null set with respect to the measure σ), i.e., S2 = S2
1 ∪ S2

2, and then consider the

following

ĝm,l =

ˆ
S21
g(u)Y m

l (u) dσ(u) +

ˆ
S22
g(u)Y m

l (u) dσ(u)

=

ˆ
S21
g(u)Y m

l (u) dσ(u) +

ˆ
S21
g(−v)Y m

l (−v) dσ(v)

=

ˆ
S21
g(u)Y m

l (u) dσ(u)−
ˆ
S21
g(v)Y m

l (v) dσ(v) = 0,
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where we have used the fact that g is antipodally symmetric and Y m
l is antipodally anti-

symmetric from (1.3.16) when |m| ≤ l, l is an odd positive integer. Therefore,

g ∈ closL2(S2) (span {Y m
l : |m| ≤ l, l ∈ 2N0}) ,

for any continuous function g which is antipodally symmetric on the sphere. Using a standard

density argument, we can show that

L2
sym(S2) = closL2(S2) (span {Y m

l : |m| ≤ l, l ∈ 2N0}) .

Finally, to show
{
Ỹ m
l

}
m,l

is an orthonormal basis for L2
sym(S2), we note that

{
Ỹ m
l

}
m,l

is an orthonormal family, so it remains to establish

closL2(S2) (span {Y m
l : |m| ≤ l, l ∈ 2N0}) = closL2(S2)

(
span

{
Ỹ m
l : |m| ≤ l, l ∈ 2N0

})
,

which can be shown by using the following relations between Y m
l and Ỹ m

l : for |m| ≤ l,

l ∈ 2N0,

Ỹ m
l =


2−1/2[Y m

l + (−1)mY −ml ], if m < 0,

Y m
l , if m = 0,

−2−1/2i[Y m
l − (−1)mY −ml ], if m > 0,

(1.3.19)

and

Y m
l =


2−1/2[Ỹ m

l − i(−1)mỸ −ml ], if m < 0,

Ỹ m
l , if m = 0,

2−1/2[(−1)mỸ −ml + iỸ m
l ], if m > 0.

(1.3.20)

Equation (1.3.19) follows from the de�nition of modi�ed SH in (1.3.17) and the complex

conjugation property (1.3.8). Equation (1.3.20) is obtained using the identity exp(imφ) =

cos(mφ) + i sin(mφ), ∀m, φ, on (1.3.3) with the earlier properties (1.3.5) and (1.3.7).

Throughout the next two chapters, this set of modi�ed spherical harmonics
{
Ỹ m
l

}
m,l

and its corresponding space L2
sym(S2) will referred to frequently in our new wavelet frame

constructions pertaining to HARDI applications.

1.4. Sobolev Spaces on the Sphere

This section serves to provide basic properties of Sobolev spaces of functions de�ned on

the unit sphere, which are instrumental in establishing that the wavelet systems constructed to

represent bio-images in Chapter 3, are frame systems for some Sobolev space of a particular

exponent. In subsection 1.4.1, some fundamentals regarding Sobolev spaces Hs(S2) and

their dual spaces H−s(S2) are presented with detailed proofs. Analogous properties are then
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presented in subsection 1.4.2 regarding their symmetric counterparts Hs
sym(S2) and their dual

spaces H−ssym(S2).

1.4.1. Sobolev spaces on the sphere Hs(S2) and SH.

As mentioned in the previous section, the spherical harmonics {Y m
l }m,l de�ned in (1.3.9)

form an orthonormal basis for L2(S2). In fact, spherical harmonics have often been referred

as the `Fourier basis on the sphere'. Similar to the classical Fourier expansions, if f ∈ L2(S2),

then f has a corresponding spherical harmonics series

∞∑
l=0

l∑
m=−l

f̂m,lY
m
l , where f̂m,l =

ˆ 2π

0

ˆ π

0
f(θ, φ)Y m

l (θ, φ) sin θ dθdφ, (1.4.1)

Here we are interested in Sobolev spaces on the unit sphere. For s ∈ [0,∞), the Sobolev spaces

Hs(S2) are subspaces of L2(S2) which are determined by the decay of the spherical harmonics

coe�cients. For our purposes, the Sobolev space results that we use in this subsection are

spherical analogues of results found in [27, section 1.4]. We provide detailed proofs in this

subsection because these proofs are analogous in the next subsection, which involves the

symmetric Sobolev spaces. Results on Sobolev spaces on domains including spheres, are also

available in, for instance, [2].

Definition 1.4.1. Let s ∈ [0,∞). Then by Hs(S2) we denote the space

Hs(S2) :=

{
f ∈ L2(S2) :

∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂m,l|2 <∞

}
,

where
{
f̂m,l

}
m,l

are the spherical harmonic coe�cients given in (1.4.1). The space Hs(S2) is

called a Sobolev space on S2 of order s. Note that H0(S2) = L2(S2).

Theorem 1.4.2. (c.f. [27, Theorem 1.29]) The space Hs(S2) is a Hilbert space with the

inner product

〈f, g〉s :=

∞∑
l=0

l∑
m=−l

(1 + l2)sf̂m,lĝm,l, (1.4.2)

for f , g ∈ Hs(S2) with spherical harmonic coe�cients
{
f̂m,l

}
m,l

, {ĝm,l}m,l respectively. The
induced norm is then given by

‖f‖s = (
∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂m,l|2)1/2.

Furthermore, the linear span of the spherical harmonics is dense in Hs(S2).
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Proof. It is easy to observe that Hs(S2) is a linear space and that 〈·, ·〉s is an inner

product. Indeed, 〈·, ·〉s is well de�ned because by the Cauchy-Schwarz inequality,∣∣∣∣∣
∞∑
l=0

l∑
m=−l

(1 + l2)sf̂m,lĝm,l

∣∣∣∣∣ ≤
√√√√ ∞∑

l=0

l∑
m=−l

(1 + l2)s|f̂m,l|2

√√√√ ∞∑
l=0

l∑
m=−l

(1 + l2)s|ĝm,l|2,

which implies that 〈f, g〉s exists for every f , g ∈ Hs(S2).

To see that Hs(S2) is complete, let {fn}n be a Cauchy sequence in Hs(S2), i.e., for every

ε > 0, there exists an Nε such that

‖fn − fk‖s < ε, n, k > Nε,

or equivalently, denoting
{
f̂nm,l

}
m,l

,
{
f̂km,l

}
m,l

as the respective spherical harmonic coe�cients

of fn, fk,
∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂nm,l − f̂km,l|2 < ε2, n, k > Nε.

From this, we can see that for all non-negative integers L,

L∑
l=0

l∑
m=−l

(1 + l2)s|f̂nm,l − f̂km,l|2 < ε2, n, k > Nε. (1.4.3)

Since C is complete, there is a sequence
{
f̂m,l

}
m,l

such that for each �xed pair of m and l,

where l ∈ N0 and −l ≤ m ≤ l, f̂nm,l → f̂m,l as n→∞. Now passing to the limit in (1.4.3) as

k goes to in�nity, we have

L∑
l=0

l∑
m=−l

(1 + l2)s|f̂nm,l − f̂m,l|2 ≤ ε2, n > Nε.

Next, letting L approach in�nity, we obtain
∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂nm,l − f̂m,l|2 ≤ ε2, n > Nε. It

then follows that

f :=
∞∑
l=0

l∑
m=−l

f̂m,lY
m
l ∈ Hs(S2),

since for n > Nε,

∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂m,l|2 =

∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂m,l − f̂nm,l + f̂nm,l|2

≤ 2

∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂m,l − f̂nm,l|2 + 2

∞∑
l=0

l∑
m=−l

(1 + l2)s|f̂nm,l|2

<∞.
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Consequently, this also shows that ‖f − fn‖s → 0 as n→∞.
Finally let f ∈ Hs(S2) with spherical harmonic coe�cients

{
f̂m,l

}
m,l

and set

fL =
L∑
l=0

l∑
m=−l

f̂m,lY
m
l .

Then we have

‖f − fL‖2s =
∞∑

l=L+1

l∑
m=−l

(1 + l2)s|f̂m,l|2 → 0, L→∞,

since
∑∞

l=0

∑l
m=−l(1 + l2)s|f̂m,l|2 < ∞. Thus the linear span of the spherical harmonics is

dense in Hs(S2). �

We now consider the case of Sobolev spaces with negative exponent, i.e., H−s(S2) with

s > 0. Much of what has already been written holds in this case as well but some care must

be exercised. For instance, for s > 0, sums of the form

∞∑
l=0

l∑
m=−l

(1 + l2)−s|f̂m,l|2

are more likely to converge even if the spherical harmonic coe�cients
{
f̂m,l

}
m,l

do not tend

to zero as l tends to in�nity. This allows for the study of distributions or generalized functions

[14].

Definition 1.4.3. For 0 < s <∞, we denote by H−s(Ss), the dual space of Hs(S2), i.e.,

the space of bounded linear functionals on Hs(S2).

Theorem 1.4.4. (cf. [27, Theorem 1.33]) Let G be a bounded linear functional de�ned

on Hs(S2). Then

‖G‖−s =
∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2, (1.4.4)

where we de�ne

‖G‖−s := sup
f∈Hs(S2),‖f‖s=1

|G[f ]|, ĝm,l := G[Y m
l ], |m| ≤ l, l ∈ N0.

Conversely, for each sequence {ĝm,l}m,l satisfying

∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2 <∞,

there exists a bounded linear functional G de�ned on Hs(S2) such that ĝm,l = G[Y m
l ], |m| ≤

l, l ∈ N0.
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Proof. Let G be a bounded linear functional on Hs(S2) and ĝm,l = G[Y m
l ], |m| ≤ l,

l ∈ N0. Given any ψ ∈ Hs(S2) with the expansion ψ =
∑∞

l=0

∑l
m=−l ψ̂m,lY

m
l , for a non-

negative integer L, consider

ψL :=
L∑
l=0

l∑
m=−l

ψ̂m,lY
m
l .

Then we have

G[ψL] =
L∑
l=0

l∑
m=−l

ψ̂m,lG[Y m
l ] =

L∑
l=0

l∑
m=−l

ψ̂m,lĝm,l.

By Cauchy-Schwartz's inequality, we obtain

|G[ψL]| ≤ (
L∑
l=0

l∑
m=−l

(1 + l2)s|ψ̂m,l|2)1/2(
L∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2

≤ ‖ψL‖s(
∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2.

Since the linear span of the spherical harmonics is dense in Hs(S2), the above inequality

remains true if we replace ψL with ψ ∈ Hs(S2)\{0} and set f := ψ
‖ψ‖s , which implies that

‖G‖−s = sup
f∈Hs(S2),‖f‖s=1

|G[f ]| ≤ (
∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2.

To complete the �rst part of the proof, we shall now show that

‖G‖−s ≥ (

∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2.

De�ne

ϕL :=

L∑
l=0

l∑
m=−l

(1 + l2)−sĝm,lY
m
l .

Then we obtain

‖ϕL‖2s =

L∑
l=0

l∑
m=−l

(1 + l2)s|(1 + l2)
−s
ĝm,l|2

=
L∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2.
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Therefore, using the theory of bounded linear functionals in Hilbert spaces, for all non-negative

integers L,

‖G‖−s ≥
∣∣∣∣G [ ϕL
‖ϕL‖s

]∣∣∣∣
=

∣∣∣∣∣
L∑
l=0

l∑
m=−l

(1 + l2)−sĝm,lG[Y m
l ]

∣∣∣∣∣ /(
L∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2

= (
L∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2,

where we have used the facts that G is a linear functional and ĝm,l = G[Y m
l ], |m| ≤ l, l ∈ N0.

The above gives

‖G‖−s ≥ (
∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2)1/2.

Thus we conclude that

‖G‖−s =

∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2.

Conversely, we note that given any sequence {ĝm,l}m,l satisfying

∞∑
l=0

l∑
m=−l

(1 + l2)−s|ĝm,l|2 <∞,

we can de�ne a functional G on Hs(S2) by

G[ψ] :=

∞∑
l=0

l∑
m=−l

ψ̂m,lĝm,l, ψ ∈ Hs(S2),

and the above estimates show that G is a bounded linear functional on Hs(S2) and (1.4.4)

holds. Furthermore, taking ψ = Y m
l , we obtain G[Y m

l ] = ĝm,l, |m| ≤ l, l ∈ N0. �

From Theorem 1.4.4, we have an elaboration on the duality between Hs(S2) and H−s(S2).

Theorem 1.4.5. (cf. [27, Theorem 1.34]) For g ∈ L2(S2), the duality pairing

G[ϕ] := 〈ϕ, g〉0, ϕ ∈ Hs(S2), (1.4.5)

de�nes a bounded linear functional on Hs(S2), i.e., G ∈ H−s(S2). In particular, L2(S2) can

be viewed as a subspace of the dual space H−s(S2), 0 ≤ s < ∞, and thus the linear span of

the spherical harmonics is dense in H−s(S2).
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Proof. Let {ĝm,l}m,l be the spherical harmonic coe�cients of g. Since G[Y m
l ] = ĝm,l,

|m| ≤ l, l ∈ N0, by the second part of Theorem 1.4.4, we have G ∈ H−s(S2). Now let

F ∈ H−s(S2) with F̂m,l = F [Y m
l ], |m| ≤ l, l ∈ N0, and de�ne FL ∈ H−s(S2) by

FL[ϕ] := 〈ϕ, gL〉0

where

gL :=
L∑
l=0

l∑
m=−l

F̂m,lY
m
l .

Then

‖F − FL‖2−s =

∞∑
l=L+1

l∑
m=−l

(1 + l2)−s|F̂m,l|2

tends to zero as L goes to in�nity, which implies that the linear span of the spherical harmonics

is dense in H−s(S2). �

Remark 1.4.6. By using a density argument, the above duality pairing (1.4.5) can be

extended to bounded linear functionals in H−s(S2). In particular, for ϕ ∈ Hs(S2) and g ∈
H−s(S2), we de�ne

g[ϕ] := 〈ϕ, g〉0

with corresponding norm

‖g‖−s := sup
ϕ∈Hs(S2),‖ϕ‖s=1

〈ϕ, g〉0.

Note that H−s(S2) becomes a Hilbert space by extending the inner product (1.4.2) previously

de�ned in Theorem 1.4.2 for s ≥ 0 to s < 0.

1.4.2. Sobolev spaces on the sphere Hs
sym

(S2) and modi�ed SH.

This subsection is analogous to the previous subsection, so we shall forgo the proofs here.

The modi�ed spherical harmonics
{
Ỹ m
l

}
m,l

de�ned in (1.3.17) form an orthonormal basis of

L2
sym(S2). If f ∈ L2

sym(S2), then f has a corresponding modi�ed spherical harmonic series

∑
l∈2N0

l∑
m=−l

f̃m,lỸ
m
l , where f̃m,l =

ˆ
S2
fỸ m

l dσ.

We are now interested in Sobolev spaces of symmetric functions on the sphere. For

s ∈ [0,∞), the Sobolev spaces Hs
sym(S2) are subspaces of L2

sym(S2) which are determined by

the decay of the modi�ed spherical harmonics coe�cients.



1.4. SOBOLEV SPACES ON THE SPHERE 30

Definition 1.4.7. Let s ∈ [0,∞). By Hs
sym(S2), we denote the space

Hs
sym(S2) =

f ∈ L2
sym(S2) :

∑
l∈2N0

l∑
m=−l

(1 + l2)s|f̃m,l|2 <∞

 ,

where
{
f̃m,l

}
m,l

are the coe�cients of the modi�ed spherical harmonics. The space Hs
sym(S2)

is called a symmetric Sobolev space on S2 of order s. Note that H0
sym(S2) = L2

sym(S2).

Note that due to (1.3.19) and (1.3.20), the triangle inequality gives the equivalence of the

SH coe�cients
{
f̂m,l

}
m,l

and modi�ed SH coe�cients
{
f̃m,l

}
m,l

in the following sense:

|f̂m,l|2 ≤ |f̃m,l|2 + |f̃−m,l|2, |f̃m,l|2 ≤ |f̂m,l|2 + |f̂−m,l|2, |m| ≤ l, l ∈ 2N0.

Thus we obtain

1

2

∑
l∈2N0

l∑
m=−l

(1 + l2)s|f̂m,l|2 ≤
∑
l∈2N0

l∑
m=−l

(1 + l2)s|f̃m,l|2 ≤ 2
∑
l∈2N0

l∑
m=−l

(1 + l2)s|f̂m,l|2,

which justi�es our intent of de�ning Hs
sym(S2) in terms of the decay of the modi�ed SH

coe�cients
{
f̃m,l

}
m,l

(instead of the SH coe�cients
{
f̂m,l

}
m,l

).

We now state the results on Hs
sym(S2) corresponding to those on Hs(S2) in the previous

subsection.

Theorem 1.4.8. The space Hs
sym(S2) is a Hilbert space with the inner product

〈f, g〉?,s =
∑
l∈2N0

l∑
m=−l

(1 + l2)sf̃m,lg̃m,l, (1.4.6)

for f , g ∈ Hs
sym(S2) with modi�ed spherical harmonic coe�cients {f̃m,l}m,l, {g̃m,l}m,l respec-

tively. The induced norm is then given by

‖f‖?,s = (
∑
l∈2N0

l∑
m=−l

(1 + l2)s|f̃m,l|2)1/2.

Furthermore, the linear span of the modi�ed spherical harmonics is dense in Hs
sym(S2).

Definition 1.4.9. For 0 < s < ∞, we denote by H−ssym(S2), the dual space of Hs
sym(S2),

i.e., the space of bounded linear functionals on Hs
sym(S2).

Theorem 1.4.10. Let G be a bounded linear functional de�ned on Hs
sym(S2). Then

‖G‖?,−s =
∑
l∈2N0

l∑
m=−l

(1 + l2)−s|g̃m,l|2
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where we de�ne

‖G‖?,−s := sup
f∈Hs

sym(S2),‖f‖?,s=1

|G[f ]|, g̃m,l := G[Ỹ m
l ], |m| ≤ l, l ∈ 2N0.

Conversely, for each sequence {g̃m,l}m,l satisfying∑
l∈2N0

l∑
m=−l

(1 + l2)−s|g̃m,l|2 <∞,

there exists a bounded linear functional G de�ned on Hs
sym(S2) such that g̃m,l = G[Ỹ m

l ],

|m| ≤ l, l ∈ 2N0.

From Theorem 1.4.10, we have an elaboration on the duality between Hs
sym(S2) and

H−ssym(S2).

Theorem 1.4.11. For g ∈ L2
sym(S2), the duality pairing

G[ϕ] := 〈ϕ, g〉?,0, ϕ ∈ Hs
sym(S2), (1.4.7)

de�nes a bounded linear functional on Hs
sym(S2), i.e., G ∈ H−ssym(S2). In particular, L2

sym(S2)

can be viewed as a subspace of the dual space H−ssym(S2), 0 ≤ s <∞, and thus the linear span

of the modi�ed spherical harmonics is dense in H−ssym(S2).

Remark 1.4.12. By using a density argument, the above duality pairing (1.4.7) can be

extended to bounded linear functionals in H−ssym(S2). In particular, for ϕ ∈ Hs
sym(S2) and

g ∈ H−ssym(S2), we de�ne

g[ϕ] := 〈ϕ, g〉?,0

with corresponding norm

‖g‖?,−s := sup
ϕ∈Hs

sym(S2),‖ϕ‖?,s=1

〈ϕ, g〉?,0.

We also note that H−ssym(S2) becomes a Hilbert space by extending the inner product (1.4.6)

de�ned in Theorem 1.4.8 for s ≥ 0 to s < 0.



CHAPTER 2

Wavelet Frames on the Sphere

In this chapter, we begin by describing a framework to construct wavelet frames for Hilbert

spaces in section 2.1. We then apply the framework to create tight wavelet frames for L2(S2)

and L2
sym(S2) in sections 2.2 and 2.3 respectively. They are in turn used to obtain dual pairs

of wavelet frames for the corresponding dual pairs of Sobolev spaces in sections 2.4 and 2.5

respectively.

2.1. Construction of Wavelet Frames for Hilbert Spaces

This section is organized as follows: subsection 2.1.1 presents basics behind the framework

employed to construct wavelet frames for a subspace of a given Hilbert space; this framework

is then combined with an MRA to yield wavelet frames for this Hilbert space in subsection

2.1.2.

2.1.1. Basic ideas of wavelet frame constructions on Hilbert spaces.

A general method to build wavelet bases for Hilbert spaces of functions was introduced in

[46]. Examples constructed in [46] include wavelets for periodic functions over the real line,

analytic functions on the unit disk and functions generated by Chebyshev polynomials. In

this section, we extend the results of [46] to a frame setting.

Let H be a separable Hilbert space of real- or complex-valued functions de�ned on a set

S. As H is separable, it has an orthonormal basis {ej}j∈Λ of H for some countable index set

Λ. In this section, the inner product and induced norm that H is equipped with are denoted

as 〈·, ·〉 and ‖ · ‖ respectively. Recall that a countable collection of functions {fν}ν∈I in H is

a frame for H if there exist positive constants C and D such that for every f ∈ H,

C‖f‖2 ≤
∑
ν∈I
|〈f, fν〉|2 ≤ D‖f‖2. (2.1.1)

The constants C and D, which are not unique, are called the bounds of the frame. In the

case that C = D = 1, we say that {fν}ν∈I is a normalized tight frame for H. As opposed

to bases, frames provide overcomplete, yet stable, representations of functions. Due to this

32
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property, frames usually o�er superior denoising performances than bases in image and signal

processing. The reader can �nd more details on the basic concepts of frames in [34].

Similar to the approach described in [46], a general method of constructing wavelet frames

for H builds upon the orthonormal basis {ej}j∈Λ. The wavelet frame in this thesis is a family

of functions {ψk(·; ηk,ν) : ν ∈ J ′k, k ≥ −1} that satis�es (2.1.1) and for every k ≥ −1, has its

functions taking the form

ψk(·; ηk,ν) = µk,ν
∑
j∈Jk

γk,j ej(ηk,ν) ej , ν ∈ J ′k,

where Jk is a �nite subset of Λ, and ηk,ν ∈ S, µk,ν , γk,j ∈ C\ {0} for all j ∈ Jk, ν ∈ J ′k, with
J ′k being a �nite set such that |Jk| ≤ |J ′k|. In the classical wavelet literature, for a �xed k,

ψk(·; ηk,ν), ν ∈ J ′k, represent translates of a function. In general Hilbert spaces, for a �xed

level k, we regard ψk(·; ηk,ν) as the generalized translates of a single function
∑

j∈Jk γk,jej

by the operator Tηk,ν (then multiplied by constants), where Tζ is de�ned as the generalized

translation operator acting on functions f of the form f =
∑N

l=1 αjlejl such that

Tζ f :=
N∑
l=1

αjlejl(ζ) ejl . (2.1.2)

To see the motivation behind the de�nition of this generalized translation operator (2.1.2),

consider the special case where

H := L2[0, 2π), S := [0, 2π), Λ := Z,

ej(x) := exp(ijx), x ∈ S, j ∈ Λ.

We next consider a function f formed by a �nite weighted sum of the orthonormal functions,

i.e., f(x) :=
∑N−1

j=0 αjej(x), x ∈ S, for some positive integer N . If we select a collection of

nodes {ζν}ν for (2.1.2) where in this case, ζν := 2πν/N, ν = 0, 1, . . . , N − 1, then we have

Tζν f (x) =

N−1∑
j=0

αjej(ζν) ej(x)

=

N−1∑
j=0

αj exp(ij(x− ζν)) = f(x− ζν),

which is a translate of the function f in this special case. Furthermore, note that the matrix

A = [ej(ζν)]N−1
j,ν=0 = [exp(i2πjν/N)]N−1

j,ν=0
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has orthogonal rows and columns. Indeed, the basic setup of the construction method in [46]

hinges on the existence of a �nite-dimensional square matrix [ej(ζ)]j∈Λ,ζ∈S which possesses

orthogonal rows or orthogonal columns.

Let us now generalize the basic setup in [46, section 1] to the frame setting. Consider

�nite sets I, I ′, I ⊂ Λ with |I| ≤ |I ′|. Suppose that there exist nodes ζν ∈ S, ν ∈ I ′, and a

|I ′| × |I ′| diagonal weight matrix D := diag(dν)ν∈I′ with positive diagonal entries such that

the |I| × |I ′| rectangular matrix A := [ej(ζν)]j∈I,ν∈I′ satis�es

ADA∗ = I. (2.1.3)

In other words, we require the rows of the rectangular matrix A are orthonormal under

appropriate weighting. Note that when |I| = |I ′|, A∗A = D−1 = diag(d−1
ν )ν∈I , which

illustrates that (2.1.3) is a generalization of [46, equation 3]. We shall just focus on this

generalization as it yields our desired constructions of wavelet frames on the sphere later.

Let us de�ne

F := AD1/2,

and in view of (2.1.3), the rows of matrix F are orthonormal, i.e.,

FF ∗ = I.

Now consider a function ϕ ∈ H of the form

ϕ =
∑
j∈I

ajej , (2.1.4)

with aj ∈ C, j ∈ I. With [ϕ(·; ζν)]ν∈I′ and [ajej ]j∈I as column vectors, set

[ϕ(·; ζν)]ν∈I′ := F ∗[ajej ]j∈I . (2.1.5)

By (2.1.5),

ϕ(·; ζν) =
√
dν
∑
j∈I

ajej(ζν) ej , ν ∈ I ′. (2.1.6)

Note that ϕ(·; ζν), ν ∈ I ′, in (2.1.6) can be written respectively in the form

ϕ(·; ζν) =
√
dνTζνϕ, ν ∈ I ′.

Remark 2.1.1. Denoting

U := span
{
ϕ(·; ζν) : ν ∈ I ′

}
,
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it is of interest to study such subspaces (when {aj}j∈I is a constant sequence) for the functions

ϕ(·; ζν) = µν
∑
j∈I

ej(ζν) ej , ν ∈ I ′,

as they act as kernel functions to provide the subspace U with the reproducing property, i.e.,

for all f ∈ U ,

〈f, µ−1
ν ϕ(·; ζν)〉 = f(ζν), ν ∈ I ′. (2.1.7)

Indeed, since f ∈ U and U ⊆ span {ej : j ∈ I} , f =
∑

j∈I cjej for some [cj ]j∈I ∈ C|I|.
Then for ν ∈ I ′,

〈f , µ−1
ν ϕ(·; ζν)〉 =

∑
j∈I

cj
∑
j′∈I

ej′(ζν)〈ej , ej′〉

=
∑
j∈I

cjej(ζν) = f(ζν).

The following result provides characterizations of a subspace spanned by �nitely many ej ,

j ∈ I, in terms of {aj}j∈I .

Proposition 2.1.2. Let V be a subspace de�ned by

V := span {ej : j ∈ I} .

Then the following characterizations hold.

(i) span {ϕ(·; ζν) : ν ∈ I ′} = V if and only if aj 6= 0, j ∈ I.
(ii) {ϕ(·; ζν) : ν ∈ I ′} forms a frame for V with frame bounds C and D if and only if

C ≤ |aj |2 ≤ D, j ∈ I.
(iii) {ϕ(·; ζν) : ν ∈ I ′} forms a normalized tight frame for V if and only if |aj | = 1, j ∈ I.

Proof. Since that [ϕ(·; ζν)]ν∈I′ = F ∗[ajej ]j∈I and [ajej ]j∈I = F [ϕ(·; ζν)]ν∈I′ as FF
∗ =

I,

span
{
ϕ(·; ζν) : ν ∈ I ′

}
= span {ajej : j ∈ I} = V,

if and only if aj 6= 0, j ∈ I, proving statement (i).

For statements (ii) and (iii), consider f ∈ V . Then f =
∑

j∈I cjej for some [cj ]j∈I ∈ C|I|

and

‖f‖2 =
∑
j∈I
|cj |2 = ‖[cj ]j∈I‖22. (2.1.8)
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Note that

[〈f, ϕ(·; ζν)〉]ν∈I′ = [
√
dν
∑
j∈I

ej(ζν)ajcj ]ν∈I′ = F
∗
[ajcj ]j∈I .

Thus, since FF ∗ = I,∑
ν∈I′
|〈f, ϕ(·; ζν)〉|2 = ‖F ∗[ajcj ]j∈I‖22 = ‖[ajcj ]j∈I‖22. (2.1.9)

We now only prove statement (ii) as statement (iii) is a special case of it when C = D = 1.

Suppose that C ≤ |aj |2 ≤ D, j ∈ I. Then we have for all [cj ]j∈I ∈ C|I|,

C
∑
j∈I
|cj |2 ≤ ‖[ajcj ]j∈I‖22 ≤ D

∑
j∈I
|cj |2.

By (2.1.8) and (2.1.9), the above inequalities imply that for all f ∈ V ,

C‖f‖2 ≤
∑
ν∈I′
|〈f, ϕ(·; ζν)〉|2 ≤ D‖f‖2.

Conversely, suppose that {ϕ(·; ζν) : ν ∈ I ′} forms a frame for V with frame bounds C

and D. Using the same arguments as above with (2.1.8) and (2.1.9),

C‖f‖2 ≤
∑
ν∈I′
|〈f, ϕ(·; ζν)〉|2 ≤ D‖f‖2, ∀f ∈ V,

is equivalent to

C
∑
j∈I
|cj |2 ≤ ‖[ajcj ]j∈I‖22 ≤ D

∑
j∈I
|cj |2, ∀[cj ]j∈I ∈ C|I|.

Selecting f = ej′ , j
′ ∈ I (i.e., {cj}j∈I = {δj,j′}j∈I), gives C ≤ |aj′ |2 ≤ D, j′ ∈ I. This

completes the proof. �

As we shall see, the reproducing property (2.1.7) shows that functions of the form

ϕ(·; ζν) = µν
∑
j∈I

ej(ζν) ej , ν ∈ I ′, (2.1.10)

are well localized in some sense according to the following proposition. This localization

property will prove useful for constructing wavelet functions which are localized at particular

nodes on the sphere.

Proposition 2.1.3. De�ne ϕ(·; ζν) according to (2.1.10) for some collection of nodes

{ζν}ν∈I′. If V := span {ej : j ∈ I}, then the function ϕ(·; ζν), ν ∈ I ′, is well localized in the

sense that
‖ϕ(·; ζν)‖
|ϕ(ζν ; ζν)|

= min {‖f‖ : f ∈ V, f(ζν) = 1} , ν ∈ I ′. (2.1.11)
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Proof. For a �xed ν ∈ I ′, by applying the Cauchy-Schwartz's inequality on the repro-

ducing property (2.1.7), we obtain

1 = f(ζν) = 〈f, µ−1
ν ϕ(·; ζν)〉 ≤ ‖f‖‖µ−1

ν ϕ(·; ζν)‖,

and thus

‖µ−1
ν ϕ(·; ζν)‖−1 ≤ ‖f‖, ∀f ∈ V, f(ζν) = 1.

To establish (2.1.11), we show that the above lower bound on ‖f‖ can be attained when we

select

f(·) =
ϕ(·; ζν)

ϕ(ζν ; ζν)
. (2.1.12)

Note that f ∈ V and f(ζν) = 1, by the reproducing property,

〈f, µ−1
ν ϕ(·; ζν)〉 = f(ζν) = 1, ν ∈ I ′.

Using the expression of f in (2.1.12), we attain the required lower bound

‖f‖ =
‖ϕ(·; ζν)‖
|ϕ(ζν ; ζν)|

= ‖µ−1
ν ϕ(·; ζν)‖−1.

�

2.1.2. Multiresolution analysis and wavelets on Hilbert spaces.

We shall now describe a strategy for obtaining a multiresolution analysis of H. Let

{Ik}k≥0 be an increasing sequence of �nite subsets of Λ, i.e., Ik ⊂ Ik+1, k ≥ 0. Suppose that

for every k ≥ 0, there exist ζk,ν ∈ S, ν ∈ I ′k, where I ′k is a �nite set with |Ik| ≤ |I ′k|, and a

diagonal |I ′k| × |I ′k| matrix Dk := diag(dk,ν)ν∈I′k with positive diagonal entries such that the

|Ik| × |I ′k| matrix Ak := [ej(ζk,ν)]j∈Ik,ν∈I′k satis�es

AkDkA
∗
k = I.

Note that FkF
∗
k = I, when we de�ne

Fk := AkD
1/2
k .

For ak,j ∈ C, j ∈ Ik, set ϕk :=
∑

j∈Ik ak,jej and de�ne similarly ϕk(·; ζk,ν), ν ∈ I ′k, by (2.1.6),
i.e., [ϕk(·; ζk,ν)]ν∈I′k := F ∗k [ak,jej ]j∈Ik , or

ϕk(·; ζk,ν) =
√
dk,ν

∑
j∈Ik

ak,jej(ζk,ν) ej , ν ∈ I ′k. (2.1.13)

A sequence of �nite-dimensional subspaces {Vk}k≥0 in H is a multiresolution analysis

(MRA) of H if
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(MRA1) For every k ≥ 0, there exist functions ϕk(·; ζk,ν), ν ∈ J ′k, of the form (2.1.13) such

that {ϕk(·; ζk,ν) : ν ∈ I ′k} spans Vk.
(MRA2) For all k ≥ 0, Vk ⊂ Vk+1.

(MRA3) closH

(⋃
k≥0 Vk

)
= H.

We call the functions ϕk(·; ζk,ν), ν ∈ I ′k, k ≥ 0, scaling functions. For k ≥ 0, de�ne

Vk := span {ej : j ∈ Ik} .

Then (MRA1) can be obtained by letting ak,j 6= 0, j ∈ Ik, k ≥ 0, so that by Proposition

2.1.2, Vk = span {ϕk(·; ζk,ν) : ν ∈ I ′k}. Characterizations of (MRA2) and (MRA3) are given

in terms of the index sets Ik, k ≥ 0, as follows.

Proposition 2.1.4. ([46, Propositions 4,5]) The condition in (MRA2) is equivalent to

Ik ⊂ Ik+1, k ≥ 0.

The condition in (MRA3) holds if and only if⋃
k≥0

Ik = Λ.

Proof. The reader may refer to the proofs of [46, Propositions 4,5]. �

Having an MRA of H, we are in a position to construct wavelets. De�ne the wavelet

subspace Wk as the orthogonal complement of Vk in Vk+1. Since Vk = span {ej : j ∈ Ik},
de�ning Jk := Ik+1\Ik, it then follows that

Wk = span {ej : j ∈ Jk} . (2.1.14)

Suppose similarly that for every k ≥ 0, there exist ηk,ν ∈ S, ν ∈ J ′k, where J ′k is a �nite

set with |Jk| ≤ |J ′k|, and a diagonal |J ′k| × |J ′k| matrix D̂k := diag(d̂k,ν)ν∈J ′k with positive

diagonal entries, such that the |Jk| × |J ′k| matrix Bk := [ej(ηk,ν)]j∈Jk,ν∈J ′k satis�es

BkD̂kB
∗
k = I.

Note that GkG
∗
k = I, when we de�ne

Gk := Bk D̂k
1/2.

For bk,j ∈ C, j ∈ Jk, de�ne the function ψk :=
∑

j∈Jk bk,jej as in (2.1.4). Then putting

I = Jk, I ′ = J ′k, A = Bk, D = D̂k and aj = bk,j for j ∈ Jk, we obtain ψk(·; ηk,ν), ν ∈ J ′k,
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from (2.1.6), i.e., de�ne [ψk(·; ηk,ν)]ν∈J ′k := G∗k[bk,jej ]j∈Jk , or alternatively

ψk(·; ηk,ν) =

√
d̂k,ν

∑
j∈Jk

bk,jej(ηk,ν) ej , ν ∈ J ′k.

The functions ψk(·; ηk,ν), ν ∈ J ′k , are known as wavelets. As seen in (2.1.6), such functions

can be regarded as generalized translates of a single function.

Similar to Proposition 2.1.2, we next have a characterization of frame properties of

{ψk(·; ηk,ν) : ν ∈ J ′k} for Wk in terms of the values of bk,j , j ∈ Jk.

Theorem 2.1.5. For k ≥ 0, let Wk be de�ned by (2.1.14). Then we have the following

characterizations.

(i) span {ψk(·; ηk,ν) : ν ∈ J ′k} = Wk if and only if bk,j 6= 0, j ∈ Jk.
(ii) {ψk(·; ηk,ν) : ν ∈ J ′k} is a frame for Wk with frame bounds C and D if and only if

C ≤ |bk,j |2 ≤ D, j ∈ Jk.

(iii) {ψk(·; ηk,ν) : ν ∈ J ′k} is a normalized tight frame for Wk if and only if

|bk,j | = 1, j ∈ Jk.

Proof. The result follows from a direct application of Proposition 2.1.2. �

Thus, starting from an MRA {Vk}k≥0 , for every k ≥ 0, with an appropriate choice of

bk,j , j ∈ Jk, we obtain (normalized tight) frames for the wavelet subspaces Wk. The scaling

functions φk(·; ζk,ν), ν ∈ I ′k, and the wavelets ψk(·; ηk,ν), ν ∈ J ′k, aim to provide a good

representation of functions in Vk and Wk respectively. Such a representation is used when

we decompose, by virtue of Wk being the orthogonal complement of Vk in Vk+1, a function

fk+1 ∈ Vk+1 into fk+1 = fk + gk, where fk ∈ Vk, gk ∈ Wk. The function fk+1 can also be

recovered perfectly from the functions fk and gk.

After obtaining (normalized tight) frames for all the wavelet subspaces as above, it remains

to show that the entire collection of these (normalized tight) frames forms a (normalized

tight) frame for H. Due to Wk being the orthogonal complement of Vk in Vk+1, we have the

orthogonal decomposition H = V0 ⊕⊥ W0 ⊕⊥ W1 ⊕⊥ . . .. To simplify notations, we denote

W−1 := V0, J−1 := I0, J ′−1 := I ′0, η−1,ν := ζ0,ν and ψ−1(·; η−1,ν) := ϕ0(·; ζ0,ν) for ν ∈ J ′−1.

Theorem 2.1.6. If for every k ≥ −1, {ψk(·; ηk,ν) : ν ∈ J ′k} forms a frame for Wk with

common frame bounds, then the collection {ψk(·; ηk,ν) : ν ∈ J ′k, k ≥ −1} forms a frame for H
with the same frame bounds. In particular, if for every k ≥ −1, {ψk(·; ηk,ν) : ν ∈ J ′k} forms
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a normalized tight frame for Wk, then the collection {ψk(·; ηk,ν) : ν ∈ J ′k, k ≥ −1} forms a
normalized tight frame for H.

Proof. By Proposition 2.1.4, we have Λ =
⋃
k≥0 Ik. Since Jk = Ik+1\Ik for every k ≥ 0,

Λ can be formed by the disjoint union of all Jk's, i.e.,

Λ =
⋃
k≥−1

Jk. (2.1.15)

For each k ≥ −1, by de�nition, {ej : j ∈ Jk} is an orthonormal basis for Wk, so

‖gk‖2 =
∑
j∈Jk

|〈gk, ej〉|2, gk ∈Wk.

The subspace Wk is �nite-dimensional and hence closed. So any f ∈ H can be written as

f = gk + hk, where gk ∈Wk, hk ∈W⊥k . Thus∑
j∈Jk

|〈f, ej〉|2 =
∑
j∈Jk

|〈gk, ej〉|2 = ‖gk‖2.

Since {ej : j ∈ Λ} is an orthonormal basis for H, and applying (2.1.15), for any f ∈ H,

‖f‖2 =
∑
k≥−1

∑
j∈Jk

|〈f, ej〉|2 =
∑
k≥−1

‖gk‖2.

If for every k ≥ −1, {ψk(·; ηk,ν) : ν ∈ J ′k} forms a frame for Wk with common frame

bounds, say C and D, we then obtain

C
∑
k≥−1

‖gk‖2 ≤
∑
k≥−1

∑
ν∈J ′k

|〈gk, ψk(·; ηk,ν)〉|2 ≤ D
∑
k≥−1

‖gk‖2.

Noting that ‖f‖2 =
∑

k≥−1 ‖gk‖2, and also f = gk+hk, gk ∈Wk, hk ∈W⊥k , for every k ≥ −1,∑
k≥−1

∑
ν∈J ′k

|〈f, ψk(·; ηk,ν)〉|2 =
∑
k≥−1

∑
ν∈J ′k

|〈gk, ψk(·; ηk,ν)〉|2,

we obtain the desired result that for any f ∈ H,

C‖f‖2 ≤
∑
k≥−1

∑
ν∈J ′k

|〈f, ψk(·; ηk,ν)〉|2 ≤ D‖f‖2.

�

Remark 2.1.7. We like to point out that [47] (an upcoming sequel to [46]) also constructs

wavelet frames for Hilbert spaces of functions. One main di�erence between [47] and this work

lies in their respective basic setups. In [47], square matrices with orthogonal rows or columns

are used to construct the scaling functions, whereas as seen in (2.1.3), rectangular matrices

with (weighted) orthogonal rows are considered for our construction of scaling functions. In
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fact, the motivation behind the rectangular setup is to enable the construction of wavelet

frames on the sphere using spherical harmonics. This shall be explained in the subsequent

sections.

2.2. Constructing Tight Wavelet Frames for L2(S2) with SH

This section illustrates how the theoretical framework in section 2.1 can be applied to

construct wavelet frames for L2(S2). Subsection 2.2.1 presents how to select the so-called

Gauss-Legendre quadrature nodes so that the corresponding matrix of discretized spherical

harmonics (SH) satis�es the framework with weighted orthogonal rows. Building upon that,

subsection 2.2.2 presents how MRA-based tight wavelet frames for L2(S2) are constructed.

2.2.1. Gauss-Legendre quadrature nodes for SH.

Let us now see how to apply our basic setup in the earlier section to construct wavelet

frames from spherical harmonics. In this case, we set

H = L2(S2), S = S2, Λ = {(m, l) ∈ Z× N0 : |m| ≤ l} ,

ej := Yj := Y m
l , j := (m, l) ∈ Λ, (2.2.1)

where the inner product on L2(S2) was de�ned earlier in (1.3.2) and Y m
l , (m, l) ∈ Λ, are

spherical harmonics which can be expressed as

Y m
l (θ, φ) := Θm

l (cos θ)Φm(φ), θ ∈ [0, π], φ ∈ [0, 2π), (m, l) ∈ Λ, (2.2.2)

where

Θm
l (cos θ) := (−1)m

√
(2l + 1)(l −m)!

2(l +m)!
Pml (cos θ), Φm(φ) :=

1√
2π

exp(imφ).

For convenience, we use interchangeably the notations Yj(u), Y m
l (u) Y m

l (θ, φ) in (2.2.1),

where it is understood that (θ, φ) are the corresponding spherical co-ordinates of the vector

u ∈ S2 according to the parametrization given in (1.3.1).

We consider

I := {(m, l) ∈ Z× N0 : |m| ≤ l, L0 ≤ l ≤ L} , (2.2.3)

and de�ne its corresponding spanning subspace V as

V : = span {ej : j ∈ I}

= span {Y m
l : |m| ≤ l, L0 ≤ l ≤ L} .

(2.2.4)

Recall that to construct wavelet frames to span the subspace V , given I in (2.2.3), we seek

nodes ζν ∈ S, ν ∈ I ′ (with I ′ a �nite set with |I| ≤ |I ′|), and a |I ′| × |I ′| diagonal weight
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matrix D := diag(dν)ν∈I′ with positive diagonal entries such that the |I| × |I ′| rectangular
matrix A := [Yj(ζν)]j∈I,ν∈I′ satis�es

ADA∗ = I,

which is equivalent to ∑
ν∈I′

Yj′(ζν)Yj(ζν)dν = δj,j′ , j, j′ ∈ I. (2.2.5)

To accomplish (2.2.5), an appropriate choice of nodes {ζν}ν∈I′ is given by a tensor product
of azimuth and zenith points:

ζν := (θα, φβ), ν := (α, β) ∈ I ′, (2.2.6)

where the azimuth points are given as

θα := cos−1(xα), α = 0, 1, . . . , L, (2.2.7)

with {xα}Lα=0 being the zeros of the Legendre polynomial PL+1 and the zenith points are

given as

φβ :=
2πβ

2L+ 1
, β = 0, 1, . . . , 2L. (2.2.8)

Thus the set I ′ is given by

I ′ := {(α, β) : α = 0, 1, . . . , L, β = 0, 1, . . . , 2L} .

If we enumerate the nodes in the following manner:

{(θα, φβ)}(α,β) := {(θ0, φ0), . . . , (θ0, φ2L), . . . . . . , (θL, φ0), . . . , (θL, φ2L)} , (2.2.9)

then we shall see that the required diagonal weight matrix D given by

D =
2π

2L+ 1
diag(w0, . . . , w0, w1, . . . , w1, . . . . . . , wL, . . . , wL), (2.2.10)

where {wα}Lα=0 are the corresponding Gauss-quadrature weights of the Legendre polynomial

PL+1 de�ned in (1.3.6), with each unique value of wα appearing 2L + 1 times in the matrix

D.
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To see why the above choice of nodes and weight matrix is appropriate, we consider the

separable structure of Yj = Y m
l as in (1.3.9) and (1.3.10) and obtain that∑

ν∈I′
Yj′(ζν)Yj(ζν)dν =

∑
(α,β)∈I′

Y m′
l′ (θα, φβ)Y m

l (θα, φβ)wα ·
2π

2L+ 1

=

{
L∑
α=0

Θm
l (xα)Θm′

l′ (xα)wα

}
·


2L∑
β=0

Φm′(φβ)Φm(φβ) · 2π

2L+ 1


=

{
L∑
α=0

Θm
l (xα)Θm

l′ (xα)wα

}
· δm,m′

= δl,l′ · δm,m′ = δj,j′ ,

for all j, j′ ∈ I, where we have made use of the following results:

2L∑
β=0

Φm(φβ)Φm′(φβ) · 2π

2L+ 1
= δm,m′ , ∀|m|, |m′| ≤ L, (2.2.11)

L∑
α=0

Θm
l (xα)Θm

l′ (xα)wα = δl,l′ , ∀|m| ≤ min(l, l′), 0 ≤ l, l′ ≤ L. (2.2.12)

It is easy to verify (2.2.11) by using standard geometric sum arguments. To show why (2.2.12)

is true, recall from (1.3.12) that for any �xed m with |m| ≤ min(l, l′),
´ 1
−1 Θm

l (x)Θm
l′ (x) dx =

δl,l′ , 0 ≤ l, l′ ≤ L. So we need to establish for any �xed m with |m| ≤ min(l, l′),

L∑
α=0

Θm
l (xα)Θm

l′ (xα)wα =

ˆ 1

−1
Θm
l (x)Θm

l′ (x) dx, 0 ≤ l, l′ ≤ L. (2.2.13)

The reason behind the validity of (2.2.13) stems from the following classical Gaussian quad-

rature result in numerical integration.

Theorem 2.2.1. ([79]) Let {pl}nl=0 be a set of orthogonal polynomials on [−1, 1] with

respect to the inner product

〈f, g〉w =

ˆ 1

−1
f(x)g(x)w(x) dx,

where w is a non-negative function de�ned on [−1, 1]. Let {xα}n−1
α=0 be the zeros of the poly-

nomial pn. Then the quadrature rule

I(h) :=

ˆ 1

−1
h(x)w(x) dx =

n−1∑
α=0

h(xα)wα, (2.2.14)
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holds exactly for all polynomials h of degree at most 2n− 1, where

wα =

ˆ 1

−1
Lα(x)w(x) dx, Lα(x) :=

n−1∏
k=0,k 6=α

(x− xk)
(xα − xk)

.

Note that when w(x) ≡ 1, {pl}nl=0 are exactly the Legendre polynomials {Pl}nl=0. Given

0 ≤ l, l′ ≤ L, and a �xed m with |m| ≤ min(l, l′), by the de�nition of Θm
l , the product Θm

l Θm
l′

is a polynomial of degree l + l′ ≤ 2L. Thus by (2.2.14), if we set

h := Θm
l Θm

l′ , w ≡ 1, n = L+ 1,

{xα}Lα=0 as the zeros of PL+1 and {wα}Lα=0 as the corresponding quadrature weights, we

�nally obtain (2.2.13).

Remark 2.2.2. We note that the cardinality of the set of nodes {ζν}ν∈I′ de�ned in (2.2.6)

is (L+1)·(2L+1), which is only dependent on the largest order L of the spherical harmonics in

the subspace V de�ned in (2.2.4). Actually, there are many other choices of nodes {ζν}ν∈I′ to
achieve (2.2.11) and (2.2.12). For instance, we may replace θα in (2.2.7) by θα := cos−1(xα),

with {xα}Nα=0 being the zeros of the Legendre polynomial PN+1, N ≥ L . We may also replace

φβ in (2.2.8) with φβ = 2πβ
M+1 , β = 0, 1, . . . ,M , M ≥ 2L. Thus the corresponding set I ′ is

given by

I ′ := {(α, β) : α = 0, 1, . . . , N, β = 0, 1, . . . ,M} .

If we enumerate {(θα, φβ)}(α,β) as in (2.2.9), then the corresponding diagonal weight matrix

D is given by

D =
2π

M + 1
diag(w0, . . . , w0, w1, . . . , w1, . . . . . . , wN , . . . , wN ),

where {wα}Nα=0 are the corresponding Gauss-quadrature weights of the Legendre polynomial

PN+1, N ≥ L, with each unique value of wα appearing M + 1 times in the matrix D,

M ≥ 2L. For ease of reference, we will refer such nodes {ζν}ν∈I′ de�ned in (2.2.6) and its

above variations as the Gauss-Legendre nodes for the spherical harmonics.

2.2.2. MRA of tight wavelet frames for L2(S2) with SH.

In this subsection, we will use the idea of Gauss-Legendre nodes for the spherical harmon-

ics to obtain an MRA of tight wavelet frames for L2(S2) based on the spherical harmonics.

We consider

Ik := {(m, l) ∈ Z× N0 : |m| ≤ l, 0 ≤ l ≤ Lk} , k ≥ 0, (2.2.15)
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where {Lk}k≥0 is an increasing sequence of non-negative integers increasing to in�nity. De�ne

its corresponding spanning subspace Vk as

Vk : = span {ej : j ∈ Ik}

= span {Y m
l : |m| ≤ l, 0 ≤ l ≤ Lk} .

(2.2.16)

To construct scaling functions {ϕk(·; ζk,ν) : ν ∈ I ′k} to span the above subspaces Vk, we

seek nodes ζk,ν ∈ S, ν ∈ I ′k, (with I ′k a �nite set with |Ik| ≤ |I ′k|) and a |I ′k| × |I ′k| diagonal
weight matrix Dk := diag(dk,ν)ν∈I′k with positive diagonal entries such that the |Ik| × |I ′k|
rectangular matrix Ak := [Yj(ζk,ν)]j∈Ik,ν∈I′k satis�es

AkDkA
∗
k = I.

Replacing ζν by ζk,ν in (2.2.6), an appropriate choice of nodes {ζk,ν}ν∈I′k is given by

ζk,ν := (θk,α, φk,β), ν := (α, β) ∈ I ′k, (2.2.17)

where {θk,α}α, {φk,β}β and Dk replace {θα}α, {φβ}β and D in (2.2.7), (2.2.8) and (2.2.10)

respectively by setting L as Lk. For each k ≥ 0, the scaling functions ϕk(·; ζk,ν) , ν ∈ I ′k, of
Vk are then de�ned as

ϕk(·; ζk,ν) :=
√
dk,ν

∑
j∈Ik

Yj(ζk,ν)Yj, ν ∈ I ′k,

which yield a normalized tight frame for Vk by Proposition 2.1.2.

For k ≥ 0, since Wk = Vk+1\Vk, Jk = Ik+1\Ik, it follows that

Wk : = span {ej : j ∈ Jk}

= span {Y m
l : |m| ≤ l, Lk < l ≤ Lk+1} .

To construct wavelets {ψk(·; ηk,ν) : ν ∈ J ′k} to span the above subspace Wk, we seek nodes

ηk,ν ∈ S, ν ∈ J ′k, (with J ′k a �nite set with |Jk| ≤ |J ′k|) and a |J ′k|× |J ′k| diagonal weight ma-

trix D̂k := diag(d̂k,ν)ν∈J ′k with positive diagonal entries such that the |Jk| × |J ′k| rectangular
matrix Bk := [Yj(ηk,ν)]j∈Jk,ν∈J ′k satis�es

BkD̂kB
∗
k = I.

Replacing ζk,ν by ηk,ν in (2.2.17), an appropriate choice of nodes {ηk,ν}ν∈J ′k is given by

ηk,ν := (θ̂k,α, φ̂k,β), ν := (α, β) ∈ J ′k,
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where
{
θ̂k,α

}
α
,
{
φ̂k,β

}
β
and D̂k replace {θα}α, {φβ}β and D in (2.2.7), (2.2.8) and (2.2.10)

respectively by setting L as Lk+1. For each k ≥ 0, the wavelet functions ψk(·; ηk,ν), ν ∈ J ′k,
of Wk are then de�ned as

ψk(·; ηk,ν) :=

√
d̂k,ν

∑
j∈Jk

Yj(ζk,ν)Yj, ν ∈ J ′k,

which yield a normalized tight frame for Wk by Proposition 2.1.2. Therefore, by Theorem

2.1.6, {ψk(·; ηk,ν) : ν ∈ J ′k, k ≥ −1} forms a normalized tight wavelet frame for L2(S2).

2.3. Constructing Tight Wavelet Frames for L2
sym

(S2) Using Modi�ed SH

In this section, we discuss how to analogously design normalized tight wavelet frames for

L2
sym(S2) using the modi�ed spherical harmonics

{
Ỹ m
l

}
m,l

as de�ned in (1.3.17). Recall from

(1.3.18) that

L2
sym(S2) = closL2(S2)

(
span

{
Ỹ m
l : |m| ≤ l, l ∈ 2N0

})
,

and from (1.3.17) that for |m| ≤ l, l ∈ 2N0, the modi�ed spherical harmonics Ỹ m
l can be

expressed in its cosine (m ≤ 0) and sine (m > 0) components as follows:

Ỹ m
l (θ, φ) :=

Θm
l (cos θ) · Φ̃1,m(φ), if − l ≤ m ≤ 0,

Θm
l (cos θ) · Φ̃2,m(φ), if 0 < m ≤ l,

where

Φ̃1,m(φ) :=


1√
π

cos(mφ), if − l ≤ m < 0,

1√
2π
, if m = 0,

(2.3.1)

Φ̃2,m(φ) :=
1√
π

sin(mφ), 0 < m ≤ l, (2.3.2)

and Θm
l (cos θ), |m| ≤ l, l ∈ 2N0 are given by (1.3.10), θ ∈ [0, π], φ ∈ [0, 2π). Due to the two

cosine and sine components present in the modi�ed spherical harmonics, in order to design

normalized tight wavelet frames for L2
sym(S2) using modi�ed spherical harmonics, we consider

L2
sym(S2) as an orthogonal direct sum of two corresponding spanning subspaces (also Hilbert

spaces) H1, H2, i.e.,

L2
sym(S2) =H1 ⊕⊥ H2, (2.3.3)

where

Hi := closL2
sym(S2)

(
span

{
Ỹ m
l : (m, l) ∈ Λi

})
, i = 1, 2,

Λ1 := {(m, l) ∈ Z× 2N0 : −l ≤ m ≤ 0} , Λ2 := {(m, l) ∈ Z× 2N0 : 1 ≤ m ≤ l} .
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Thus, to achieve our objective, it su�ces to construct normalized tight wavelet frames for

the orthogonal subspaces H1 and H2 respectively. To this end, consider the following MRAs

of H1 and H2 formed respectively by the two sequences of subspaces
{
V 1
k

}
k≥0

and
{
V 2
k

}
k≥0

de�ned by

V i
k := span

{
Ỹ m
l : (m, l) ∈ Iik

}
, k ≥ 0, i = 1, 2,

where for i = 1, 2, k ≥ 0, the corresponding index sets Iik for V i
k are given as

Iik :=
{

(m, l) ∈ Λi : 0 ≤ l ≤ Lk
}
, (2.3.4)

and {Lk}k≥0 is an increasing sequence of non-negative integers increasing to in�nity.

For i = 1, 2, k ≥ 0, to construct scaling functions
{
ϕik(·; ζik,ν) : ν ∈ I ′k

}
to span the

above subspaces V i
k , we seek nodes ζik,ν ∈ S, ν ∈ I ′k, (with I ′k a �nite set with |Iik| ≤ |I ′k|)

and |I ′k| × |I ′k| diagonal weight matrices Dk := diag(dk,ν)ν∈I′k with positive diagonal entries

such that the |Iik| × |I ′k| rectangular matrices Aik := [Yj(ζk,ν)]j∈Iik,ν∈I
′
k
satisfy

AikDkA
i∗
k = I,

which is equivalent to ∑
ν∈I′k

Ỹj′(ζk,ν)Ỹj(ζk,ν)dk,ν = δj,j′ , j, j′ ∈ Iik. (2.3.5)

To accomplish (2.3.5), for i = 1, 2, k ≥ 0, an appropriate choice of nodes
{
ζik,ν

}
ν∈I′k

is

given by a tensor product of azimuth and zenith points:

ζik,ν := (θk,α, φ
i
k,β), ν := (α, β) ∈ I ′k,

where the azimuth points are given by

θk,α := cos−1(xk,α), α = 0, 1, . . . , Lk,

with {xα}Lkα=0 being the zeros of the Legendre polynomial PLk+1 and the zenith points are

given as

φ1
k,β =

π(β + 1/2)

Lk + 1
, φ2

k,β =
π(β + 1)

Lk + 2
, β = 0, 1, . . . , Lk.

Thus the sets I ′k are given by

I ′k := {(α, β) : α, β = 0, 1, . . . , Lk} .

If we enumerate the nodes in the following manner{
(θk,α, φ

i
k,β)
}

(α,β)
:=
{

(θk,0, φ
i
k,0), . . . , (θk,0, φ

i
k,Lk

), . . . . . . , (θk,Lk , φ
i
k,0), . . . , (θk,Lk , φ

i
k,Lk

)
}
,
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then the required diagonal weight matrices Dk are given by

Dk =
2π

Lk + 1
diag(w0, . . . , w0, w1, . . . , w1, . . . . . . , wLk , . . . , wLk),

where {wα}Lkα=0 are the corresponding Gauss-quadrature weights of the Legendre polynomial

PLk+1, with each unique value of wα appearing Lk + 1 times in the matrix Dk. For i = 1, 2,

k ≥ 0, the scaling functions ϕik(·; ζik,ν), ν ∈ I ′k, of the subspaces V i
k are then de�ned as

ϕik(·; ζik,ν) :=
√
dk,ν

∑
j∈Iik

Ỹj(ζ
i
k,ν)Ỹj, ν ∈ I ′k,

which yield a normalized tight frame for V i
k by Proposition 2.1.2.

To see why the above choices of nodes and weight matrices are appropriate, we consider

the separable structure of Ỹj = Ỹ m
l as in (2.2.2), (2.3.1) and (2.3.2), obtaining∑

ν∈I′k

Ỹj′(ζ
i
k,ν)Ỹj(ζ

i
k,ν)dik,ν =

∑
(α,β)∈I′k

Ỹ m′
l′ (θk,α, φ

i
k,β)Ỹ m

l (θα, φβ)wik,α ·
2π

Lk + 1

=

{
Lk∑
α=0

Θm
l (xk,α)Θm′

l′ (xk,α)wk,α

}
·


Lk∑
β=0

Φ̃i,m′(φik,β)Φ̃i,m(φik,β) · 2π

Lk + 1


= δl,l′ · δm,m′ = δj,j′ ,

for all j, j′ ∈ Iik, i = 1, 2, where we have made use of the results of (2.2.12) and

Lk∑
β=0

Φ̃i,m′(φik,β)Φ̃i,m(φik,β) · 2π

Lk + 1
= δm,m′ , k ≥ 0, i = 1, 2. (2.3.6)

The orthogonality result in (2.3.6) holds because the matrices [Φ̃i,m(φk,β)]m,β corresponds

to the discrete cosine transform-II (DCT-II) and discrete sine transform-I (DST-I) matrices

respectively for i = 1, 2. As reference, the orthogonal N ×N DCT-II matrix CII
N is given by

[
CII
N

]
n,p

=

√
2

N
εp cos

(
π(2n+ 1)p

2N

)
, n, p = 0, 1, . . . , N − 1,

where εp = 1√
2
, when p = 0 and takes on the value 1 otherwise. The orthogonal (N − 1) ×

(N − 1) DST-I matrix SI
N−1 is given as

[
SI
N−1

]
n,p

=

√
2

N
sin

(
π(n+ 1)(p+ 1)

N

)
, n, p = 0, 1, . . . , N − 2.

Now we construct the corresponding wavelets. For i = 1, 2, k ≥ 0, since W i
k = V i

k+1\V i
k and

J ik = Iik+1\Iik, it follows that

W i
k := span

{
Yj : j ∈ J ik

}
,
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Figure 2.3.1. The left subplot displays the scaling functions

ϕ1
0(·; ζ1

0,ν), ν ∈ I ′0, for the subspace V 1
0 := span{Ỹ m

l : −l ≤ m ≤ 0, 0 ≤ l ≤ 4}.
The right subplot displays the scaling functions ϕ2

0(·; ζ2
0,ν), ν ∈ I ′0, for the sub-

space V 2
0 := span{Ỹ m

l : 1 ≤ m ≤ l, 0 ≤ l ≤ 4}.

where

J ik :=
{

(m, l) ∈ Λi : Lk < l ≤ Lk+1

}
. (2.3.7)

To construct wavelets
{
ψik(·; ηik,ν) : ν ∈ J ′k

}
to span the above subspaces W i

k, we seek nodes

ηik,ν ∈ S, ν ∈ J ′k (with J ′k a �nite set with |J ik | ≤ |J ′k|), and a |J ′k|× |J ′k| diagonal weight ma-

trix D̂k := diag(d̂k,ν)ν∈J ′k with positive diagonal entries such that the |J ik | × |J ′k| rectangular
matrix Bi

k := [Yj(ζk,ν)]j∈J ik,ν∈J
′
k
satis�es

Bi
kD̂kB

i∗
k = I, k ≥ 0, i = 1, 2.

This can be done by selecting ηik,ν := ζik+1,ν , i = 1, 2, ν ∈ J ′k := I ′k+1, D̂k := Dk+1 , k ≥ 0.

Similarly,
{
ψik(·; ηik,ν) : ν ∈ J ′k

}
forms a normalized tight frame for W i

k, k ≥ 0, i = 1, 2,

where

ψik(·; ηik,ν) =

√
d̂k,ν

∑
(m,l)∈J ik

Ỹ m
l (ηik,ν)Ỹ m

l , ν ∈ J ′k. (2.3.8)

Therefore, by (2.3.3) and Theorem 2.1.6,
{
ψik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
forms a

normalized tight wavelet frame for L2
sym(S2).

As an illustration, plots of some constructed scaling functions and wavelet functions are

provided in Figure 2.3.1, Figure 2.3.2 and Figure 2.3.3. We shall see how this modi�ed SH-

based wavelet frame construction can be used to yield sparse representations of antipodally

symmetric and real-valued HARDI orientation di�usion functions in Chapter 3 (see Figure

3.2.1 for examples of such functions).
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Figure 2.3.2. The left subplot displays the scaling functions

ϕ1
1(·; ζ1

1,ν), ν ∈ I ′1, for the subspace V 1
1 := span{Ỹ m

l : −l ≤ m ≤ 0, 0 ≤ l ≤ 6}.
The right subplot displays the scaling functions ϕ2

1(·; ζ2
1,ν), ν ∈ I ′1, for the sub-

space V 2
1 := span{Ỹ m

l : 1 ≤ m ≤ l, 0 ≤ l ≤ 6}.

Figure 2.3.3. The left subplot displays the wavelet functions

ψ1
0(·; η1

0,ν), ν ∈ J ′0, for the subspace W 1
0 := span{Ỹ m

l : −l ≤ m ≤ 0, l = 6}.
The right subplot displays the wavelet functions ψ2

0(·; η2
0,ν), ν ∈ J ′0, for the

subspace W 2
0 := span{Ỹ m

l : 1 ≤ m ≤ l, l = 6}.

2.4. Constructing Dual Pairs of Wavelet Frames for (Hs(S2), H−s(S2))

Recall from our earlier work that {ψk(·; ηk,ν) : ν ∈ J ′k, k ≥ −1} forms a tight wavelet

frame for L2(S2), where

ψk(·; ηk,ν) :=

√
d̂k,ν

∑
(l,m)∈Jk

Y m
l (ηk,ν)Y m

l , ν ∈ J ′k, (2.4.1)

{ηk,ν}ν∈J ′k are the Gauss-Legendre quadrature nodes,
{
d̂k,ν

}
ν∈J ′k

are obtained from the cor-

responding Gauss-Legendre quadrature weights, and the index set Jk was given earlier as

Jk = {(m, l) ∈ Λ : Lk < l ≤ Lk+1} , (2.4.2)
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with {Lk}k≥−1 an increasing sequence of positive integers and

Λ = {(m, l) ∈ Z× N0 : |m| ≤ l},

the index set of the spherical harmonics. Note that |Jk| ≤ |J ′k|, k ≥ −1. From our earlier

work, the disjoint union of Jk's gives
⋃K
k=−1 Jk = IK+1 , where

Ik = {(m, l) ∈ Λ : 0 ≤ l ≤ Lk}

The union of the nested index sets Ik gives
∞⋃

k=−1

Ik = Λ.

Renumerating the spherical harmonics with j := (l,m), Yj := Y m
l , (m, l) ∈ Λ, (2.4.1)

gives

ψk(·; ηk,ν) :=

√
d̂k,ν

∑
j∈Jk

Yj(ηk,ν)Yj, ν ∈ J ′k, (2.4.3)

which we will from time to time take reference to simplify notations. Recall that by setting

D̂k = diag(d̂k,ν)ν , the matrix Bk := [Yj(ηk,ν)]j∈Jk,ν∈J ′k satis�es

BkD̂kB
∗
k = I, k ≥ −1.

Note that this is equivalent to∑
ν∈J ′k

Y m
j (ηk,ν)Yj′(ηk,ν)d̂k,ν = δj,j′ , j, j′ ∈ Jk, k ≥ −1. (2.4.4)

Let s ∈ R and {ps[m, l]}(m,l)∈Λ be a sequence of non-zero real numbers such that there

exist positive constants C1 and C2 such that

C1(1 + l2)−s/2 ≤ |ps[m, l]| ≤ C2(1 + l2)−s/2, ∀(m, l) ∈ Λ, (2.4.5)

which means that asymptotically, its decay/growth rate is only dependent on the order l and

exponent s. For subsequent ease of notation, we set

pslj := ps[m, l], j = (l,m) ∈ Λ.

De�ne

ψ]k,s(·; ηk,ν) :=

√
d̂k,ν

∑
j∈Jk

psljYj(ηk,ν)Yj, ν ∈ J ′k, (2.4.6)

ψ̃k,−s(·; ηk,ν) :=

√
d̂k,ν

∑
j∈Jk

(pslj)
−1Yj(ηk,ν)Yj, ν ∈ J ′k. (2.4.7)
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Remark 2.4.1. The motivation behind de�ning the two wavelet systems in (2.4.6) and

(2.4.7) is that in section 3.3, the tight frame wavelet system in (2.4.3) actually undergoes a

linear transformation under some linear operator T to yield either the system in (2.4.6) or

(2.4.7) to represent a signal more e�ectively. We shall see that the eigenfunctions of T are

either the SH or the modi�ed SH, i.e.,

T (Yj) = pljYj or T (Ỹj) = plj Ỹj,

where the sequence {plj}j satis�es (2.4.5) for some s ∈ R. Therefore, it is natural to investigate
whether the pair of wavelet systems (2.4.6) and (2.4.7) actually form a dual pair of frames

for a dual pair of Sobolev spaces for some order s ∈ R. This basic idea also motivates the

investigation in the next section that under the in�uence of the operator T , the resultant pair

of wavelet systems form a pair of dual frames for a dual pair of symmetric Sobolev spaces for

some order s ∈ R.

Using the de�nitions (2.4.1) and (2.4.5), we show below that for k ≥ −1, ν ∈ J ′k,
ψ]k,s(·; ηk,ν) ∈ Hs(S2): for some positive constant C,

‖ψ]k,s(·; ηk,ν)‖2s = d̂k,ν
∑

(m,l)∈Jk

(1 + l2)s|ps[m, l]|2|Y m
l (ηk,ν)|2

≤ d̂k,ν
∑

(m,l)∈Jk

C|Y m
l (ηk,ν)|2

= C‖ψk(·; ηk,ν)‖2 <∞.

Similarly, for k ≥ −1, ν ∈ J ′k, ψ̃k,−s(·; ηk,ν) ∈ H−s(S2). Note that ψ]k,s(·; ηk,ν), ψ̃k,−s(·; ηk,ν)

lie respectively in Sobolev spaces that are dual to each other. Indeed, our aim here is to show

that the two systems (Γs(Ψ]),Γ−s(Ψ̃)), de�ned by

Γs(Ψ]) :=
{
ψ]k,s(·; ηk,ν) : ν ∈ J ′k, k ≥ −1

}
, (2.4.8)

Γ−s(Ψ̃) :=
{
ψ̃k,−s(·; ηk,ν) : ν ∈ J ′k, k ≥ −1

}
, (2.4.9)

form a pair of dual wavelet frames for Hs(S2) and H−s(S2) respectively in the following sense:

(1) The identity

〈f, g〉 =
∑

k≥−1, ν∈J ′k

〈g, ψ]k,s(·; ηk,ν)〉〈ψ̃k,−s(·; ηk,ν), f〉 (2.4.10)

holds for all f ∈ Hs(S2), g ∈ H−s(S2), where 〈·, ·〉 is the L2(S2) inner product.
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(2) The two systems Γs(Ψ]) and Γ−s(Ψ̃) are wavelet frames for Hs(S2) and H−s(S2)

respectively, i.e., there exist positive constants C1 and C2 such that

C1‖f ′‖2s ≤
∑

k≥−1, ν∈J ′k

|〈f ′, ψ]k,s(·; ηk,ν)〉s|2 ≤ C2‖f ′‖2s, (2.4.11)

C1‖g′‖2−s ≤
∑

k≥−1, ν∈J ′k

|〈g′, ψ̃k,−s(·; ηk,ν)〉−s|2 ≤ C2‖g′‖2−s, (2.4.12)

hold for all f ′ ∈ Hs(S2), g′ ∈ H−s(S2), where 〈·, ·〉s is the inner product that the

Sobolev space Hs(S2), s ∈ R, is equipped with.

To ease our analysis, we show that (2.4.11) and (2.4.12) are equivalent to the following.

Proposition 2.4.2. Let s ∈ R, Γs(Ψ]) and Γ−s(Ψ̃) de�ned in (2.4.8) and (2.4.9) are

wavelet frames for Hs(S2) and H−s(S2) respectively if and only if there exist positive constants

C1 and C2 such that

C1‖g‖2−s ≤
∑

k≥−1, ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2 ≤ C2‖g‖2−s, (2.4.13)

C1‖f‖2s ≤
∑

k≥−1, ν∈J ′k

|〈f, ψ̃k,−s(·; ηk,ν)〉|2 ≤ C2‖f‖2s, (2.4.14)

hold for all f ∈ Hs(S2), g ∈ H−s(S2).

Proof. For s ∈ R, de�ne an operator θs : Hs(S2) 7→ H−s(S2) acting on h ∈ Hs(S2) via

spherical harmonic coe�cients, i.e.,

θ̂sh[l,m] := (1 + l2)sĥ[m, l], (m, l) ∈ Λ.

Then it is easy to see that ‖θsh‖2−s = ‖h‖2s and thus θs is an isometric and onto mapping

between Hs(S2) and H−s(S2). On the other hand, for f ′, v1 ∈ Hs(S2), g′, v2 ∈ H−s(S2),

〈f ′, v1〉s = 〈θsf ′, v1〉, 〈g′, v2〉−s = 〈θ−sg′, v2〉.

This implies that (2.4.11) and (2.4.12) are equivalent to (2.4.13) and (2.4.14) by setting

g = θsf
′ and f = θ−sg

′. �
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We are now ready to state the main result of this section.

Theorem 2.4.3. Let s ∈ R. Then the systems Γs(Ψ]) and Γ−s(Ψ̃) de�ned by (2.4.8) and

(2.4.9) form a pair of dual wavelet frames for Hs(S2) and H−s(S2) respectively.

Proof. To establish the result, we shall �rst prove the identity in (2.4.10). Consider for

a �xed K ∈ N, f ∈ Hs(S2), g ∈ H−s(S2), noting that j = (m, l), j′ = (m′, l′), f̂ [j] := f̂ [m, l],

ĝ[j] := ĝ[m, l], (m, l) ∈ Λ, we have

SK : =
K∑

k=−1

∑
ν∈J ′k

〈f, ψ]k,s(·; ηk,ν)〉〈ψ̃k,−s(·; ηk,ν), g〉

=
K∑

k=−1

∑
ν∈J ′k


√
d̂k,ν

∑
j∈Jk

f̂ [j]Yj(ηk,ν) · (pslj)



√
d̂k,ν

∑
j′∈Jk

ĝ[j′]Yj′(ηk,ν) ·
(
pslj′

)−1


=

K∑
k=−1

∑
j, j′∈Jk

f̂ [j]ĝ[j′](pslj′ )
−1pslj

∑
ν∈J ′k

Yj(ηk,ν)Yj′(ηk,ν)d̂k,ν


=

K∑
k=−1

∑
j∈Jk

f̂ [j]ĝ[j] =
∑

j∈IK+1

f̂ [j]ĝ[j],

where we have invoked (2.4.4) in the third line, and that the disjoint union of Jk gives⋃K
k=−1 Jk = IK+1 at the fourth line. Recall that

∞⋃
k=−1

Ik = Λ and thus we have for all

K ∈ N, |SK | ≤ ‖f‖s‖g‖−s <∞, for all f ∈ Hs(S2), g ∈ H−s(S2). The desired result (2.4.10)

is then obtained by letting K go to in�nity in the above.

To complete our proof, we establish (2.4.13) and (2.4.14) by showing that the wavelet

systems have the following Bessel properties:

∑
k≥−1, ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2 ≤ C‖g‖2−s, (2.4.15)

∑
k≥−1, ν∈J ′k

|〈f, ψ̃k,−s(·; ηk,ν)〉|2 ≤ C‖f‖2s, (2.4.16)
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for all f ∈ Hs(S2), g ∈ H−s(S2). We shall prove only (2.4.15), for the proof of (2.4.16) is

similar. For a �xed K ∈ N, g ∈ H−s(S2),

K∑
k=−1

∑
ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2

=
K∑

k=−1

∑
ν∈J ′k


√
d̂k,ν

∑
j∈Jk

ĝ[j]Yj(ηk,ν) · pslj



√
d̂k,ν

∑
j′∈Jk

ĝ[j′]Yj′(ηk,ν) · pslj′


=

K∑
k=−1

∑
j, j′∈Jk

ĝ[j]ĝ[j′]psljp
s
lj′

∑
ν∈J ′k

Yj(ηk,ν)Yj′(ηk,ν)d̂k,ν


=

K∑
k=−1

∑
j∈Jk

|ĝ[j]|2 · |pslj |
2

≤ C
∑

(m,l)∈IK+1

|ĝ[m, l]|2(1 + l2)−s ≤ C‖g‖2−s,

where we have invoked (2.4.4) and (2.4.5) respectively at the third and fourth lines. The

desired result (2.4.15) is then obtained by letting K go to in�nity.

It remains to establish the existence of lower frame bounds in (2.4.13) and (2.4.14). Start-

ing from a standard trick in wavelet frame analysis, we apply the Cauchy-Schwartz's inequality

on the identity (2.4.10) and then invoke the Bessel property as shown below:

‖g‖−s = sup
‖f‖s=1

|〈f, g〉|

≤ sup
‖f‖s=1

 ∑
k≥−1,

∑
ν∈J ′k

|〈f, ψ̃k,−s(·; ηk,ν)〉|2


1/2 ∑
k≥−1,

∑
ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2


1/2

≤ sup
‖f‖s=1

C‖f‖s

 ∑
k≥−1,

∑
ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2


1/2

= C

 ∑
k≥−1,

∑
ν∈J ′k

|〈g, ψ]k,s(·; ηk,ν)〉|2


1/2

,

giving the required lower frame bound in (2.4.13). A similar argument also yields the lower

frame bound in (2.4.14), completing the proof that Γs(Ψ]) and Γ−s(Ψ̃) de�ned in (2.4.8) and

(2.4.9) form a pair of dual wavelet frames for Hs(S2) and H−s(S2) respectively. �
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2.5. Constructing Dual Pairs of Wavelet Frames for (Hs
sym

(S2), H−s
sym

(S2))

In this section, we construct instead dual pairs of wavelet frames for (Hs
sym(S2), H−ssym(S2))

in an analogous fashion to section 2.4. Many of the proofs for this section follow very similarly

to those in section 2.4, so we shall only outline its key ideas and results here.

Recall from section 2.3 that
{
ψik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
forms a tight wavelet

frame for L2
sym(S2), where for i = 1, 2, k ≥ −1,

ψik(·; ηik,ν) :=

√
d̂k,ν

∑
(m,l)∈J ik

Ỹ m
l (ηik,ν)Ỹ m

l , ν ∈ J ′k, (2.5.1)

where
{
ηik,ν

}
ν∈J ′k

are the Gauss-Legendre quadrature nodes for the modi�ed spherical har-

monics,
{
d̂k,ν

}
ν∈J ′k

are obtained from the corresponding Gauss-Legendre quadrature weights,

and the index sets J ik , i = 1, 2, are given earlier in (2.3.7). From our earlier work, the disjoint

union of J ik 's gives
K⋃

k=−1

J ik = IiK+1 , where the index sets Iik, i = 1, 2, are given in (2.3.4).

The union of the nested index sets Iik produces
⋃

i=1,2

⋃
k≥0

Iik = Λ, the index set of the mod-

i�ed spherical harmonics. Renumerating the modi�ed spherical harmonics with j = (l,m),

Ỹj := Ỹ m
l , (m, l) ∈ Λ, (2.5.1) gives

ψik(·; ηik,ν) :=

√
d̂k,ν

∑
j∈J ik

Ỹj(η
i
k,ν)Ỹj, ν ∈ J ′k.

Recall that by setting D̂k = diag(d̂k,ν)ν∈J ′k , the matrix Bi
k := [Ỹj(η

i
k,ν)]j∈J ik,ν∈J

′
k
satis�es

Bi
kD̂kB

i∗
k = I, k ≥ −1, i = 1, 2.

Note that the above is equivalent to

∑
ν∈J ′k

Ỹ m
j (ηik,ν)Yj′(η

i
k,ν)d̂k,ν = δj,j′ , j, j′ ∈ J ik , k ≥ −1, i = 1, 2.

Let s ∈ R, {ps[m, l]}(m,l)∈Λ be the same sequence of non-zero real numbers that satisfy the

decay rate in (2.4.5). For subsequent ease of notation in this section, we de�ne

pslj := ps[l,m], j := (m, l) ∈ Λ, 〈·, ·〉? := 〈·, ·〉?,0, ‖ · ‖? := ‖ · ‖?,0.
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De�ne

ψi,]k,s(·; η
i
k,ν) :=

√
d̂k,ν

∑
j∈J ik

pslj Ỹj(η
i
k,ν)Ỹj, ν ∈ J ′k,

ψ̃ik,−s(·; ηik,ν) :=

√
d̂k,ν

∑
j∈J ik

(pslj)
−1Ỹj(η

i
k,ν)Yj, ν ∈ J ′k,

Using similar arguments as in section 2.4, we can show that for k ≥ −1, ν ∈ J ′k, ψ
i,]
k,s(·; η

i
k,ν) ∈

Hs
sym(S2). Similarly, for k ≥ −1, ν ∈ J ′k, ψ̃ik,−s(·; ηik,ν) ∈ H−ssym(S2), which is dual to H−ssym(S2).

Our aim here is to show that the two systems (Γs(Ψ]),Γ−s(Ψ̃)), de�ned by

Γs(Ψ]) :=
{
ψi,]k,s(·; η

i
k,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
, (2.5.2)

Γ−s(Ψ̃) :=
{
ψ̃ik,−s(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
, (2.5.3)

form a pair of dual wavelet frames for Hs
sym(S2) and H−ssym(S2) respectively in the following

sense:

• The identity

〈f, g〉 =
∑

i=1,2, k≥−1, ν∈J ′k

〈g, ψi,]k,s(·; η
i
k,ν)〉?〈ψ̃ik,−s(·; ηik,ν), f〉?

holds for all f ∈ Hs
sym(S2), g ∈ H−ssym(S2).

• The two systems Γs(Ψ]) and Γ−s(Ψ̃) are wavelet frames for Hs
sym(S2) and H−ssym(S2)

respectively, i.e., there exist positive constants C1 and C2 such that

C1‖f ′‖2?,s ≤
∑

i=1,2, k≥−1, ν∈J ′k

|〈f ′, ψi,]k,s(·; η
i
k,ν)〉?,s|2 ≤ C2‖f ′‖2?,s, (2.5.4)

C1‖g′‖2?,−s ≤
∑

i=1,2, k≥−1, ν∈J ′k

|〈g′, ψ̃ik,−s(·; ηik,ν)〉?,−s|2 ≤ C2‖g′‖2?,−s, (2.5.5)

hold for all f ′ ∈ Hs
sym(S2), g′ ∈ H−ssym(S2).

Similar to section 2.4, (2.5.4) and (2.5.5) can be shown to be equivalent to the following.



2.5. CONSTRUCTING DUAL PAIRS OF WAVELET FRAMES FOR (Hs
sym(S2), H−ssym(S2)) 58

Proposition 2.5.1. Let s ∈ R, Γs(Ψ]) and Γ−s(Ψ̃) are wavelet frames for Hs
sym(S2) and

H−ssym(S2) respectively if and only if there exist positive constants C1 and C2 such that

C1‖g‖2?,−s ≤
∑

i=1,2, k≥−1, ν∈J ′k

|〈g, ψi,]k,s(·; η
i
k,ν)〉?|2 ≤ C2‖g‖2?,−s,

C1‖f‖2?,s ≤
∑

i=1,2, k≥−1, ν∈J ′k

|〈f, ψ̃ik,−s(·; ηik,ν)〉?|2 ≤ C2‖f‖2?,s,

hold for all f ∈ Hs
sym(S2), g ∈ H−ssym(S2).

Proof. The proof is analogous to that of Proposition 2.4.2 by replacing Hs(S2), ‖ · ‖s
and 〈·, ·〉s with Hs

sym(S2), ‖ · ‖?,s and 〈·, ·〉?,s respectively. �

Theorem 2.5.2. Let s ∈ R. Then the systems Γs(Ψ]) and Γ−s(Ψ̃) de�ned by (2.5.2) and

(2.5.3) form a pair of dual wavelet frames for Hs
sym(S2) and H−ssym(S2) respectively.

Proof. The proof is analogous to that of Theorem 2.4.3 with substitutions of appropriate

summations and notations as mentioned in the proof of Proposition 2.5.1. �



CHAPTER 3

Application of Wavelet Frames to High Angular Resolution

Di�usion Imaging (HARDI)

In this chapter, we shall describe how the wavelet frames constructed in subsection 2.5

can be applied to High Angular Resolution Di�usion Imaging (HARDI), a relatively recent

brain imaging technique. We will demonstrate that, when applied to denoise highly cor-

rupted HARDI signals, the proposed wavelet frame-based approach has a more cost-e�ective

performance over two other closely related approaches, namely the spherical harmonics-based

and spherical ridgelets-based approaches. It also turns out that our proposed method yields

wavelet frame systems in some appropriately chosen Sobolev spaces described in sections 2.4

and 2.5.

This chapter is organised as follows. Section 3.1 brie�y reviews some background of

HARDI and a classical spherical harmonics-based approach to perform Q-ball imaging (QBI),

a special technique for HARDI. Section 3.2 focuses on an alternative spherical ridgelets-based

approach to perform QBI. In section 3.3, the proposed wavelet frame-based approach for

QBI is described in detail. Note that in each of the above sections, each approach has two

variants (described in di�erent subsections), which di�er in whether a constant solid angle

(CSA) reconstruction model is assumed.

In section 3.4, we describe how spatial regularization of HARDI signals can be imposed

on the above approaches by tight framelet �lters based on B-splines (e.g., the Haar framelet

�lters de�ned in (3.4.4)) and conclude from numerical experiments that with this spatial reg-

ularization, the proposed wavelet frame-based approach generally denoises highly corrupted

HARDI signals more cost-e�ectively than the other two approaches.

3.1. Review of HARDI

This section is organized in the following manner. In subsection 3.1.1, we review some

research milestones in medical imaging that eventually led to the development of HARDI,

59
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which is an e�ective method to detect multiple neuronal �bers. However, the original ap-

proach in implementing HARDI is only computationally feasible provided the HARDI signal

is modelled after a multi-Gaussian mixture.

In subsection 3.1.2, we review a model-independent method called Q-ball imaging to

implement HARDI. The computational speed of Q-ball imaging can be accelerated when

(modi�ed) spherical harmonics are used to represent the HARDI signals and their di�usion

orientation distribution functions (ODFs) with analytic expressions. Details are then given

about this variant of Q-ball imaging, which is also commonly known as spherical harmonics-

based Q-ball imaging.

Finally, subsection 3.1.3 reviews another variant of Q-ball imaging based on spherical

harmonics that yields sharper reconstruction of the HARDI ODFs. Details are then given

about this variant, which is also known as the spherical harmonics-based constant solid angle

Q-ball imaging.

3.1.1. Introduction to HARDI.

Di�usion Magnetic Resonance Imaging (d-MRI) is a non-invasive method to determine the

directionality of neural �ber bundles through the di�usion of water molecules in brain tissues.

d-MRI works on the assumption that the water molecules tend to di�use along �bers in white

matter. In turn, the directionality of neural �ber bundles results in accurate description of

the geometry of brain microstructure. Applications of d-MRI include the characterization of

neuro-degenerative diseases and surgical planning, etc.

In 1965, Stejskal and Tanner [78] developed a model to measure the di�usion strengths

of water molecules in brain tissues. According to their model, for a given di�usion sensitizing

gradient q, the signal attenuation of the magnetic resonance (MR) signal s(q) can be expressed

as the three-dimensional (3-D) Fourier transform F of the probability density function (PDF)

P(r) of the average di�usion of water molecules, i.e.,

s(q) =

ˆ
R3

P(r) exp(−iq>r) dr, q ∈ R3, (3.1.1)

where r represents the displacement vector of the water molecules over an experiment di�usion

time. In d-MRI, the goal is to reconstruct the di�usion PDF P. However, in practice, it is

computationally expensive to obtain the di�usion PDF P using the Fourier transform as it

requires huge measurements of s(q) over in q-space, i.e., a wide range of q ∈ R3.

Therefore, researchers came up with alternative acquisition and reconstruction techniques

such as Di�usion Tensor Imaging (DTI) [72]. In 1992, Basser et al. [9] proposed a second
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Figure 3.1.1. Di�usion Tensor Representation ([38]): the left �gure dis-

plays water Brownian motion along the neural �bers; the middle �gure shows

the eigen-decomposition of the DT; the right �gure gives an ellipsoidal visu-

alization of the DT.

order symmetric positive-de�nite di�usion tensor D to model di�usion properties of biological

tissues. Indeed, DTI implicitly assumes that the PDF of the displacement of water di�usion

P is Gaussian. For DTI, by (3.1.1), we have the following correspondence between the signal

attenuation of the MR signal s, given by

s(q) = exp(−τq>Dq), q ∈ R3, τ > 0, (3.1.2)

and the PDF of the displacement of water di�usion P, de�ned by

P(r) = (4πτ |D|)−1/2 exp(−r>D−1r/4τ), r ∈ R3,

where |D| is the determinant of the di�usion tensor D, which is a symmetric positive de�nite

matrix of the form:

D = R>diag(λ1, λ2, λ3)R, R>R = I,

with the eigenvalues of D, λ1, λ2, λ3 satisfying λ1 > λ2 ≥ λ3 > 0, and their corresponding

eigenvectors are given by e1, e2, e3 respectively. The largest eigenvalue λ1 corresponds to the

principal direction of the di�usion tensor e1 and the span of the other two eigenvectors form

the orthogonal plane to it, as illustrated in Figure 3.1.1.

As we shall see later in this section, for the purposes of identifying the principal direction

of the dominant di�usion tensor and computational e�ciency for HARDI applications, it

su�ces to consider the HARDI signal de�ned on the unit spherical shell. Note that from

(3.1.2), for some τ > 0, by setting

g :=
q

‖q‖2
, b := τ‖q‖22, q ∈ R3\{0},
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Figure 3.1.2. Limitation of DTI in voxels with crossing con�guration.

DTI cannot resolve imaging voxels containing multiple �ber crossings ([38]).

The left picture displays water di�usion in a �ber crossing voxel; the middle

picture shows the corresponding multiple �ber distributions; the right picture

illustrates the inability of DTI to reconstruct the di�usion tensors correctly.

the corresponding Gaussian MR signal s (with a slight abuse of notation) de�ned on the unit

sphere S2 can be expressed as

s(g) = exp(−bg>Dg), g ∈ S2.

For large b-values, the signal s decays quickly, while background noise is relatively una�ected,

resulting in very noisy data measurements. For small b-values, this results in a very low signal

attenuation. Thus it is important to have an appropriate trade-o� in the choice of the value

of b.

However, DTI is limited when imaging voxels with multiple �bers (e.g., a multi-Gaussian

model, see (3.1.7) and (3.1.8)) which cross or branch, due to the single Gaussian PDF assump-

tion. This limitation is illustrated for two orthogonal crossing �bers as in Figure 3.1.2. Note

that the expected PDF has two maxima whereas the reconstructed DT pro�le is planar-like

with no preferred di�usion direction.

In order to overcome these di�culties, Tuch et al. [72] proposed High Angular Resolution

Di�usion Imaging (HARDI) as a method to resolve multiple �bers. The idea is that radial

information of the di�usion PDF can be discarded if one is mainly interested in �ber directions.

In HARDI, the di�usion orientation distribution function (ODF) is computed instead and it

contains the full angular information of the PDF:

Ψ1(u) =
1

Z

ˆ ∞
0

P(ru) dr, u ∈ S2, (3.1.3)

where Z is a normalization constant such that
´
S2 Ψ1 = 1.
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Suppose that the signal s is Gaussian (or its corresponding PDF P is Gaussian) with the

following analytical forms:

s(g) = exp(−bg>Dg), g ∈ S2,

P(u) = K exp(−u>D−1u/4b), u ∈ S2, (3.1.4)

where K := [(4πb)3|D|]−1/2. Then the corresponding ODF Ψ1 can be calculated analytically

as follows. For u ∈ S2,

Ψ1(u) =
1

Z

ˆ ∞
0

P(ru) dr =
K

Z

ˆ ∞
0

exp(−r2u>D−1u/4b) dr

=
K

Z
· 1

2

√
4bπ

u>D−1u
=

1

Z

1

8πb|D|1/2
(u>D−1u)−1/2, (3.1.5)

where we have used the following Gaussian integration result on the second line of (3.1.5):

for α > 0, ˆ ∞
0

exp(−αr2) dr =
1

2

√
π

α
. (3.1.6)

For the multi-Gaussian setting, the ODF can also be calculated analytically for M �bers.

Indeed, suppose that the signal s is multi-Gaussian (or its corresponding PDF P is multi-

Gaussian) with the analytical forms

s(g) =
M∑
i=1

pi exp(−bg>Dig), g ∈ S2, (3.1.7)

P(u) =

M∑
i=1

piKi exp(−u>D−1
i u/4b), u ∈ S2,

M∑
i=1

pi = 1, (3.1.8)

where pi ≥ 0 and Ki = [(4πb)3|Di|]−1/2, i = 1, 2, . . . ,M . Then the corresponding ODF Ψ1

can be calculated analytically: for u ∈ S2,

Ψ1(u) =
1

Z

M∑
i=1

pi
1

8πb|Di|1/2
(u>D−1

i u)−1/2.

In HARDI applications, the number of �bers M ranges from 1 to 4, the coe�cients {pi}Mi=1

are typically equally weighted. This multi-Gaussian setting is usually a reasonable model

for voxels possessing two or more �bers interacting with one another. Furthermore, it has

analytical PDF and ODF expressions and therefore it can be used to generate synthetic

datasets for validation against ground truth. In the last section of this chapter, the multi-

Gaussian model will also be used in our synthetic datasets and experiments

HARDI actually reduces computational burden as sampling is only needed on a single

spherical shell (as opposed to sampling on a 3D Cartesian grid). Typically, 60 to 200 samples
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are required on a single spherical shell. Furthermore, signi�cantly weaker imaging gradients,

i.e., lower b-values (1000 ≤ b ≤ 3000) are needed in HARDI, improving the signal-to-noise

ratio (SNR) measurements. This is in contrast with older HARDI-related techniques such as

Di�usion Spectrum Imaging (DSI) [84], which usually requires much more than 200 samples

in 3D Cartesian grid and very strong imaging gradients (3000 ≤ b ≤ 20000), leading to worse

SNR measurements and reconstructions.

3.1.2. SH-based Q-ball imaging (SH-based QBI).

One limitation of the approach described in (3.1.5) to reconstruct the ODF, is that one

needs to estimate the PDF P of the HARDI signal, which is generally not known or given

in practical situations. However, in experiments, usually only information about the signal

s is given, and model-independent (i.e., the HARDI signal and PDF need not be Gaussian)

methods that utilize the signal s directly to reconstruct the ODF are desired.

Thus, one such model-independent method called Q-Ball Imaging (QBI) was developed

by Tuch [82]. Tuch showed that one can use the Funk Radon Transform (FRT) to reconstruct

a smooth approximation of the ODF from HARDI samples on a single shell as follows:

Ψ1(v) ≈ R[s](u) :=

ˆ
v∈C(u)

s(v) dσ(v), (3.1.9)

where s is the HARDI signal, σ rotation invariant measure on S2 and C(u) is the great circle

with pole u, i.e., the circle formed by the intersection of S2 with a 3D-plane containing the

origin O, with normal u. Although the approximation of the ODF proved to be reasonably

good in practical situations, computationally expensive numerical integration along many

great circles are needed.

To avoid the computational burden, Descoteaux et al. [38] introduced a method called

Analytical Q-Ball Imaging (Analytical QBI) using spherical harmonic representations. They

�rst supposed that the HARDI signal s can be approximated by a modi�ed spherical harmonic

representation of the form

s(w) =

R∑
j=1

cj Ỹj(w), w ∈ S2,

then the FRT R is applied onto s, yielding the following approximation

Ψ1(u) ≈ R[s](u) =

R∑
j=1

2πPlj (0)cj Ỹj(u), u ∈ S2, (3.1.10)
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where lj is the order of the modi�ed spherical harmonic function Ỹj , and Plj (0) is the Legendre

polynomial of degree lj evaluated at 0, i.e.,

Plj (0) =

0, if lj is odd,

(−1)lj/2
1·3·5...(lj−1)

2·4·6...lj , if lj is even.
(3.1.11)

The above derivation is actually a corollary of the following Funk-Hecke theorem.

Theorem 3.1.1. (Funk-Hecke theorem [14]) Let f ∈ C[−1, 1] and Y m
l be any spherical

harmonic of degree m ∈ [−l, l] and order l ∈ N0. Then, given u ∈ S2,ˆ
w∈S2

f(u>w)Y m
l (w) dw = λlY

m
l (u), |m| ≤ l, l ∈ N0,

where λl = 2π
´ 1
−1 f(t)Pl(t) dt and Pl is the Legendre polynomial of degree l.

The reader may refer to [14] for a proof of the Funk-Hecke theorem. It should be noted

that a simple calculation reveals that the Funk-Hecke theorem remains true when the classical

spherical harmonics Y m
l are replaced with the modi�ed spherical harmonics Ỹ m

l .

Corollary 3.1.2. ([38]) The (modi�ed) spherical harmonics are eigenfunctions of the

FRT with eigenvalues given as follows: for l ∈ N0, |m| ≤ l,

R[Ỹ m
l ](u) = 2πPl(0)Ỹ m

l (u), u ∈ S2,

where Pl(0) is the Legendre polynomial of degree l evaluated at 0, given explicitly in (3.1.11).

The proof of Corollary 3.1.2 is given in the Appendix.

In practice, we usually discretize the input HARDI signal s with K gradient vectors

{gi}Ki=1. A naive but natural approach to reconstruct the ODF would be the classical least-

squares method. Setting f = [s(gi)]
K
i=1, the least-squares approach seeks the modi�ed SH

coe�cient vector c = [cj ]
R
j=1 ∈ RR such that it is optimal to the following problem:

min
c∈RR

1

2
‖Bc− f‖22,

where the K ×R (assume at this moment K ≥ R for simplicity) matrix B is given by

B =


Ỹ1(g1) Ỹ2(g1) . . . ỸR(g1)

Ỹ1(g2) Ỹ2(g2) . . . ỸR(g2)
...

...
. . .

...

Ỹ1(gK) Ỹ2(gK) . . . ỸR(gK)

 . (3.1.12)
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Then the optimal modi�ed SH coe�cient vector c is given by

c = (B>B)−1B>f,

provided that B>B is invertible (in practice, this can be made readily possible by choosing a

set of sampling gradients {gi}Ki=1 which are relatively evenly spaced out on the unit sphere).

Then, by (3.1.10), the discretized ODF can be approximated by

Ψ1,d ≈ BPc,

where

P := diag[2πPlj (0)]Rj=1. (3.1.13)

To improve reconstruction results of the ODF, Descotaux et al. [38] proposed Laplace-

Beltrami (L-B) regularization upon the optimization problem as follows:

min
c∈RR

1

2
‖Bc− f‖22 +

λ

2
‖Lc‖22, (3.1.14)

where λ is a pre-de�ned positive parameter and

L := diag[−lj(lj + 1)]Rj=1. (3.1.15)

Note that the model in (3.1.14) is actually a discretized version of the following variational

model:

min
c∈RR

1

2

ˆ
S2

(
R∑
j=1

cj Ỹj − s)2 +
λ

2

ˆ
S2
|∆b(

R∑
j=1

cj Ỹj)|2,

where we note that

∆bỸ
m
l = −l(l + 1)Ỹ m

l , |m| ≤ l, l ∈ 2N0,

and ∆b is the Laplace-Beltrami operator on S2 de�ned as

∆bf :=
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
f) +

1

sin2 θ

∂2f

∂φ2
. (3.1.16)

This regularization is done to improve denoising e�ects as it tends to reduce the magnitude

of SH coe�cients {cj}Rj=1 corresponding to higher order SH, which amplify noise. Then the

optimal modi�ed SH coe�cient vector c is given by

c = [B>B + λL>L]−1B>f, (3.1.17)

and as before, one can reconstruct the discretized ODF

Ψ1,d ≈ BPc.
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This ODF reconstruction method is known as the spherical harmonics-based Q-ball imaging

(SH-based QBI).

3.1.3. SH-based constant solid angle QBI (SH-based CSA QBI).

In [3], it was pointed out that, if we represent the orientation of the unit vector u using

the spherical coordinate (θ, φ), then

ˆ
R3

P(r) dr =

ˆ π

0

ˆ 2π

0

ˆ ∞
0

P(ru)r2 sin(θ)drdφdθ

=

ˆ
S2

Ψ2(u) dσ(u),

(3.1.18)

where σ is the rotation-invariant measure on the sphere and Ψ2 is the ODF on the unit sphere

represented by

Ψ2(u) =

ˆ ∞
0

P (ru)r2dr, u ∈ S2. (3.1.19)

Remark 3.1.3. In (3.1.18), we may regard Ψ2(u) dσ(u) as the probability of di�usion

direction u through a �very small constant solid� (in�nitesimal) angle dσ(u). We note that in

the HARDI literature, the above version of the ODF de�nition, i.e., Ψ2 in (3.1.19), is actually

mathematically correct as it can be shown that Ψ2 is a probability distribution function, which

does not require any normalization factor Z, as opposed to Ψ1 in (3.1.3). This in turn leads

to sharper reconstruction of the ODF and better resolution of multiple �ber orientations.

It was also shown in [3] that if the PDF P is Gaussian with the same analytical form in

(3.1.4), then the corresponding ODF Ψ2 can be calculated analytically using integration by

parts and the integration techniques in (3.1.5) and (3.1.6):

Ψ2(u) =

ˆ ∞
0

P(ru)r2 dr

= K

ˆ ∞
0

exp(−r2u>D−1u/4b) r2dr

=
1

8πb|D|1/2
(u>D−1u)−3/2.

For the multi-Gaussian setting, when (3.1.19) is applied to (3.1.8), its corresponding ODF Ψ2

can also be calculated analytically: for u ∈ S2,

Ψ2(u) =

M∑
i=1

pi
1

8πb|Di|1/2
(u>D−1

i u)−3/2. (3.1.20)
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Agani et al. [3] showed that we can approximate the ODF Ψ2 by the modi�ed HARDI

signal s̃ in the following manner:

Ψ2(u) ≈ 1

4π
+

1

16π2
R[∆bs̃](u), u ∈ S2, (3.1.21)

where

s̃(u) = log(− log s(u)), u ∈ S2, (3.1.22)

with 0 < s(u) < 1, u ∈ S2, R and ∆b represent respectively the Funk-Radon transform and

the spherical Laplace-Beltrami operator de�ned in (3.1.9) and (3.1.16). If the modi�ed signal

s̃ in (3.1.22) is represented using the modi�ed spherical harmonics, i.e.,

s̃(u) =

R∑
j=1

cj Ỹj(u), u ∈ S2,

then the ODF Ψ2 is given as

Ψ2(u) ≈ 1

4π
+

1

16π2
R[∆bs̃](u)

=
1

4π
+

1

16π2

R∑
j=1

cjR[∆bỸj ](u)

=
1

4π
+

1

16π2

R∑
j=1

cj2πPlj (0)[−lj(lj + 1)]Ỹj(u).

If s̃ is discretized with K gradient vectors {gi}Ki=1 , we set f = [s̃(gi)]
K
i=1. Using the Laplace-

Beltrami (L-B) regularization in (3.1.14) to obtain the SH coe�cient vector c = [cj ]
R
j=1 as in

(3.1.17), then the discretized ODF is given by

Ψ2,d ≈
1

4π
+

1

16π2
BLPc,

where B, L, and P are the matrices described in (3.1.12), (3.1.15) and (3.1.13) respectively.

In view of Remark 3.1.3, this ODF reconstruction method is also known as the SH-based

Constant Solid Angle QBI (SH-based CSA QBI).

3.2. Review of Spherical Ridgelets (SR) for HARDI

This section is organized in the following manner. In subsection 3.2.1, we review how

spherical ridgelets (SR) are being constructed by Michailovich et al. [64] as an alternative

set of functions (for representing HARDI signals) to the modi�ed spherical harmonics. Due

to its localization properties, spherical ridgelets provide sparser representations of HARDI
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signals than the modi�ed spherical harmonics, and thus compressed sensing (CS) techniques

can be now exploited to perform analytical Q-ball imaging. This is also known as spherical

ridgelets-based Q-ball imaging (SR-based QBI).

In subsection 3.2.2, in order to yield sharper reconstruction of the HARDI ODFs, we

develop a `constant solid angle' (CSA) variant of the SR-based QBI, which we will name as

SR-based CSA QBI. This subsection is analogous to the earlier subsection 3.1.3 on SH-based

CSA QBI.

3.2.1. SR-based QBI.

Although SH-based QBI techniques for HARDI performs much better than DTI for the

reconstruction of multiple crossing �bers, HARDI requires a substantially larger number (60-

200) of di�usion-encoding gradients K, as compared to K ∈ [25, 35] in the case of DTI. As

the total scanning time increases linearly with K, HARDI may be too slow to be e�ectively

used in clinical applications involving children or patients with dementia as accurate HARDI

measurements require them to stay still for a prolonged period.

The above de�ciency of HARDI can be overcome using the theory of compressed sensing

(CS) [29, 30, 40] which predicts that sparse signals and images can be reconstructed from

what was previously believed to be incomplete information. Furthermore, e�cient algorithms

such as `1-minimization can be used for recovery. It should be noted that there already exists

much work in which the theory of CS has been used for reconstruction of grayscale MR images

from their subcritical samples, e.g., [50,55,58].

Although the spherical harmonics provide a reasonably stable representation of the HARDI

ODFs, they generally do not yield sparse representations of HARDI ODFs. This is because

the supports of the HARDI ODFs tend to be localized along a few (typically one or two) pairs

of radial directions as illustrated in Figure 3.2.1, whereas the the supports of the (modi�ed)

spherical harmonics are rather globalized or localized along �xed and incompatible pairs of

radial directions as seen in Figure 1.3.2.

Motivated by the need to provide sparse representations of HARDI signals, Michailovich

et al. [64] constructed spherical ridgelets (SR). The basic construction idea is that, since the

FRT R is used on representation functions {ψj,v}j∈I,v∈S2 to approximate the ODFs as in

(3.1.10) and the ODFs of the HARDI signals are localized along a few radial directions, then

{R[ψj,v]}j∈I,v∈S2 should also have similar localization behavior.

Therefore, Michailovich et al. [64] started out by designing localized spherical kernels

intended to represent the ODF. Speci�cally, let ρ ∈ (0, 1) be a positive scaling parameter.
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Figure 3.2.1. Examples of HARDI ODFs: (left subplot) an ODF with a

single �ber direction; (right subplot) an ODF with two �ber directions.

They de�ned the Gaussian-Weiestrass scaling kernel χj,v : S2 → R at resolution j ∈ N0 and

orientation v ∈ S2 as follows:

χj,v(u) :=

∞∑
l=0

2l + 1

4π
κj [l]Pl(u

>v), u ∈ S2, (3.2.1)

where κj [l] := exp
{
−ρ l

2j
( l

2j
+ 1)

}
and Pl denote the Legendre polynomial of order l, j, l ∈ N0.

The L2-energy of χj,v is concentrated around the point v, and χj,v gets more localized as j

increases.

The spherical ridgelets are then constructed using the FRTR, where the spherical ridgelet
functions ψj,v, j ≥ −1, v ∈ S2, are obtained from χj,v according to

ψj,v(u) :=
1

2π
R[χj+1,v − χj,v](u), u ∈ S2,

where χ−1,v ≡ 0. Using the FRT R on (3.2.1) yields the following analytical form for the

spherical ridgelets

ψj,v(u) =

∞∑
l=0

Pl(0)
2l + 1

4π
[κj+1(l)− κj(l)]Pl(u>v), u ∈ S2, (3.2.2)

where κ−1(l) = 0, l ∈ N0, and Pl(0) is the Legendre polynomial of degree l evaluated at 0

as seen in (3.1.11). This is because the spherical harmonics Y m
l are the eigenfunctions of the

FRT R with eigenvalue 2πPl(0) and the addition theorem for spherical harmonics [38], i.e.,

for u, v ∈ S2,

Pl(u
>v) =

4π

2l + 1

l∑
m=−l

Y m
l (u)Y m

l (v).

The interested reader may refer to [14] for its proof. It was then shown in [64] that

U :=
{
ψj,v : j = −1, 0, . . . , v ∈ S2

}
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forms a semi-discrete frame in L2
sym(S2), i.e.,

A‖f‖22 ≤
∑
j≥−1

ˆ
S2
|〈f, ψj,v〉|2 dσ(v) ≤ B‖f‖22, ∀f ∈ L2

sym(S2).

However, U is an in�nite-dimensional set and thus infeasible for practical applications. It

was recommended in [65] to instead use the following discrete counterpart Ud(J) de�ned by

Ud(J) :=
{
ψj,vij

: i = 1, 2, . . . ,Mj , j = −1, 0, . . . , J
}
,

where Mj := (2j+1 · 3 + 1)2, j = −1, 0, . . . , J and J is a pre-de�ned positive integer (chosen

as J = 1 in numerical experiments of [65]). The set of all possible orientations v ∈ S2 in U is

discretized by taking a suitably chosen �nite set of Mj directions
{
vij

}Mj

i=1
on the sphere for

each level j. For instance, for each j ≥ −1,
{
vij

}Mj

i=1
can be formed by a tensor product of

equidistant azimuth and zenith points of the form

vij := (cos θα,j sinφβ,j , sin θα,j sinφβ,j , cosφβ,j), i := (α, β), α, β = 0, 1, . . . , 2j+1 · 3,

where the azimuth points and zenith points are given respectively as

θα,j :=
πβ

2j+1 · 3 + 1
, φβ,j :=

2πβ

2j+1 · 3 + 1
, α, β = 0, 1, . . . , 2j+1 · 3.

To simplify notations, the spherical ridgelets in Ud(J) are indexed as ψm(u), with combined

index m = 1, 2, . . . , R, where R =
∑J

j=−1Mj . Suppose that we have the following approxi-

mation to a HARDI signal s at a single voxel:

s ≈
J∑

j=−1

Mj∑
i=1

cj,iψj,vij
.

Since an approximation to the ODF Ψ1 can be obtained by the applying the FRT onto the

HARDI signal s according to [64,65], i.e., Ψ1 ≈ R[s], it can be reconstructed analytically by

the following spherical ridgelet expansion:

Ψ1(u) ≈
J∑

j=−1

Mj∑
i=1

cj,iR[ψj,vij
](u),

=
J∑

j=−1

Mj∑
i=1

cj,i

∞∑
l=0

[Pl(0)]2 · 2l + 1

2
[κj+1(l)− κj(l)]Pl(u>vij).

However, in practical situations, one is given a sampling set of K di�usion gradients

{gk}Kk=1 . Then one can use (3.2.2) to compute the values of the spherical ridgelets in Ud(J)
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over the sampling set1. This discretization gives rise to a K ×R matrix B2 given by

B2 =


ψ1(g1) ψ2(g1) . . . ψR(g1)

ψ1(g2) ψ2(g2) . . . ψR(g2)
...

...
. . .

...

ψ1(gK) ψ2(gK) . . . ψR(gK)

 .

At a single voxel, if s is discretized with K gradient vectors {gi}Ki=1 we have

f = B2c+ e,

where f = [s(gi)]
K
i=1, c := [cj ]

R
j=1, e is a vector to account for both measurement noise and

modelling errors.

In [65], the sparse reconstruction of the HARDI ODF at a single voxel was implemented

by considering the `1-minimization model

min
c∈RR

1

2
‖f −B2c‖22 + λ‖c‖1, (3.2.3)

where ‖c‖1 =
R∑
j=1
|cj |. The fast iterative soft-thresholding algorithm (FISTA) [10] below was

used in [65] to solve the CS problem in (3.2.3). Here, T 1
α is the soft-thresholding operator

de�ned in (1.1.12).

Algorithm 1 FISTA with constant stepsize

Input: Spectral norm of B>2 B2, i.e., ‖B>2 B2‖2 and tolerance level `tol',

Output: Updated coe�cient vector ck after the k iteration,

1: Initialization y1 = c0, t1 = 1, set penalty parameter ρ > ‖B>2 B2‖2,
2: while ‖ck − ck−1‖2 > `tol', do

3: ck = T 1
λ/ρ[y

k − ρ−1B>2 (B2y
k − f)],

4: tk+1 = 0.5
{

1 +
√

1 + 4(tk)2
}
,

5: yk+1 = ck + tk−1
tk+1 (ck − ck−1),

6: k = k + 1,

7: end while

1Since the de�nition in (3.2.2) involves an in�nite sum, for practical purposes, in our experiments, we

truncate the summation at the 50th term as the magnitude of its summand drops below 10−10 for all the

chosen orientations
{
vij

}Mj

i=1
, j = −1, 0, . . . , J .
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After obtaining a satisfactory coe�cient vector c from FISTA, according to [65], the

discrete ODF Ψ1,d at a single voxel is then reconstructed using the formula

Ψ1,d ≈ B2Pc,

where P is the corresponding matrix de�ned in (3.1.13). We name this ODF reconstruction

method as the spherical ridgelets-based QBI (SR-based QBI).

Remark 3.2.1. We point out that although the set U forms a semi-discrete frame for

L2(S2), it is unknown whether the discrete set of spherical ridgelets in Ud := limJ→+∞Ud(J)

actually forms a frame for L2
sym(S2) or Hs

sym(S2) for some s ∈ R. A similar situation also

holds for the modi�ed spherical ridgelets given in the next subsection.

3.2.2. SR-based CSA QBI.

In the previous subsection 3.1.3, a constant solid angle (CSA) version of analytical QBI

was implemented to obtain a sharper reconstruction of the ODF using the formulas (3.1.19)

and (3.1.21) involving Ψ2:

Ψ2(u) ≈ 1

4π
+

1

16π2
R[∆bs̃](u), u ∈ S2,

where s̃ is modi�ed from the HARDI signal s by

s̃(u) = log(− log s(u)), u ∈ S2,

with a mild assumption that 0 < s(u) < 1, u ∈ S2, R and ∆b represent respectively the Funk-

Radon transform and the spherical Laplace-Beltrami operator de�ned in (3.1.9) and (3.1.16).

Spherical harmonics were then used to obtain analytical representations of the modi�ed signal

s̃ and the ODF Ψ2.

In this subsection, to obtain a sharper reconstruction of the ODF, we instead design

modi�ed spherical ridgelets
{
ψ†j,v

}
j,v

(modi�ed SR) to obtain analytical representations of

the modi�ed signal s̃ and the ODF Ψ2. For v ∈ S2, j = −1, 0, . . ., let ψ†j,v : S2 → R be

de�ned by

ψ†j,v(u) :=

∞∑
l=0

δ−1
l Pl(0)

2l + 1

4π
[κj+1(l)− κj(l)]Pl(u>v), u ∈ S2, (3.2.4)

where

δl :=

1, l = 0,

−l(l + 1), l ∈ N.
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Note that the motivation of the term δ−1
l , l ∈ N0, in (3.2.4) is that prior to the mappings

R and ∆b, ψ
†
j,v(u) acts as a pre-image of R[∆bψ

†
j,v] which is locally concentrated on the

radial direction v, enabling the collection {R[∆bψ
†
j,v]}j,v to give a possibly more e�cient

representation of the ODF.

Similar to the spherical ridgelets in subsection 3.2.1, the in�nite-dimensional set U† :={
ψ†j,v : j = −1, 0, . . . , v ∈ S2

}
is replaced by its discrete counterpart U†d(J) de�ned by

U†d(J) :=

{
ψ†
j,vij

: i = 1, 2, . . . ,Mj , j = −1, 0, . . . , J

}
, (3.2.5)

where J ∈ N. The set of all possible orientations v ∈ S2 in U is discretized by taking a

suitably chosen �nite set of Mj directions v
i
j on the sphere for each level j. As before, in our

experiments, we set Mj = (2j+1 · 3 + 1)2, j = −1, 0, . . . , J , J = 1, and R :=
∑1

j=−1Mj .

Let us now consider the following expansion of the modi�ed HARDI signal s̃ using the

modi�ed spherical ridgelets

s̃ ≈
J∑

j=−1

Mj∑
i=1

cj,iψ
†
j,vij

.

Since an approximation to the ODF Ψ2 can be obtained by applying the Laplace-Beltrami

operator followed by the FRT onto the modi�ed HARDI signal s̃ according to Ψ2 ≈ 1
4π +

1
16π2R[∆bs̃], the ODF can be reconstructed analytically by the following modi�ed spherical

ridgelet expansion

Ψ2(u) ≈ 1

4π
+

1

16π2

J∑
j=−1

Mj∑
i=1

cj,iR[∆bψ
†
j,vij

](u), u ∈ S2,

where for Mj = (2j+1 · 3 + 1)2, j = −1, 0, . . . , J ,

R[∆bψ
†
j,vij

](u) =
∞∑
l=0

[Pl(0)]2
2l + 1

2
[κj+1(l)− κj(l)]Pl(u>v

i
j), u ∈ S2,

As explained in the previous subsection, for computational purposes, a sampling set of K

di�usion gradients {gk}Kk=1 is used to compute the values of the modi�ed spherical ridgelets
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in U†d(J) over the sampling set2. This discretization gives rise to a K×R matrix B3 given by

B3 =


ψ†1(g1) ψ†2(g1) . . . ψ†R(g1)

ψ†1(g2) ψ†2(g2) . . . ψ†R(g2)
...

...
. . .

...

ψ†1(gK) ψ†2(gK) . . . ψ†R(gK)

 . (3.2.6)

If s̃ is discretized with K gradient vectors {gk}Kk=1 we have f ≈ B3c, where f = [s̃(gk)]
K
k=1,

c = [cj ]
R
j=1, and a sparse reconstruction of the HARDI ODF at a single voxel was implemented

by considering the same `1-minimization model in (3.2.3). Thus the algorithm FISTA could

be used as before to obtain a suitable estimate of the coe�cient vector c, and an estimate of

the discrete ODF Ψ2,d is then reconstructed as follows:

Ψ2,d ≈
1

4π
+

1

16π2
B3LPc,

where L,P are the corresponding matrices de�ned respectively in (3.1.15) and (3.1.13). We

name this ODF reconstruction method as the spherical ridgelet-based constant solid angle

Q-ball imaging (SR-based CSA QBI).

3.3. Application of Wavelet Frames (WF) to HARDI

Recall from section 2.3 that the collection

Γ(Ψ) :=
{
ψik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
(3.3.1)

forms a normalized tight wavelet frame for L2
sym(S2), where for i = 1, 2, k ≥ −1, ν ∈ J ′k,

ψik(·; ηik,ν) =

√
d̂k,ν

∑
(m,l)∈J ik

Ỹ m
l (ηik,ν)Ỹ m

l ,

J i−1 := Ii0, J ′−1 := I ′0, ηi−1,ν := ζi0,ν , ψ
i
−1(·; ηi−1,ν) := ϕi0(·; ζi0,ν) for ν ∈ J ′−1, and the scaling

functions are given by

ϕik(·; ζik,ν) :=
√
dk,ν

∑
(m,l)∈Iik

Ỹ m
l (ζik,ν)Ỹ m

l , ν ∈ I ′k.

We also note that
{
ϕik(·; ζik,ν) : ν ∈ I ′k

}
and

{
ψik(·; ηik,ν) : ν ∈ J ′k

}
are also normalized tight

frames for V i
k and W i

k respectively, k ≥ 0, i = 1, 2.

2Since the de�nition in (3.2.4) involves an in�nite sum, for practical purposes, in our experiments, we

truncate the summation at the 50th term as the magnitude of its summand drops below 10−10 for all the

chosen orientations
{
vij

}Mj

i=1
, j = −1, 0, . . . , J.
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In this section, similar to the rationale behind the construction of spherical ridgelets,

we design wavelet frame systems that are pre-images of the normalized tight wavelet frame

systems Γ(Ψ) in (3.3.1) under the FRT R and the Laplace-Beltrami operator ∆b. These

wavelet frame systems designed are then used to process HARDI signals for analytical QBI

and the CSA version of analytical QBI respectively in subsection 3.3.1 and subsection 3.3.2.

The results of section 2.5 also show that these wavelet systems form wavelet frames for a

Sobolev space Hs
sym(S2) for some appropriately chosen exponent s.

The rationale of the above setup is that by Remark 2.1.3, the functions ϕik(·; ζik,ν),

ψik(·; ηik,ν′) are relatively well localized at their respective points ζik,ν , η
i
k,ν′ , ν ∈ I ′k, ν ′ ∈ J ′k,

k ≥ 0, i = 1, 2. Thus we select the normalized tight wavelet frame system Γ(Ψ) to represent

the ODF, which is also well localized at only a few directions in each voxel. For instance,

each of the two ODFs given in Figure 3.2.1 can be sparsely represented by (just one or two

of) the scaling functions constructed in Figure 2.3.2. Then the above `inverse' mappings are

applied onto Γ(Ψ) to obtain wavelet frame systems to represent the corresponding HARDI

signals.

3.3.1. Wavelet frames-based QBI (WF-based QBI).

Before constructing wavelet frames for analytical QBI, recall from Corollary 3.1.2 that

the FRT R has eigenfunctions Ỹ m
l , with corresponding eigenvalues 2πPl(0), |m| ≤ l, l ∈ 2N0,

i.e.,

R[Ỹ m
l ] = 2πPl(0)Ỹ m

l , |m| ≤ l, l ∈ 2N0, (3.3.2)

where Pl(0) is given explicitly earlier in (3.1.11). Suppose now that for L ∈ 2N0,

fL =
∑

l∈2N0∩[0,L]

∑
|m|≤l

f̃m,lỸ
m
l .

Thus one can easily see from (3.3.2) that

R[fL] =
∑

l∈2N0∩[0,L]

∑
|m|≤l

2πPl(0) f̃m,lỸ
m
l .

When L is raised to in�nity, it is then natural to seek the conditions on the modi�ed SH

coe�cients {f̃m,l}m,l in order for f := lim
L→∞

R[fL] to lie in L2
sym(S2). Note that this requires

∑
l∈2N0

∑
|m|≤l

|2πPl(0)|2 |f̃m,l|2 <∞. (3.3.3)
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To check (3.3.3), it is thus important to know the asymptotic decay/growth rate of the

sequence {Pl(0)}l∈2N0
. This is answered by the following proposition (by letting l = 2N ,

N ∈ N0).

Proposition 3.3.1. The sequence {P2N (0)}N∈N0
decays asymptotically at the rate of

N−1/2, i.e., there exist positive constants C1 and C2 such that

C1N
−1/2 ≤ |P2N (0)| ≤ C2N

−1/2, N ∈ N. (3.3.4)

Proposition 3.3.1 can be used to establish mapping properties of the FRT R given in the

following theorem.

Theorem 3.3.2. The FRT R is a linear mapping from Hs
sym(S2) to H

s+1/2
sym (S2), s ≥ 0.

Furthermore this mapping R is invertible with its inverse R−1 given by

R−1[g] =
∑
l∈2N0

∑
|m|≤l

1

2πPl(0)
g̃m,lỸ

m
l ,

where g ∈ Hs+1/2
sym (S2), and {g̃m,l}m,l are the modi�ed spherical harmonic coe�cients of g.

We focus here on the description of the wavelet construction method, so the proofs of

Proposition 3.3.1 and Theorem 3.3.2 will be provided in the Appendix instead.

In this subsection, we obtain a wavelet frame system

Γ(Ψ̃) :=
{
ψ̃ik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
(3.3.5)

to represent HARDI signals by applying the inverse FRT R−1 onto the wavelet frame system

Γ(Ψ) =
{
ψik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
de�ned in (2.3.8). More explicitly, for i = 1, 2, k ≥ −1, ν ∈ J ′k,

ψ̃ik(·; ηik,ν) : = R−1[ψik(·; ηik,ν)]

=

√
d̂k,ν

∑
(l,m)∈J ik

[2πPl(0)]−1 · Ỹ m
l (ηik,ν)Ỹ m

l .

As it turns out, the system Γ(Ψ̃) de�ned in (3.3.5) is dual to

Γ(Ψ]) :=
{
ψi,]k (·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
(3.3.6)
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where the functions in (3.3.6) are given by

ψi,]k (·; ηik,ν) : = R[ψik(·; ηik,ν)]

=

√
d̂k,ν

∑
(l,m)∈J ik

2πPl(0) · Ỹ m
l (ηik,ν)Ỹ m

l ,

where ν ∈ J ′k, k ≥ −1, i = 1, 2.

So Γ(Ψ]) and Γ(Ψ̃) satisfy the framework in (2.4.6) and (2.4.7) with

p[m, l] = 2πPl(0), |m| ≤ l, l ∈ 2N0.

According to Proposition 3.3.1, since the sequence {Pl(0)}l∈2N0
decays asymptotically at a

rate of l−1/2, {p[m, l]}(m,l)∈Λ satis�es (2.4.5) with exponent s = 1/2. Then (Γ(Ψ]), Γ(Ψ̃))

form a pair of dual wavelet frames for Sobolev spaces (H
1/2
sym(S2), H

−1/2
sym (S2)) by the results

in section 2.5.

We remark that HARDI signals are typically assumed to be symmetric and smooth (e.g.,

HARDI test signals are usually derived from a multi-Gaussian mixture), and thus belong to

the Sobolev space H
−1/2
sym (S2). So we may use Γ(Ψ̃) to represent HARDI signals. Consider

the following approximation of a given HARDI signal

s(w) ≈
K∑

k=−1

2∑
i=1

∑
ν∈J ′k

cik,νψ̃
i
k(w; ηik,ν) =:

R∑
j=1

cjψ̃j(w), w ∈ S2

where we have re-enumerated
{
ψ̃ik(·; ηik,ν) : ν ∈ J ′k, k = −1, 0, . . . ,K, i = 1, 2

}
by another

set
{
ψ̃j : j = 1, 2, . . . , R

}
for simplicity of notation. Since Ψ1(u) ≈ R[s](u), the ODF Ψ1

can be reconstructed analytically by

Ψ1(u) ≈
R∑
j=1

2πPlj (0) · cjψ̃j(u).

Similar to subsection 3.2.1, in practical situations, s is discretized with a sampling set of

K gradient directions {gk}Kk=1. The discrete HARDI signal is then given by f = [s(gk)]
K
k=1

with the corresponding discrete representation matrix B4 given by

B4 =


ψ̃1(g1) ψ̃2(g1) . . . ψ̃R(g1)

ψ̃1(g2) ψ̃2(g2) . . . ψ̃R(g2)
...

...
. . .

...

ψ̃1(gK) ψ̃2(gK) . . . ψ̃R(gK)

 .
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Consider for sparse reconstruction at a single voxel,

min
c

1

2
‖f −B4c‖22 + λ‖c‖1,

where c = [cj ]
R
j=1 is the coe�cient vector. One may then use the FISTA in subsection 3.2.1

to solve the above `1-minimization model. After obtaining a satisfactory coe�cient vector c

from FISTA, according to [65], the discrete ODF Ψ1,d at a single voxel is then reconstructed

using the formula

Ψ1,d ≈ B4Pc,

where P is the corresponding matrix de�ned in (3.1.13). We name this ODF reconstruction

method as the wavelet frames-based QBI (WF-based QBI).

3.3.2. WF-based CSA QBI.

In this subsection, to obtain a sharper reconstruction of the ODF, we design instead

wavelet frames for the CSA version of analytical QBI with the ODF reconstruction formula

given by

Ψ2(u) ≈ 1

4π
+

1

16π2
R[∆bs̃](u), u ∈ S2,

where s̃ is modi�ed from the HARDI signal s by

s̃(u) = log(− log s(u)), 0 < s(u) < 1, u ∈ S2,

R and ∆b represent respectively the Funk-Radon transform and the spherical Laplace-Beltrami

operator de�ned in (3.1.9) and (3.1.16).

Before constructing wavelet frames for the CSA version of Analytical QBI, recall from

Corollary 3.1.2 that the FRT R and the Laplace-Beltrami operator ∆b have eigenfunctions

Ỹ m
l , with respective eigenvalues 2πPl(0) and −l(l + 1), |m| ≤ l, l ∈ 2N0, i.e.,

R[Ỹ m
l ] = 2πPl(0)Ỹ m

l , |m| ≤ l, l ∈ 2N0, (3.3.7)

∆b[Ỹ
m
l ] = −l(l + 1)Ỹ m

l , |m| ≤ l, l ∈ 2N0, (3.3.8)

where Pl(0) is given explicitly earlier in (3.1.11). In addition, recall from (2.3.8) that the

functions ψik(·; ηik,ν) =
√
d̂k,ν

∑
(l,m)∈J ik

Ỹ m
l (ηik,ν)Ỹ m

l , ν ∈ J ′k, k ≥ −1, i = 1, 2, form a tight

frame for L2
sym(S2).

In this subsection, for i = 1, 2, k ≥ −1, ν ∈ J ′k, de�ne

Γ0(Ψ]) :=
{
ψi,]k (·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
, (3.3.9)
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where the functions in (3.3.9) are given by

ψi,]k (·; ηik,ν) : =

√
d̂k,ν

∑
(l,m)∈J ik

δ−1
l · [2πPl(0)]−1 · Ỹ m

l (ηik,ν)Ỹ m
l , (3.3.10)

and

δl :=

1, l = 0,

−l(l + 1), l ∈ 2N.
(3.3.11)

We remark that in view of (3.3.7) and (3.3.8), we may regard ψi,]k (·; ηik,ν) in (3.3.10) as an

pre-image of ψik(·; ηik,ν) (de�ned in (2.3.8)) under the operators ∆b and R.
As it turns out, the system Γ0(Ψ]) is dual to the system Γ0(Ψ̃), de�ned by

Γ0(Ψ̃) :=
{
ψ̃ik(·; ηik,ν) : ν ∈ J ′k, k ≥ −1, i = 1, 2

}
(3.3.12)

where the functions in (3.3.12) are given by

ψ̃ik(·; ηik,ν) : =

√
d̂k,ν

∑
(l,m)∈J ik

δl · 2πPl(0) · Ỹ m
l (ηik,ν)Ỹ m

l ,

where ν ∈ J ′k, k ≥ −1, i = 1, 2. The systems Γ0(Ψ]) and Γ0(Ψ̃) satisfy the framework in

(2.4.6) and (2.4.7) with

p[m, l] = δ−1
l · [2πPl(0)]−1, |m| ≤ l, l ∈ 2N0. (3.3.13)

According to Proposition 3.3.1 and (3.3.11), {p[m, l]}(m,l)∈Λ de�ned in (3.3.13) satis�es (2.4.5)

with exponent s = 3/2. Then (Γ0(Ψ]),Γ0(Ψ̃)) form a pair of dual wavelet frames for Sobolev

spaces (H
3/2
sym(S2), H

−3/2
sym (S2)) by the results in section 2.5.

So we may use Γ0(Ψ]) to represent HARDI signals, as they can be assumed to be smooth

and lying in the Sobolev space H
3/2
sym(S2). Consider the following approximation of a given

modi�ed HARDI signal

s̃(w) ≈
K∑

k=−1

2∑
i=1

∑
ν∈J ′k

cik,νψ
i,]
k (w; ηik,ν) =:

R∑
j=1

cjψ
]
j(w), w ∈ S2,

where we have re-enumerated{
ψi,]k (·; ηik,ν) : ν ∈ J ′k, k = −1, 0, . . . ,K, i = 1, 2

}
(3.3.14)
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by another set
{
ψ]j : j = 1, 2, . . . , R

}
for simplicity of notation. Then the ODF Ψ2 can be

reconstructed analytically by

Ψ2(u) ≈ 1

4π
+

1

16π2
R[∆bs̃](u)

=
1

4π
+

1

16π2

R∑
j=1

cjR[∆bψ
]
j ](u),

=
1

4π
+

1

16π2

R∑
j=1

cj2πPlj (0)[−lj(lj + 1)]ψ]j(u).

Similar to subsection 3.2.1, in practical situations, s is discretized with a sampling set of

K gradient directions {gk}Kk=1. The discrete HARDI signal is then given by f = [s(gk)]
K
k=1

with the corresponding discrete representation matrix B5 given by

B5 =


ψ]1(g1) ψ]2(g1) . . . ψ]R(g1)

ψ]1(g2) ψ]2(g2) . . . ψ]R(g2)
...

...
. . .

...

ψ]1(gK) ψ]2(gK) . . . ψ]R(gK)

 . (3.3.15)

For sparse reconstruction at a single voxel, consider the following model:

min
c

1

2
‖f −B5c‖2F + λ‖c‖1,

where c = [cj ]
R
j=1 is the coe�cient vector. One may then use FISTA in subsection 3.2.1

to solve this `1-minimization model. After obtaining a satisfactory coe�cient vector c from

FISTA, according to [65], the discrete ODF Ψ2,d at a single voxel is reconstructed by the

formula

Ψ2,d ≈
1

4π
+

1

16π2
B5LPc,

where P and L are the matrices de�ned in (3.1.13) and (3.1.15) respectively. We name this

ODF reconstruction method as the wavelet-frame based constant solid angle Q-ball imaging

(WF-based CSA QBI).

3.4. HARDI Spatial Regularization and Numerical Results

In clinical HARDI ODF reconstruction, one is required to process HARDI signals in

multiple voxels simultaneously. In most practical situations, the HARDI ODFs and signals

in neighboring voxels are largely similar. Figure 3.4.1 shows a 2D image (slice) of HARDI

ODFs, note that the image can be divided into several spatial regions where within each
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Figure 3.4.1. A 2D image (slice) of HARDI ODFs.

region, ODFs have similar di�usion directions. We can exploit this phenomena to improve

HARDI reconstruction by modifying our earlier optimization models with HARDI spatial

regularization.

To describe HARDI spatial regularization, in the following optimization models, we con-

sider Ω a rectangular area of interest within which HARDI di�usion measurements are ac-

quired, i.e., Ω := [0, Lx] × [0, Ly] ⊂ R2. We remark that the HARDI spatial regularization

concepts in this section can be extended to the three-dimensional setting. Let Ωd be a discrete

subset of Ω, which represents the spatial locations at which the di�usion signal is measured,

i.e.,

Ωd :=

{
r = (xi, yj) |xi =

i

Nx
Lx, yj =

j

Ny
Ly, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
,

where 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny are sampling indices in the direction of x, y coordinates

respectively. Let K be the number of sampling gradients used for the acquisition of HARDI

data, and the corresponding gradient orientations be denoted by {gk}Kk=1, where gk ∈ S2. For

each sampling gradient gk, the MRI measurements yield a corresponding Nx × Ny image of

HARDI signals S(gk), where its (i, j)-th entry [S(gk)]i,j represents the signal intensity of the

HARDI signal sampled at the gradient vector gk at the corresponding voxel/image position

(xi, yj), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. In subsequent optimization models, we use a

K×Nx×Ny HARDI data real matrix F , which is obtained from {S(gk)}Kk=1 by the following
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vectorization procedure:

F =


S′(g1)

S′(g2)
...

S′(gK)

 , (3.4.1)

where for a �xed sampling gradient gk, S
′(gk) denotes the 1×Nx ·Ny row vector formed by

concatenating all the columns of the matrix S̃(gk) := [S̃1(gk)| . . . |S̃Ny(gk)], S̃j(gk) ∈ RNx ,
k = 1, 2, . . .K, i.e.,

S′(gk) := (Vec[S̃(gk)])
> := [S̃1(gk)

>, . . . , S̃Ny(gk)
>],

where S̃(gk) denotes a Nx ×Ny modi�ed HARDI signal real matrix de�ned by S(gk) as

[̃S(gk)]i,j := log(− log [S(gk)]i,,j), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny.

3.4.1. HARDI spatial regularization by wavelet frame �lters.

As mentioned previously, CSA QBI generally reconstructs sharper HARDI ODFs. Thus,

in this subsection, we will describe how the wavelet framelet �lters in [23] can be utilized

to impose spatial regularization on the optimization models in subsections 3.1.3, 3.2.2, 3.3.2,

giving rise to the respective spatially regularized methods:

(a) Spatially regularized, SH-based CSA QBI;

(b) Spatially regularized, SR-based CSA QBI;

(c) Spatially regularized, WF-based CSA QBI.

We shall see from the numerical results in subsection 3.4.2 that spatial regularization greatly

increases the e�ectiveness in denoising HARDI signals. We now describe in detail the spatially

regularized optimization models for (a)-(c).

3.4.1.1. SH-based CSA QBI with spatial regularization.

We propose imposing spatial regularization by adding the term ‖diag(µ)WC>‖1 to a

multi-voxel version of the optimization model in subsection 3.1.3, yielding

min
C∈RR×Nx·Ny

1

2
‖F −BC‖2F +

λ

2
‖LC‖2F + ‖diag(µ)WC>‖1, (3.4.2)

where F is the K × Nx · Ny HARDI data real matrix in (3.4.1), B is the matrix given in

(3.1.12), C := [C(r, n)]r,n is an R×Nx ·Ny matrix of SH coe�cients, L is the R×R matrix

given in (3.1.15), λ ∈ R+, µ ∈ R4Nx·Ny
≥0 are tuning parameters that respectively control the
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degrees of the Laplace-Beltrami regularization and the spatial regularization by the 2D-tensor

Haar tight framelet �lter matrix W in [23]. More explicitly,

W =


Hy

0 ⊗Hx
0

Hy
0 ⊗Hx

1

Hy
1 ⊗Hx

0

Hy
1 ⊗Hx

1

 ∈ R4Nx·Ny×Nx·Ny , µ := µ′


0Nx·Ny

1Nx·Ny

1Nx·Ny

1Nx·Ny

 ∈ R4Nx·Ny , µ′ > 0, (3.4.3)

where 0Nx·Ny and 1Nx·Ny are the RNx·Ny column vectors of zeros and ones respectively, ⊗
denote the Kronecker product, Hx

0 , H
x
1 are Nx × Nx matrices and Hy

0 , H
y
1 are Ny × Ny

matrices de�ned by the Haar framelet �lters h0, h1 as follows:

Hx
i [l, k] := hi[(l − k) mod Nx], Hy

i [l, k] := hi[(l − k) mod Ny], i = 0, 1,

h0 :=
1

2

[
1 1

]
, h1 :=

1

2

[
1 −1

]
. (3.4.4)

Note that the matrices Hx
0 , H

x
1 Hy

0 , H
y
1 are circulant and satisfy the tight frame condition

Hx>
0 Hx

0 +Hx>
1 Hx

1 = I, Hy>
0 Hy

0 +Hy>
1 Hy

1 = I,

which leads to W satisfying

W>W = I.

It was proved recently in [23] that, in the discrete model, the last three blocks in W

(de�ned by h1) correspond to (local) �nite di�erence operators in the x, y and diagonal

directions respectively, which may also be regarded as certain discretizations of di�erential

operators in the continuous variational models. Indeed, as shown in [23], minimizing the term

‖diag(µ)WC>‖1 in the above discrete model is analogous to modelling sharp jumps (whilst

smoothing small variations) of a function in the corresponding variational models. Thus, we

have included the term ‖diag(µ)WC>‖1 in our optimization model to model sharp changes in

ODF di�usion directions from one voxel to another in our HARDI data set, see for example

Figure 3.4.1.

Remark 3.4.1. The Haar tight framelet �lters (3.4.4) is a special case of B-spline based

tight framelet �lters constructed in [75] and discussed in [23]. In principle, we may also

de�ne the matrix W using longer B-spline based tight framelet �lters instead. However,

in this thesis, we have chosen the Haar tight framelet �lters (3.4.4) to impose the spatial

regularization because our numerical experiences reveal that the Haar tight framelet �lters

achieve the best balance between denoising performances and computational speed.
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We now describe how (3.4.2) can be solved using the split Bregman method [49], which has

been extremely successful in solving `1-norm regularized problems in compressed sensing [26]

and image processing [24], etc. We start �rst by setting the auxiliary variable Q = WC>to

tackle the non-smooth `1-norm in (3.4.2), which yields the following equivalent optimization

problem:

min
C,Q

1

2
‖F −BC‖2F +

λ

2
‖LC‖2F + ‖diag(µ)Q‖1, s.t. Q = WC>. (3.4.5)

The corresponding augmented Lagrangian of (3.4.5) is given by

Lρ(C,Q; Λ) :=
1

2
‖F −BC‖2F +

λ

2
‖LC‖2F + ‖diag(µ)Q‖1− ρ〈Λ, Q−WC>〉+ ρ

2
‖Q−WC>‖2F

where Λ denotes the Lagrange multiplier, ρ is a given positive parameter, and the inner

product 〈·, ·〉 is de�ned by

〈X,Y 〉 := Tr(X>Y ),

for any given matrices X and Y of the same dimension.

Using the initialization C0 = [B>B + λL>L]−1B>F , Q0 = W (C0)>, Λ = 0, for a �xed

(Ck, Qk,Λk), we update (Ck+1, Qk+1,Λk+1) by a Gauss-Seidel scheme on the augmented

Lagrangian in the following manner:

Setting Xk
c to be the concatenation of Vec(Ck), Vec(Qk) and Vec(Λk),

while ‖Xk+1
c −Xk

c ‖∞ > `tol',

for k = 0, 1, . . .,

(1) Ck+1 = argminC Lρ(C,Q
k; Λk);

(2) Qk+1 = argminQ Lρ(C
k+1, Q; Λk);

(3) Λk+1 = Λk − (Qk+1 −W (Ck+1)>).

The �rst two steps amounts to solving the following two optimization subproblems:

(1) Ck+1 = argminC
1
2‖F −BC‖

2
F + λ

2‖LC‖
2
F + ρ

2‖CW
> − (Qk − Λk)>‖2F ;

(2) Qk+1 = argminQ ‖diag(µ)Q‖1 + ρ
2‖Q− (W (Ck+1)> + Λk)‖2F ;

(3) Λk+1 = Λk − (Qk+1 −W (Ck+1)>).

Using the fact that W>W = I, one can show that we have the following analytic solutions to

the above subproblems:

(1) Ck+1 = [B>B + λL>L+ ρI]−1[B>F + ρ(Qk − Λk)>W ],

(2) Qk+1 = T 1
µ/ρ[W (Ck+1)> + Λk],

(3) Λk+1 = Λk − (Qk+1 −W (Ck+1)>),
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where we recall that T 1
µ/ρ is the soft-thresholding operator de�ned in (1.1.12).

We note that (3.4.5) is a convex optimization problem which adheres to the framework of

optimization problems in [26], where a proof of the convergence of the split Bregman method

was established.

3.4.1.2. SR and WF-based CSA QBI with spatial regularization.

We shall now deal with the spatially regularized SR-based QBI and WF-based CSA QBI

at the same time because upon adding the term ‖diag(µ)WC>‖1 to a multi-voxel version

of the optimization models in subsections 3.2.2 and 3.3.2, they yield the same optimization

model given as follows:

min
C

1

2
‖F −BC‖2F + λ‖C‖1 + ‖diag(µ)WC>‖1, (3.4.6)

where the matrix C is the corresponding coe�cient matrix and

B := B3 or B := B5

in (3.2.6) and (3.3.15) respectively for SR-based CSA QBI and WF-based CSA QBI.

We start �rst by setting the auxiliary variables Q = WC> and P = C to tackle the two

non-smooth `1-norms in (3.4.6), yielding the following equivalent optimization problem:

min
C,P,Q

1

2
‖F −BC‖2F + λ‖P‖1 + ‖diag(µ)Q‖1, s.t. Q = WC>and P = C. (3.4.7)

Denoting the Lagrange multipliers as Λ1, Λ2 and ρ1, ρ2 as some given positive parameters,

the corresponding augmented Lagrangian of (3.4.7) is then given by

Lρ1,ρ2(C,Q, P ; Λ1,Λ2) :=
1

2
‖F −BC‖2F + λ‖P‖1 + µ‖Q‖1

− ρ1〈Λ1, Q−WC>〉+
ρ1

2
‖Q−WC>‖2F

− ρ2〈Λ2, P − C〉+
ρ2

2
‖P − C‖2F .

We use the initialization

C0 = [B>B + λI]−1B>F,Q0 = W (C0)>, P 0 = C0,Λ1, Λ2 = 0.

Then, for a �xed (Ck, Qk, P k,Λk1,Λ
k
2), we update (Ck+1, Qk+1, P k+1,Λk+1

1 ,Λk+1
2 ) by a Gauss-

Seidel scheme on the above augmented Lagrangian as follows: Set Xk
c to be the concatenation

of Vec(Ck), Vec(Qk), Vec(P k), Vec(Λk1) and Vec(Λk2), while ‖Xk+1
c −Xk

c ‖∞ > `tol', perform

the following till convergence: for k = 0, 1, . . .,

(1) Ck+1 = arg minC Lρ1,ρ2(C,Qk, P k; Λk1,Λ
k
2);

(2) Qk+1 = arg minQ Lρ1,ρ2(Ck+1, Q, P k; Λk1,Λ
k
2);
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(3) P k+1 = arg minP Lρ1,ρ2(Ck+1, Qk+1, P ; Λk1,Λ
k
2);

(4) Λk+1
1 = Λk1 − (Qk+1 −W (Ck+1)>);

(5) Λk+1
2 = Λk2 − (P k+1 − Ck+1).

Using W>W = I again, one can similarly show that we have the following analytic solutions

to the above subproblems:

(1) Ck+1 = [B>B + (ρ1 + ρ2)I]−1[B>F + ρ1(Qk − Λk1)>W + ρ2(P k − Λ2)];

(2) Qk+1 = T 1
µ/ρ1

[W (Ck+1)> + Λk1];

(3) P k+1 = T 1
λ/ρ2

[Ck+1 + Λk2].

Note that (3.4.6) is a convex optimization problem that also adheres to the framework of

optimization problems in [26].

Remark 3.4.2. In [71], [65], a total variational (TV) term µ‖C‖TV is used (instead of

‖diag(µ)WC>‖1) to impose spatial regularization on SH-based QBI and SR-based QBI. For

instance, the optimization model used in [71] is given by

min
C∈RR×Nx·Ny

1

2
‖F −BC‖2F +

λ

2
‖LC‖2F + µ‖C‖TV , (3.4.8)

where B is the K × R discrete representation matrix for the SH de�ned in (3.1.12), C :=

[C(r, n)]r,n is an R×Nx ·Ny matrix of SH coe�cients,

‖C‖TV :=
R∑
r=1

∑
(xi,yj)∈Ωd

 ∑
(xi′ ,yj′ )∈N (xi,yj)

|Cr(i, j)−Cr(i
′, j′)|2


1/2

,

Cr :=


C(r, 1) C(r,Nx + 1) . . . C(r,Nx · (Ny − 1) + 1)

C(r, 2) C(r,Nx + 2) . . . C(r,Nx · (Ny − 1) + 2)
...

...
. . .

...

C(r,Nx) C(r, 2Nx) . . . C(r,Nx ·Ny)

 ∈ RNx×Ny ,

where r = 1, 2, . . . , R, N (xi, yj) represents the set of vertices in the regular two-dimensional

lattice Ωd that are connected to the vertex (xi, yj), L is the matrix de�ned in (3.1.15), and µ

is a pre-de�ned positive parameter that controls the degree of spatial regularization in (3.4.8).

It was shown in [23, Remark 3.2] that the wavelet frame `1-regularization term ‖diag(µ)WC>‖1
yields better spatial regularization than the TV term. This is because the TV term accounts

for only spatial di�erences/similarities along the vertical and horizontal directions, whereas

the wavelet frame `1-regularization term accounts for additional spatial di�erences/similarities

along diagonal directions. We also remark that our numerical experiments give superior re-

sults when the `1-norm is used instead of the `1,2-norm ‖ · ‖1,2, the discretized version of the



3.4. HARDI SPATIAL REGULARIZATION AND NUMERICAL RESULTS 88

TV norm, which was described in [23], possibly due to the anisotropic nature of the given

HARDI data. Therefore, in this thesis, we just focus on optimization models that are based

on the wavelet frame `1-regularization term ‖diag(µ)WC>‖1.

3.4.2. Computational results.

In this subsection, under di�erent signal-to-noise (SNR) settings, we shall perform HARDI

numerical simulations for six methods, namely:

M1a: SH-based CSA QBI,

M2a: SR-based CSA QBI,

M3a: WF-based CSA QBI,

M1b: Spatially regularized, SH-based CSA QBI,

M2b: Spatially regularized, SR-based CSA QBI,

M3b: Spatially regularized, WF-based CSA QBI,

and compare their performances with evaluation criteria (to be introduced below). As we

shall see, we can make two main conclusions:

• spatially regularized methods are far superior than their unregularized versions in

terms of HARDI denoising and ODF reconstruction, especially under low SNR set-

tings,

• spatially regularized, WF-based CSA QBI achieves the best balance between the

quality of ODF reconstruction and computational time, especially under low SNR

settings.

3.4.2.1. Generation of synthetic data.

We now describe how the HARDI synthetic data used in this thesis is generated. This

synthetic data is actually obtained from the challenge website3 of the di�usion MRI recon-

struction challenge 2012. This challenge was organized in the context of the 9th IEEE Inter-

national Symposium on Biomedical Imaging (ISBI) conference, which was held in Barcelona

(Spain) in May 2012. The objective of this challenge was to compare di�erent reconstruction

methods for reconstructing the HARDI intra-voxel �ber structure, i.e., the number and orien-

tation of the �ber populations present in each voxel, from d-MRI acquisitions, using the same

ground-truth data and under controlled conditions. The interested reader may also refer to

[35] for more details.

3http://hardi.ep�.ch/static/events/2012_ISBI/
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Figure 3.4.2. Structured Field Training Dataset: 16 × 16 × 5 voxel set

Ωd. The dataset simulates a realistic 3D con�guration of tracts: it comprises

3 di�erent �ber bundles (Subplots A-C), which give rise to non-planar con-

�gurations of bending, crossing, kissing tracts. In each voxel, the directions

are color-coded based on their orientation (x-axis, y-axis, z-axis). Subplot D

shows the structured �eld training dataset.

The two HARDI data sets we have used from the challenge website are the structured

�eld training data and the structured �eld testing data as shown in Figures 3.4.2 and 3.4.3.

Each of the structured �eld datasets consists of a 16 × 16 × 5 volume whose spatial index

set Ωd :=
{
r = (x, y, z) ∈ Z3 ∩ [0, Nx)× [0, Ny)× [0, Nz)

}
(with Nx, Ny = 16, Nz = 5)

simulates a con�guration of neural �ber tracts. The training dataset and testing dataset

respectively are made up of three and �ve di�erent �ber bundles as seen in Figures 3.4.2 and

3.4.3.
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Figure 3.4.3. Structured Field Testing Dataset: 16× 16× 5 voxel set Ωd.

The dataset simulates a realistic 3D con�guration of tracts: it comprises 5

di�erent �ber bundles (Subplots A-E). In each voxel, the directions are color-

coded based on their orientation (x-axis, y-axis, z-axis). Subplot F shows a

representative slice with the ODF orientations.

Remark 3.4.3. The HARDI training data is merely a dataset released to the participants

for familiarization purposes before they implement their methods on the testing data in the

HARDI challenge. The reader should note that the purposes of the training and test datasets

in the HARDI challenge are markedly di�erent from those used in machine learning.

In each voxel of the 16 × 16 × 5 volume of the structured �eld training data and the

structured �eld testing data, the dMRI signal intensity in a voxel with M �ber populations

is simulated by using a classical Gaussian mixture model as recalled in (3.1.7):

s(g) =
M∑
i=1

pi exp(−bg>Dig), s.t.
M∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . ,M, g ∈ S2,

with the b-value satisfying b ≥ 2000, its corresponding ODF Ψ2 in the analytic form (shown

in the derivation of (3.1.20))

Ψ2(u) =

M∑
i=1

pi

√
1

64π2b2|Di|
(u>D−1

i u)−3/2, u ∈ S2.
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Here, for i = 1, 2, . . .M , |Di| is the determinant of the s.p.d. di�usion tensor Di, which is a

symmetric positive de�nite matrix and so can be written in the form:

Di = R>i diag(λi1, λ
i
2, λ

i
3)Ri, R>i Ri = I, i = 1, 2, . . . ,M,

where Ri := [ei1|ei2|ei3] is the rotation matrix rotating the main axis of Di to the direction of

a given �ber population, with eigenvalues λi1, λ
i
2, λ

i
3 ordered in the manner λi1 > λi2 ≥ λi3 > 0.

The diagonal elements of Di are the di�usivities along the main axis ei1 of the �ber (λ
i
1) and on

the orthogonal plane spanned by {ei2, ei3}. In the HARDI challenge, λi1 ∈ [1, 2]× 10−3mm2/s

and λi2, λ
i
3 ∈ [0.1, 0.6] × 10−3mm2/s, i = 1, 2, . . . ,M , are generated from di�usivities in the

human brain.

Adhering to the settings of the HARDI challenge [35], we also corrupt the HARDI signal

at each voxel with Rician noise in the following manner:

snoisy =
√

(s+ η1)2 + η2
2, η1, η2 ∼ N(0, σ2),

where the signal-to-noise ratio (SNR) on the image is given and σ is set to be 1
SNR to

control the level of the noise. Our numerical simulations with both datasets will deal with

the reconstruction of the HARDI ODF under four di�erent noise levels, i.e., SNR=5, 10, 20,

40.

3.4.2.2. Evaluation criteria.

In this thesis, we have adopted the following evaluation criteria for the comparison of

numerical performances.

(1) Normalized mean square error (NMSE): The accuracy in the estimation of the ODF,

computed as the normalized mean squared error between the estimated ODF, Ψest,

and the one analytically computed from the model used for the simulations, Ψtrue,

is given by

NMSE :=
1

NxNyNz

∑
r∈Ωd

‖Ψest(r)−Ψtrue(r)‖22
‖Ψtrue(r)‖22

.

(2) Probability of detection (Pd): The probability of false �ber detection, expressed by

means of

Pd :=
1

NxNyNz

∑
r∈Ωd

|Mest(r)−Mtrue(r)|
|Mtrue(r)|

× 100%,
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where Mtrue and Mest are, respectively, the real and estimated number of �ber com-

partments inside the voxel.

(3) Angular Deviation (AD): Angular precision of the estimated �ber compartments

is assessed by means of the angular error (in degrees) between the estimated �ber

direction and the true one inside the voxel given by

θ̄ =
180

π
cos−1(|dest · dtrue|),

where dest is an estimated reconstructed �ber direction and dtrue is a true direction

inside the voxel. The �nal value will be the average of the angular errors computed

for all the true �ber compartments.

3.4.2.3. Numerical experiments.

In all experiments, we have selected the number of sampling gradients K to be 32 in

each voxel and �xed the b-value as 3000. The tolerance level `tol' for both FISTA and the

split Bregman methods described previously is set as 10−6, with the maximum number of

iterations for FISTA and the split Bregman methods set as 100 and 15 respectively.

For SH-based methods (M1a, M1b), as recommended in [64,71], we set the maximum

level lmax = 8 for the �nite collection of modi�ed SH
{
Ỹ m
l

}lmax

l=1,|m|≤l
and thus the number of

SH functions/coe�cients R = 45.

For SR-based methods (M2a, M2b), as recommended in [65], we set the maximum level

J = 1 in the discrete collection of SR U †d de�ned in (3.2.5), so that the resolution levels

at levels j = −1, 0, 1 have M−1 = 16, M0 = 49, M1 = 169 spherical ridgelets respectively,

yielding a total number of SR functions/coe�cients R = 234.

For WF-based methods (M3a, M3b), for best e�ect, the resolution level of the wavelet

frames de�ned in (3.3.14) and (3.3.10) is set atK = −1, with I−1 = {(m, l) ∈ Z× 2N0 : l ≤ 4}
and I−1 = {(m, l) ∈ Z× 2N0 : l ≤ 6} in experiments where SNR levels are 5 and in the range

10-40 respectively.

After optimizing all other parameters (such as λ, µ), we present the computational per-

formances (averaged over 50 trials) of methods M1a-M3a, M1b-M3b (spatially regularized)

on the HARDI training data in terms of NMSE, Pd, and AD values are shown in Tables

3.4.1, 3.4.2, 3.4.3 respectively. Similarly, computational performances of methods M1a-M3a,

M1b-M3b (spatially regularized) on the HARDI testing data in terms of NMSE, Pd, and AD

values shown in Tables 3.4.4, 3.4.5, 3.4.6 respectively. For each SNR level in these tables, the

best performance is indicated in bold.
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SNR M1a M2a M3a M1b M2b M3b

40 0.0432 0.0549 0.0417 0.0330 0.0414 0.0357

20 0.0781 0.0756 0.0670 0.0433 0.0564 0.0473

10 0.1930 0.1300 0.1210 0.0728 0.0809 0.0773

5 0.2690 0.2110 0.2040 0.1450 0.1390 0.1160

Table 3.4.1. NMSE values of methods M1a-M3a, M1b-M3b for HARDI

training data under SNR levels 5, 10, 20 and 40.

SNR M1a M2a M3a M1b M2b M3b

40 9.98 13.4 8.41 3.77 4.57 4.52

20 18.9 16.2 13.1 6.21 12.9 5.55

10 24.9 26.4 32.9 21.8 17.3 13.4

5 39.5 34.0 38.8 39.1 27.9 28.2

Table 3.4.2. False detection rates (Pd) of methods M1a-M3a, M1b-M3b

for HARDI training data under SNR levels 5, 10, 20 and 40.

SNR M1a M2a M3a M1b M2b M3b

40 5.52 5.31 5.49 4.68 5.03 5.25

20 7.48 7.76 6.82 5.32 5.91 5.81

10 12.0 13.2 11.9 6.62 8.55 6.81

5 20.6 24.6 22.1 10.9 13.4 10.6

Table 3.4.3. Angular deviation (AD) values of methods M1a-M3a, M1b-

M3b for HARDI training data under SNR levels 5, 10, 20 and 40.
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SNR M1a M2a M3a M1b M2b M3b

40 0.0649 0.0731 0.0560 0.0491 0.0505 0.0396

20 0.1083 0.1008 0.0844 0.0638 0.0645 0.0518

10 0.2243 0.1611 0.1641 0.1286 0.0891 0.0753

5 0.3739 0.2996 0.2738 0.2729 0.1517 0.1436

Table 3.4.4. NMSE values of methods M1a-M3a, M1b-M3b for HARDI

testing data under SNR levels 5, 10, 20, 40.

SNR M1a M2a M3a M1b M2b M3b

40 19.2 17.5 18.0 17.4 20.8 18.6

20 28.6 21.9 23.8 20.2 22.1 21.5

10 44.1 36.8 37.7 36.0 27.0 25.9

5 46.2 36.8 39.1 35.9 35.5 34.5

Table 3.4.5. False detection rate (Pd) of methods M1a-M3a, M1b-M3b

for HARDI testing data under SNR levels 5, 10, 20, 40.

SNR M1a M2a M3a M1b M2b M3b

40 5.85 6.01 5.64 5.24 6.31 5.45

20 7.69 7.95 7.18 5.85 6.92 6.20

10 11.58 12.83 12.68 8.43 8.18 7.24

5 19.28 20.39 18.93 11.02 10.59 9.72

Table 3.4.6. Angular deviation (AD) values of methods M1a-M3a, M1b-

M3b for HARDI testing data under SNR levels 5, 10, 20, 40.

3.4.2.4. Conclusion.

From Tables 3.4.1 to 3.4.6, we can infer the following points:

• Spatially regularized methods (M1b-M3b) generally have superior denoising per-

formances over their respective non-spatially regularized versions (M1a-M3a) in all

three criteria, especially in terms of NMSE values (which is almost halved under low

SNR levels).
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Data Type M1b M2b M3b

Training Data 0.346 2.19 0.714

Testing Data 0.319 2.13 0.678

Table 3.4.7. Average computational time (seconds) for the spatially reg-

ularized methods M1b-M3b on HARDI training data and testing data.

• Under medium to high SNR levels (20-40), the spatially regularized SH-based method

(M1b) generally performs rather well in all three criteria with a relatively small num-

ber of sampling gradients, despite that SH generally do not yield sparse representa-

tions of HARDI signals.

• Under low SNR levels (5-10), spatially regularized WF and SR-based methods (M2b-

M3b) generally outperform spatially regularized SH-based method (M1b) in all three

criteria.

• The spatially regularized WF-based method (M3b) generally performs slightly better

than the spatially regularized SR-based method (M2b) in all three criteria.

• As seen in Table 3.4.7, a comparison of average computational speeds of the spatially

regularized methods reveals that M1b is roughly twice as fast as M3b, which is almost

thrice as fast as M2b.

Taking into account the above points, we may conclude that

(1) Under medium to high SNR levels (20-40), the spatially regularized SH-based method

(M1b) is arguably the most cost-e�ective method, in terms of balancing trade-o�s

between denoising e�ectiveness and computational speed.

(2) Under low SNR levels (5-10), the most cost-e�ective method is the spatially regu-

larized WF-based method (M3b).

Remark 3.4.4. (Possible Future Research Work/Directions) In [39], Descoteaux et al.

developed a new deconvolution sharpening transformation from the di�usion ODF to the

�ber ODF, where it was shown to improve angular resolution and �ber detection of QBI

and thus greatly enhancing tractography results. Under the assumption that the HARDI

signal is Gaussian, the (convolution) di�usion ODF kernel was modelled explicitly based on

a �xed function with relatively gentle decay, see [39, equation (14)]. However, the HARDI

signal may not be Gaussian in practice. Thus for future work, we can consider estimating

the (convolution) di�usion ODF kernel adaptively through an `1-regularized optimization
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model, which seeks sparse representations of the HARDI signal and the ODF kernel with

appropriately chosen systems (possibly wavelet frames and Legendre polynomials).



CHAPTER 4

Adaptive HARDI Denoising by Optimization on Stiefel

Manifolds

The HARDI denoising performances may be improved through adaptive spatial regu-

larization, which can be modelled by optimization on Stiefel manifolds, i.e., optimization

problems with orthogonality constraints. This chapter is organized in the following manner.

In section 4.1, we propose the proximal alternating minimized augmented Lagrangian (PA-

MAL) method to achieve adaptive spatial regularization on HARDI. The PAMAL method

consists of Algorithms I and II, where Algorithm I uses Algorithm II to run a small number

of inner iterations to solve each outer iteration for the �rst step of Algorithm I. Empirical

results illustrate that the PAMAL method yields better HARDI denoising performances.

Section 4.2 provide some preliminaries and notations for non-smooth analysis to facilitate

the convergence analysis in subsequent sections. Then, we show in section 4.3 that Algorithms

I and II are well de�ned. Finally, in section 4.4, we provide the convergence analysis of

Algorithms I and II for the HARDI adaptive spatial regularization problem.

4.1. Adaptive Spatial Regularization for HARDI Denoising

In this section, we illustrate that one can improve HARDI denoising results through

imposing spatial regularization adaptively. We shall see that adaptivity can be imposed by

optimizing on the Stiefel manifold S where

S :=
{
P ∈ Rp×q : P>P = Iq

}
. (4.1.1)

More explicitly, we consider the following modi�ed optimization model for spatially regular-

ized, SH-based QBI (see Remark 4.1.1)

min
C,W

1

2
‖BC − F‖2F +

λ

2
‖LC||2F + µ‖WC>‖1 s.t. W>W = I, (4.1.2)

where µ is a pre-de�ned positive parameter and we no longer require the matrix W to be

�xed by the Haar tight framelet �lters as described in (3.4.3) and (3.4.4), but instead we seek

a matrix W ∈ S to yield adaptive spatial regularization of the given HARDI data F .

97
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Remark 4.1.1. For ease of notation in the accompanying convergence analysis, in this

thesis, we consider only modifying the optimization model for spatially regularized, SH-based

QBI. Analogous modi�cations can be made for spatially regularized, SR and WF-based QBI,

but it requires more auxiliary variables to be introduced to the optimization models, which

makes the notations in the corresponding convergence analysis more complicated.

Furthermore, the adaptive spatial regularization requires greater computational complex-

ity (as the algorithm implemented requires the calculation of singular value decompositions

in each iteration), and the spatially regularized SH-based method (M1b in Chapter 3) is more

cost-e�ective for moderate and high SNR levels, so this justi�es our sole consideration of an

adaptive model for spatially regularized, SH-based QBI in this chapter.

Due to the orthogonality constraint and an `1-norm term in the objective function of

(4.1.2), this is a non-convex and non-smooth optimization problem which is challenging to

provide an algorithm with convergence analysis. We note that the convergence analysis of the

split Bregman method introduced in Chapter 3 only applies to convex problems. Therefore,

we need to devise an alternative algorithm that also has convergence analysis.

We now introduce a method, which we name as the proximal alternating minimized aug-

mented Lagrangian (PAMAL) method. As we shall see, the PAMAL method hybridizes the

proximal alternating minimization (PAM) scheme [6] and the augmented Lagrangian method

in [4]. It consists of Algorithms I and II, where Algorithm I is based on the Augmented

Lagrangian method introduced in [4], and Algorithm II is actually the PAM scheme in [6],

which is used to solve Step 1 of Algorithm I.

This section is organized in the following manner. Details of Algorithms I and II will be

provided in subsection 4.1.1 and subsection 4.1.2 respectively. Finally, in subsection 4.1.3,

some numerical results are given to illustrate how HARDI denoising performance can be

improved through adaptivity by Algorithms I and II.

To apply the PAMAL method, we �rst introduce the auxiliary variables

Q = WC>, P = W,

to split both the non-smooth `1-term and the non-convex constraint respectively, and then

convert (4.1.2) into the following equivalent problem:

min
C,W,Q,P

1

2
‖BC − F‖2F +

λ

2
‖LC||2F + µ‖Q‖1 s.t. Q = WC>, P = W, P>P = I. (4.1.3)
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De�ne the indicator function δS on the Stiefel manifold S de�ned in (4.1.1) by

δS(P ) :=

0, if P ∈ S,

+∞, if P /∈ S.

Denoting the Lagrange multipliers as Λ1, Λ2, Λ := (Λ1,Λ2) and ρ as a given positive param-

eter, the corresponding augmented Lagrangian of (4.1.3) is then given by

L(C,W,Q, P ; Λ, ρ) :=
1

2
‖F −BC‖2F +

λ

2
‖LC‖2F + µ‖Q‖1

+ 〈Λ1, Q−WC>〉+
ρ

2
‖Q−WC>‖2F

+ 〈Λ2, P −W 〉+
ρ

2
‖P −W‖2F + δS(P ).

(4.1.4)

4.1.1. Algorithm I.

We now describe Algorithm I.

Algorithm I: Method for solving (4.1.4)

Given pre-de�ned parameters {εk}k∈N, Λ̄1 = (Λ̄1
1, Λ̄

1
2), ρ1, Λ̄p,min, Λ̄p,max, τ , γ that satisfy the

conditions in Remark 4.1.2, for k = 1, 2, . . .,

(1) Compute (Ck,W k, Qk, P k) such that there exists Θk ∈ ∂L(Ck,W k, Qk, P k; Λ̄k, ρk)

satisfying

‖Θk‖∞ ≤ εk, (P k)>P k = I, (4.1.5)

where
{
εk
}
k∈N is a sequence of positive tolerance parameters.

(2) Estimate the multipliers Λk+1
1 , Λk+1

2 by

Λk+1
1 = Λ̄k1 + ρk(Qk −W k(Ck)>), Λk+1

2 = Λ̄k2 + ρk(P k −W k),

where Λ̄k+1
p is the projection of Λk+1

p onto the set
{

Λp : Λ̄p,min ≤ Λp ≤ Λ̄p,max

}
,

p = 1, 2, i.e., for ∀i, j,

[Λ̄k+1
p ]i,j =


[Λ̄p,min]i,j , if [Λk+1

p ]i,j < [Λ̄p,min]i,j ,

[Λk+1
p ]i,j , if [Λ̄p,min]i,j ≤ [Λk+1

p ]i,j ≤ [Λ̄p,max]i,j ,

[Λ̄p,max]i,j , if [Λk+1
p ]i,j > [Λ̄p,max]i,j .

(4.1.6)
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(3) Update the penalty parameter ρk+1 by

ρk+1 =

ρk, if ‖Rki ‖∞ ≤ τ‖R
k−1
i ‖∞, i = 1, 2,

γρk, otherwise,
(4.1.7)

where Rk1 := Qk −W k(Ck)>, Rk2 := P k −W k, k ∈ N.

Let us denote Y := (C,W,Q, P ) and for given Λ̄, ρ, de�ne

∂L(Y ; Λ̄, ρ) := ∂L(C,W,Q, P ; Λ̄, ρ).

The notation ∂L(Y ; Λ̄, ρ) refers to the Fréchet (limiting) subdi�erential of L at point Y

(with �xed Λ̄, ρ). We shall postpone the formalism (see De�nition 4.2.2) of the Fréchet

subdi�erential to section 4.2, where more abstract notations and concepts are frequently used

in convergence analysis.

Moreover, the focus of this section is the description of Algorithms I and II to perform

adaptive spatial regularization of HARDI data. To allow one to check explicitly whether the

εk-stopping criterion in (4.1.5) is satis�ed, we provide within Algorithm II an analytic form

of a subgradient element Θk ∈ ∂L(Ck,W k, Qk, P k; Λ̄kρk) that satis�es (4.1.5) (to be justi�ed

instead in section 4.3).

Indeed, to solve Step 1 of Algorithm I, we use Algorithm II which is the PAM scheme

to be described in detail later in this subsection. Steps 2 and 3 are straightforward in their

implementations. Step 2 updates the multipliers Λkp, which is done by projecting the �rst

order approximation to Λkp to some pre-de�ned box (Λ̄p,min, Λ̄p,max), p = 1, 2. Step 3 updates

the penalty parameter ρk according to the degree of infeasibility. It is noted that the choice of

parameters εk, Λ̄p,min, Λ̄p,max, ρ
k, γ, τ will impact the convergence property of the proposed

algorithm. Remark 4.1.2 below discusses the setting of the parameters.

Remark 4.1.2. (Parameter setting) For Step 1 of Algorithm I to be well de�ned, the

parameters in Algorithm I are set as follows. The sequence of positive tolerance parameters{
εk
}
k∈N in (4.1.5) is chosen such that

lim
k→∞

εk = 0.

The safeguard matrices Λ̄p,min, Λ̄p,max are �nite-valued matrices satisfying

−∞ < [Λ̄p,min]i,j < [Λ̄p,max]i,j < +∞, ∀i, j, p = 1, 2.
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As we shall see in section 4.3, for Step 1 to be well de�ned, it su�ces to have τ ∈ (0, 1] and

γ > 1.

Step 1 is the most crucial and di�cult step of Algorithm I. We will later provide an

explicit expression for the subgradient element Θk in (4.1.10) and (4.1.11) of Algorithm II.

Step I of Algorithm I is about �nding a point (Ck,W k, Qk, P k) which is an εk-approximation

of a critical point of L(C,W,Q, P ; Λ̄k, ρk). In line with De�nition 4.2.2 (to be given later),

we say that (C̄k, W̄ k, Q̄k, P̄ k) is a critical point of L(C,W,Q, P ; Λ̄k, ρk) if

0 ∈ ∂L(C̄k, W̄ k, Q̄k, P̄ k; Λ̄k, ρk). (4.1.8)

Thus, there are two questions to answer when executing Step 1 of Algorithm I:

(1) Is Step 1 of Algorithm I well posed? In other words, is the existence of the points

(Ck,W k, Qk, P k) satisfying (4.1.5) guaranteed?

(2) How can we e�ciently compute such points with arbitrarily given accuracy, i.e., the

perturbation εk can be arbitrarily small?

In the next subsection, we will �rst describe the method for solving (4.1.5) that answers

Question 2. Then, we will show in Proposition 4.2.6 that this method will answer Question

1 positively.

4.1.2. Algorithm II for step 1 of Algorithm I.

It can be seen that the constraint (4.1.5) is actually an εk-perturbation of the so-called

critical point property (4.1.8). Thus, we need a method that can evaluate the correspond-

ing critical points (Ck,W k, Qk, P k) of the functional ∂L(C,W,Q, P ; Λ̄k, ρk) with arbitrary

accuracy.

Based on the PAM algorithm developed in [7], we propose a coordinate-descent method

with proximal regularization. The PAM method [7] was proposed for solving a class of non-

smooth and non-convex optimization problems. Under certain conditions on the objective

function, it was shown in [7, Theorem 6.2] that the PAM method has global convergence, i.e.,

the whole sequence generated by the method converges to some critical point. As we will show

in section 4.3, the function L(C,W,Q, P ; Λ̄k, ρk) indeed satis�es the su�cient conditions for

the global convergence of the PAM method, provided that the penalty parameters
{
ρk
}
k∈N

satis�es a mild condition. In other words, Step 1 is well de�ned provided the parameters

in Algorithm I are appropriately chosen when the PAM method is used to solve Step 1.

Algorithm II provides the outline of the method for solving (4.1.5).
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The PAM method can be applied as follows. At the k-th outer iteration, the problem

(4.1.8) can be solved with arbitrary accuracy using the set of inner iterations below, which

can be viewed as a proximal regularization of a four block Gauss-Seidel method:

Ck,j ∈ argminCL(C,W k,j−1, Qk,j−1, P k,j−1; Λ̄k, ρk) +
ck,j−1
1

2 ‖C − Ck,j−1‖2F ;

W k,j ∈ argminWL(Ck,j ,W,Qk,j−1, P k,j−1; Λ̄k, ρk) +
ck,j−1
2

2 ‖W −W k,j−1‖2F ;

Qk,j ∈ argminQL(Ck,j ,W k,j , Q, P k,j−1; Λ̄k, ρk) +
ck,j−1
3

2 ‖Q−Qk,j−1‖2F ;

P k,j ∈ argminPL(Ck,j ,W k,j , Qk,j , P ; Λ̄k, ρk) +
ck,j−1
4

2 ‖P − P k,j−1‖2F ,

(4.1.9)

where the proximal parameters {ck,ji }k,j , can be arbitrarily chosen as long as they are bounded
above and below respectively by predetermined positive �nite constants c and c, i.e.,

c ≤ ck,ji ≤ c, k, j ∈ N, i = 1, 2, 3, 4.

It turns out that all subproblems in (4.1.9) have analytic solutions. The solutions to the

�rst and second subproblems are the respective least squares solutions, the third can be ob-

tained by soft-thresholding, and the last can be obtained by the singular value decomposition

(SVD). We terminate the algorithm (4.1.9) when there exists

Θk,j ∈ ∂L(Ck,j ,W k,j , Qk,j , P k,j ; Λ̄k, ρk)

satisfying

‖Θk,j‖∞ ≤ εk, (P k,j)>P k,j = Im.

As we shall see from the proof of Proposition 4.3.3, a direct extension of [6, Lemma 5(iii)]

shows that we can obtain a smooth (alternative) representation of such a sub-gradient element

Θk,j := (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ,Θk,j

4 ), and it is explicitly given by

Θk,j
1 := ρk[(Qk,j−1 − Ck,j(W k,j−1)> + 1

ρk
Λ̄k1)>W k,j−1 − (Qk,j − Ck,j(W k,j)> + 1

ρk
Λ̄k1)>W k,j ]

+ck,j−1
1 (Ck,j−1 − Ck,j);

Θk,j
2 := ρk[(Qk,j−1 −Qk,j)>Ck,j + P k,j−1 − P k,j ] + ck,j−1

2 (W k,j−1 −W k,j);

Θk,j
3 := ck,j−1

3 (Qk,j−1 −Qk,j);

Θk,j
4 := ck,j−1

4 (P k,j−1 − P k,j).
(4.1.10)

Algorithm II below provides a detailed description of the method proposed for solving (4.1.5),

which completes Algorithm I.
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Algorithm II: Method for solving (4.1.5).

(1) Let (C1,0,W 1,0, Q1,0, P 1,0) be any initialization. For k ≥ 2, set (Ck,0,W k,0, Qk,0, P k,0) :=

(Ck−1,W k−1, Qk−1, P k−1).

(2) Re-iterate on j until ‖Θk,j‖∞ ≤ εk, where Θk,j is de�ned by (4.1.10).

1. Ck,j = (Ak,j−1)−1[B>F + (Λ̄k1 + ρkQk,j−1)>W k,j−1 + ck,j−1
1 Ck,j−1],

2.W k,j = [(Λ̄k1 + ρkQk,j−1)Ck,j + ρkP k,j−1 + Λ̄k2 + ck,j−1
2 W k,j−1](Dk,j−1)−1,

3. Qk,j = T 1
η (

ρkWk,j(Ck,j)>−Λ̄k1+ck,j−1
3 Qk,j−1

ρk+ck,j−1
3

),

4. P k,j = UIn×mV
>,

where n ≥ m, In×m := [Im×m|0m×(n−m)]
>,

Ak,j−1 := B>B + λL>L+ (ρk + ck,j−1
1 )I;

Dk,j−1 := ρk((Ck,j)>Ck,j + I) + ck,j−1
2 I;

η := ηk,j−1 := µ · (ρk + ck,j−1
3 )−1, T 1

η is the soft-thresholding operator de�ned in

(1.1.12), and the matrices U := Uk,j , V := V k,j are obtained from the singular value

decomposition (SVD) of the following matrix

ρkW k,j + ck,j−1
4 P k,j−1 − Λ̄k2

ρk + ck,j−1
4

=: UΣV >.

(3) Set (Ck,W k, Qk, P k) := (Ck,j ,W k,j , Qk,j , P k,j) and

Θk := Θk,j . (4.1.11)

4.1.3. Numerical results.

While the focus in this chapter is the convergence analysis of the optimization scheme for

adaptive HARDI spatial regularization and denoising, we nevertheless perform experiments

to illustrate how optimization on Stiefel manifolds can improve denoising performances. Here,

as a simple experiment, we set b = 2000, and use 81 sampling gradients on the top slice of

the HARDI testing data given in Chapter 3. The numerical experiments are carried out with

results averaged over 50 trials under the SNR values of 6, 8 and 10.
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Using the initialization W 0 = W de�ned in (3.4.3), C0 = [B>B + λL>L]−1B>F , Q0 =

W (C0)>, P 0 = C0, Λ1, Λ2 = 0, we compare the computational performances of the non-

adaptive method (SH-based CSA QBI with non-adaptive spatial regularization) and the adap-

tive method (SH-based CSA QBI with adaptive spatial regularization) in Tables 4.1.1, 4.1.2

and 4.1.3. From Tables 4.1.1, 4.1.2 and 4.1.3, we can deduce that as the SNR becomes lower,

denoising generally becomes more e�ective with the adaptive method.

SNR NMSE (Non-adaptive) NMSE (Adaptive)

10 0.0593 0.0571

8 0.0694 0.0677

6 0.0873 0.0855

Table 4.1.1. NMSE values of non-adaptive and adaptive SH-based meth-

ods under SNR levels 6, 8 and 10.

SNR Pd (Non-adaptive) Pd (Adaptive)

10 22.7 21.8

8 24.1 23.3

6 28.8 27.7

Table 4.1.2. Pd values of non-adaptive and adaptive SH-based methods

under SNR levels 6, 8 and 10.

SNR AD (Non-adaptive) AD (Adaptive)

10 5.60 5.36

8 5.70 5.42

6 7.22 6.69

Table 4.1.3. AD values of non-adaptive and adaptive SH-based methods

under SNR levels 6, 8 and 10.

4.2. Notations and Preliminaries

In this section, we introduce notations and preliminaries on non-smooth analysis. For any

v ∈ Rn, let [v]i denote its i-th component and let diag(v) ∈ Rn×n denote the diagonal matrix

with diagonal entries {[v]i}ni=1. For an index sequence K = {k0, k1, k2, . . .} that satis�es
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kj+1 > kj for any j ≥ 0, we denote

lim
k∈K

xk := lim
j→∞

xkj .

Definition 4.2.1. ([74]) Let S ⊆ Rn and x̄ ∈ S. A vector v is normal to S at x̄ in the

regular sense, expressed as v ∈ N̂S(x̄), if

〈v, x− x̄〉 ≤ o(‖x− x̄‖) for x ∈ S,

where o(‖y‖) is de�ned by lim
‖y‖→0

o(‖y‖)
‖y‖ = 0. A vector is normal to S at x̄ in the general sense,

expressed as v ∈ NS(x̄), if there exist sequences {xk}k ⊂ S, {vk}k such that xk −→ x̄ and

vk −→ v with vk ∈ N̂S(xk). The cone NS(x̄) is called the normal cone to S at x̄.

For a proper and lower semi-continuous function, denoted by σ : Rn → R ∪ {+∞}, the
domain of σ is de�ned as

domσ = {x ∈ Rn : σ(x) < +∞} .

Definition 4.2.2. ([74]) Consider a proper and lower semi-continuous function σ :

Rn −→ R ∪ {+∞} and a point x̄ with �nite σ(x̄). Let v ∈ Rn.

(1) The vector v is said to be a regular subgradient of σ at x̄, expressed as v ∈ ∂̂σ(x̄), if

σ(x) ≥ σ(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖).

(2) The vector v is said to be a (general or limiting) subgradient of σ at x̄, expressed as

v ∈ ∂σ(x̄), if there exist sequences
{
xk
}
k
,
{
vk
}
k
such that xk −→ x̄, σ(xk) −→ σ(x̄)

and vk ∈ ∂̂σ(xk) with vk −→ v.

(3) For each x ∈ domσ, x is called a (limiting)-critical point of σ if 0 ∈ ∂σ(x).

We now describe the formal de�nition of the Kurdyeka-�ojasiewcz (K-�) property and

classes of functions that satisfy the K-� property.

Definition 4.2.3. A function ψ satis�es the Kurdyeka-�ojasiewcz (K-�) property at a

point x̄ ∈ dom(∂ψ) if there exists θ ∈ [0, 1) such that

|ψ(x)− ψ(x̄)|θ

dist(0, ∂ψ(x))
(4.2.1)

is bounded around x̄ under the following notational conventions: 00 = 1, ∞/∞ = 0/0 = 0.

In other words, in a certain neighbourhood U of x̄, there exists φ(s) = cs1−θ for some c > 0

and θ ∈ [0, 1) such that the K-� inequality holds:

φ′(|ψ(x)− ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1, ∀x ∈ U ∩ dom(∂ψ) and ψ(x) 6= ψ(x̄),
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where dom(∂ψ):= {x : ∂ψ(x) 6= ∅} and dist(0, ∂ψ(x)):= min{‖y‖F : y ∈ ∂ψ(x)}.

This property was introduced by �ojasiewicz [56] on real analytic functions, for which

(4.2.1) is bounded around any critical point x̄ for θ ∈ [0, 1). Kurdyka extended this property

to functions on the o-minimal structure in [51]. Recently, the K-� inequality was extended

to non-smooth subanalytic functions [16]. While it is not trivial to check the conditions in

the de�nition, we summarize a few large classes of functions that satisfy the K-�-property.

Real analytic functions. A smooth function ϕ on R is analytic if (ϕ
(k)(·)
k! )

1
k is bounded

for all k ∈ N and on any compact set D ⊂ R. One can verify whether a real function ψ on Rn

is analytic by checking the analyticity of ϕ(·) = ψ(x + ·y) for any x, y ∈ Rn. For example,

any polynomial function is real analytic, such as ‖Ax− b‖2F , Tr(x>Hx) + b>x.

Semialgebraic functions. A set D ⊆ Rn is called semialgebraic [15] if it can be repre-

sented as

D =

s⋃
i=1

t⋂
j=1

{x ∈ Rn : pij(x) = 0, qij(x) > 0},

where pij , qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t. A function ψ is

called semialgebraic if its graph Gr(ψ) := {(x, ψ(x)) : x ∈ dom(ψ)} is a semialgebraic

set. Semialgebraic functions are subanalytic, so they satisfy the K-� inequality according to

[16,17]. We list some known elementary properties of semialgebraic sets and functions below,

as they help identify semialgebraic functions for our purposes.

1. If a set D is semialgebraic, so is its closure cl(D).

2. If D1 and D2 are both semialgebraic, so are D1 ∪ D2, D1 ∩ D2, and Rn\D1.

3. Indicator functions of semialgebraic sets are semialgebraic.

4. Finite sums and products of semialgebraic functions are semialgebraic.

5. The composition of semialgebraic functions is semialgebraic.

From items 1 and 2,

S := {P ∈ Rn×m : P>P = Im} =
m⋂
j=1

m⋂
k=1

{P :
n∑
i=1

pkipji = δj,k}

is a semialgebraic set. Hence, the indicator function δS(P ) is a semialgebraic function. The

absolute value function φ(t) = |t| is also semialgebraic since its graph is cl(D), where

D = {(t, s) : t+ s = 0, −t > 0} ∪ {(t, s) : t− s = 0, t > 0}.
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Hence, the `1-norm ‖x‖1 is semialgebraic since it is the �nite sum of absolute functions.

Furthermore, the Euclidean norm ‖x‖2 is shown to be semialgebraic in [15]. According to

item 5, ‖Ax− b‖1, and ‖Ax− b‖2, ‖X‖1,2 are all semialgebraic functions.

In the end of this section, we list some results that will be used in the subsequent discus-

sion.

Remark 4.2.4. [74, Example 6.7] If S is a closed non-empty subset of Rn, then

∂δS(x̄) = NS(x̄), x̄ ∈ S.

Furthermore, for a smooth mapping G : Rn → Rm, i.e., G(x) := (g1(x), . . . , gm(x))>, de�ne

S = G−1(0) ⊂ Rn. Set

∇G(x) := [
∂gj
∂xi

(x)]n,mi,j=1 ∈ Rn×m.

If ∇G(x̄) has full rank m at a point x̄ ∈ S, with G(x̄) = 0, then its normal cone to S can be

explicitly written as

NS(x̄) = {∇G(x̄)y | y ∈ Rm}. (4.2.2)

Remark 4.2.5. [12, Proposition B.24(b)] Suppose that f : Rn → R is a real-valued

function of the form f = C + D, where C is convex and D is continuously di�erentiable.

Then
⋃
x∈M ∂f(x) is a bounded set whenever the setM is bounded.

Proposition 4.2.6. ([6]) Suppose that L is a proper and lower semi-continuous function

of the form

L(x, y) = f(x) + g(y) +Q(x, y), x ∈ Rn, y ∈ Rm,

where f, g are proper lower semi-continuous functions and Q ∈ C1. Then for all (x, y) ∈
Rn × Rm,

∂L(x, y) = (∇xQ(x, y) + ∂f(x), ∇yQ(x, y) + ∂g(y))

= (∂xL(x, y), ∂yL(x, y)).
(4.2.3)

4.3. Well-posedness of Algorithms I and II

In this subsection, we will show that Step 1 of Algorithm I is well de�ned by using

Algorithm II, provided that some mild condition is satis�ed. By denoting

X := (C,W,Q, P ), (4.3.1)

we get L(C,W,Q, P ; Λ, ρ) = L(X; Λ, ρ). In other words, we will show that there are solutions

to (4.1.5) and Algorithm II can always �nd one such solution, under some mild condition.
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For Step 1 to be well de�ned, it needs an important property of Algorithm II, i.e., for each

k ∈ N,

(Ck,j ,W k,j , Qk,j , P k,j)→ (C̄k, W̄ k, Q̄k, P̄ k), j →∞, (4.3.2)

where (C̄k, W̄ k, Q̄k, P̄ k) is a critical point of L(C,W,Q, P ; Λ̄k, ρk). The proof of the limiting

property (4.3.2) is based on a result in [7]. We next brie�y describe [7, Theorem 6.2], which

considers the minimization of a function f : Rn1 × . . .× Rnp → R ∪ {+∞} of the form

f(x) = g(x1, x2, . . . , xp) +

p∑
i=1

fi(xi), (4.3.3)

where the terms fi and g satisfy the following assumptions:

(1) fi : Rni → R ∪ {+∞} is a proper lower semi-continuous function, i = 1, 2, . . . , p;

(2) g is a C1 function with locally Lipschitz continuous gradient;

(3) f is a K-� (Kurdyka-�ojasiewicz) function (see Remark 4.3.2 for more details), and

infRn1×...×Rnp f > −∞.

For a function f that satis�es all assumptions listed above, it is shown in [7] that the PAM

scheme generates a critical point of f .

The PAM method [7, Algorithm 4] is given as follows. Given initialization (x0
1, x

0
2, . . . , x

0
p),

for j = 1, 2, . . .,

xj1 ∈ argminx1 f1(x1) + g(x1, x
j−1
2 , . . . , xj−1

p ) +
cj−1
1
2 ‖x1 − xj−1

1 ‖2F ;

xj2 ∈ argminx2 f2(x2) + g(xj1, x2, . . . , x
j−1
p ) +

cj−1
2
2 ‖x2 − xj−1

2 ‖2F ;

...

xjp ∈ argminxp fp(xp) + g(xj1, x
j
2, . . . , xp) +

cj−1
p

2 ‖xp − x
j−1
p ‖2F ,

(4.3.4)

where the proximal parameters {cji}j , can be arbitrarily chosen as long as they are bounded

above and below respectively by predetermined positive �nite constants c and c, i.e.,

c ≤ cji ≤ c, k, j ∈ N, i = 1, 2, . . . , p.

Theorem 4.3.1. [7, Theorem 6.2] Suppose that f is a K-� function of the form (4.3.3).

Let {xk}k∈N be a sequence generated by the PAM scheme in (4.3.4). If the sequence {xk}k∈N
is bounded, then the following assertions hold:

(i) The sequence {xk}k∈N has �nite length, i.e.,
∞∑
k=1

‖xk+1 − xk‖F <∞.

(ii) The sequence {xk}k∈N converges to a critical point x̄ of f .

Indeed, Algorithm II is a speci�c case of the PAM method presented in [7].
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Remark 4.3.2. [K-� Property] The global convergence of the PAM method established in

[7, Theorem 6.2] requires the objective function f to satisfy the so-called Kurdyka-�ojasiewicz

(K-�) property in its e�ective domain; see [7, De�nition 3] for more details on the K-�

property. It is shown in [18, De�nition 5] that the so-called semialgebraic functions satisfy

the K-� property. Indeed, all terms involved in (4.1.4) are semialgebraic functions, which

include the `1-norm ‖WC>‖1, the linear and quadratic functions (e.g., the trace terms and

‖BC − F‖2F ), and δS , the indicator function of the Stiefel manifold S. Since a �nite sum of

semialgebraic functions are also semialgebraic, the objective function (4.1.4) also satis�es the

K-� property.

For the k-th iteration, de�ne X := (C,W,P,Q). Then the functional de�ned in (4.1.4)

can be expressed as

Lk(X) = L(C,W,P,Q; Λ̄k, ρk) = f1(C) + f2(W ) + f3(Q) + f4(P ) + gk(C,W,Q, P ), (4.3.5)

where
f1(C) := 1

2‖BC − F‖
2
F + λ

2‖LC‖
2
F , f2(W ) := 0, f3(Q) := 1

µ‖Q‖1, f4(P ) := δS(P ),

gk(C,W,Q, P ) := 〈Λ̄k1, Q−WC>〉+ ρk

2 ‖Q−WC>‖2F
+〈Λ̄k2, P −W 〉+ ρk

2 ‖P −W‖
2
F .

Proposition 4.3.3. For each k ∈ N, denote the functional given by (4.3.5) by Lk, and

denote the sequence generated by Algorithm II by {(Ck,j ,W k,j , Qk,j , P k,j)}j∈N. Then, Θk,j

de�ned in (4.1.10) satis�es

Θk,j ∈ ∂L(Ck,j ,W k,j , Qk,j , P k,j ; Λ̄k, ρk), ∀ j ∈ N.

Suppose that the parameters γ, ρ1 in Algorithm I are chosen such that

γ > 1, ρ1 > 0. (4.3.6)

Then for each k ∈ N,

‖Θk,j‖∞ → 0 as j →∞.

Proof. To establish the �rst part of this proposition, recall the functions g, f1, f2, f3, as

de�ned by Lk in (4.3.5). Then, a direct calculation shows that Θk,j = (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ,Θk,j

4 )
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de�ned by (4.1.10) can be expressed in terms of partial derivatives of g := gk as

Θk,j
1 = −∇Cg(Ck,j ,W k,j−1, Qk,j−1, P k,j−1)− ck,j−1

1 (Ck,j − Ck,j−1) +∇Cg(Xk,j);

Θk,j
2 = −∇W g(Ck,j ,W k,jQk,j−1, P k,j−1)− ck,j−1

2 (W k,j −W k,j−1) +∇W g(Xk,j);

Θk,j
3 = −∇Qg(Ck,j ,W k,j , Qk,j , P k,j−1)− ck,j−1

3 (Qk,j −Qk,j−1) +∇Qg(Xk,j);

Θk,j
4 = −∇P g(Ck,j ,W k,j , Qk,j , P k,j)− ck,j−1

3 (P k,j − P k,j−1) +∇P g(Xk,j),

(4.3.7)

where Xk,j = (Ck,j ,W k,j , Qk,j , P k,j) is as de�ned in (4.3.1). On the other hand, given

(Ck,j−1,W k,j−1, Qk,j−1, P k,j−1), the PAM scheme (4.1.9) yields the following necessary �rst

order optimality condition:

∇f1(Ck,j) +∇Cg(Ck,j ,W k,j−1Qk,j−1, P k,j−1) + ck,j−1
1 (Ck,j − Ck,j−1) = 0;

∇f2(W k,j) +∇W g(Ck,j ,W k,jQk,j−1, P k,j−1) + ck,j−1
2 (W k,j −W k,j−1) = 0;

νk,j +∇Qg(Xk,j , Qk,j , P k,j−1) + ck,j−1
3 (Qk,j −Qk,j−1) = 0;

ωk,j +∇P g(Xk,j , Qk,j , P k,j) + ck,j−1
4 (P k,j − P k,j−1) = 0,

(4.3.8)

where νk,j ∈ ∂f3(Qk,j) and ωk,j ∈ ∂f4(P k,j). Replacing the corresponding terms in (4.3.7)

by (4.3.8) gives

Θk,j
1 = ∇f1(Ck,j) +∇Cg(Ck,j ,W k,j , Qk,j , P k,j) ∈ ∂CLk(Xk,j),

Θk,j
2 = ∇f2(W k,j) +∇W g(Ck,j ,W k,j , Qk,j , P k,j) ∈ ∂WLk(Xk,j),

Θk,j
3 = νk,j +∇Qg(Ck,j ,W k,j , Qk,j , P k,j) ∈ ∂QLk(Xk,j),

Θk,j
4 = ωk,j +∇P g(Ck,j ,W k,j , Qk,j , P k,j) ∈ ∂PLk(Xk,j).

Thus, for each k ∈ N,

Θk,j ∈ ∂L(Ck,j ,W k,j , Qk,j , P k,j ; Λ̄k, ρk), ∀ j ∈ N.

Note that from (4.3.7), Θk,j is represented by di�erences of continuous partial derivatives of

g and bounded multiples of partial derivatives of smooth proximal terms. Thus, in order to

prove that for each k ∈ N, ‖Θk,j‖∞ → 0, as j →∞ for the second part of the proposition, it

su�ces to show that for each k ∈ N, the sequence {(Ck,j ,W k,j , Qk,j , P k,j)}j∈N is convergent.

Then it remains to verify that the functionals Lk(X) satisfy the conditions and assumptions

made in Theorem 4.3.1. From its de�nition (4.3.5), it can be seen that the function Lk

satis�es the assumptions (i) and (ii) of the function given by (4.3.3), and Lk(X) is also a K-�

function according to Remark 4.3.2. Thus, we only need to verify that for each k ∈ N, Lk is

bounded below and the sequence {Xk,j}j∈N is bounded. For each k ∈ N, the lower bound of

Lk is proved by showing that Lk is a coercive function (i.e., lim
‖X‖F→∞

Lk(X) = +∞), provided
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that the parameters γ, ρ1 satisfy (4.3.6). Clearly, f1, f2, f3, f4 of Lk in (4.3.5) are coercive.

For the remaining term, gk(C,W,Q, P ), we may rewrite it as

gk(C,W,Q, P ) := g1,k(C,W,Q) + g2,k(W,P ),

where  g1,k(C,W,Q) := ρk

2 ‖Q−WC> + 1
ρk

Λ̄k1‖2F −
1
ρk
‖Λ̄k1‖2F ,

g2,k(W,P ) := ρk

2 ‖P −W + 1
ρk

Λ̄k2‖2F −
1
ρk
‖Λ̄k2‖2F .

Thus, it can be seen that gk is a coercive function.

The boundedness of the sequence {Xk,j}j∈N is proved by contradiction. Suppose on the

contrary that the sequence Xk0,j is not bounded so that lim
j→∞

‖Xk0,j‖F = ∞. As Lk0(X)

is a coercive function, we have then lim
j→∞

Lk0(Xk0,j) = +∞. However, by setting x := X,

f := Lk0 , λ := c in the last inequality of [7, page 31], we have that

Lk0(Xk0,j+1) + c‖Xk0,j+1 −Xk0,j‖2F ≤ Lk0(Xk0,j), j ∈ N,

which imply that {Lk0(Xk0,j)}j∈N is a non-increasing sequence. This leads to a contradiction

and completes the proof. �

Due to the smooth (alternative) representation of the subgradient element Θk,j given by

(4.3.7), for each �xed k, the convergence of {Θk,j}j∈N to zero implies that given any εk, one

can �nd a positive integer J := J(k) such that ‖Θk,j‖∞ ≤ εk, whenever j ≥ J . Thus, Step 1

of Algorithm I always has a solution, and so Algorithm I is well posed.

4.4. Subsequence Convergence Analysis

For the convenience of notation and discussion, we rewrite the problem (4.1.3) using the

notation of vectors. Recall that C ∈ RR×N , W ∈ Rm×N , Q ∈ Rm×R, P ∈ Rm×N , with
N := Nx ·Ny and m ≥ N . Denote m∗ := RN +mN +mR +mN . Let x ∈ Rm∗ denote the
column vector formed by concatenating the columns of C,W,Q, P :

x :=


Vec(C)

Vec(W )

Vec(Q)

Vec(P )

 (4.4.1)
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where for a given matrix X := [X1| . . . |Xq] ∈ Rp×q, Vec(X) is de�ned as the column vector

formed by the concatenation of the column vectors X1, . . . , Xq, i.e.,

Vec(X) :=


X1

...

Xq

 ∈ Rpq.

Then, the problem (4.1.3) can be rewritten as the following:

min
x∈Rm∗

f(x), subject to h1(x) = 0 and h2(x) = 0, (4.4.2)

where

f(x) :=

N∑
j=1

{
1

2
‖BCj − Fj‖22 +

λ

2
‖LCj ||22

}
+ µ

R∑
i=1

‖Qi‖1, (4.4.3)

h1(x) :=

Vec(Q)−Vec(WC>)

Vec(P )−Vec(W )

 ∈ Rm1 , h2(x) :=



P>1 P1 − 1

P>2 P1

P>3 P1

...

P>NP1

P>2 P2 − 1

P>3 P2

...

P>NP2

...

P>N−1PN−1 − 1

P>NPN−1

P>NPN − 1



∈ Rm2 , (4.4.4)

where

m1 := mR+mN, m2 := N(N + 1)/2. (4.4.5)

Note that the column vector h1 is formed by a concatenation of the column vectors of the

matrices Q − WC> and P − W . On the other hand, the column vector h2 is formed by

concatenating the columns in the lower triangular half of P>P−IN×N (this is done to remove

the redundant equations formed by the strictly upper diagonal entries of the symmetric matrix

P>P − IN×N ).
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We now provide an alternative expression for Vec(WC>) in the �rst block of h1 by using

a classical result involving the Vec notation and the Kronecker product [54, equation (13.6)]:

Vec(WC>) = Vec(WIN×NC
>)

= (C ⊗ IN×N )Vec(W )

=


c11W1 + c12W2 + . . .+ c1NWN

c21W1 + c22W2 + . . .+ c2NWN

...

cR1W1 + cR2W2 + . . .+ cRNWN

 ,
(4.4.6)

where the values [cij ]i,j are the entries of the matrix C.

Let λ denote the concatenation of the two Lagrange multiplier vectors of Λ1 and Λ2 given

by

λ :=

[
Vec(Λ1)

Vec(Λ2)

]
∈ Rm1+m2 .

Then, the corresponding augmented Lagrangian of (4.4.2) can be expressed as

L(x, λ; ρ) := f(x) +

m1∑
i=1

[λ]i[h1(x)]i +
ρ

2

m1∑
i=1

[h1(x)]2i , subject to x ∈ Γ,

where

Γ = {x : h2(x) = 0}.

Therefore, a point (C∗,W ∗, Q∗, P ∗) is a KKT point for (4.1.3) if and only if the vector x∗

de�ned by (4.4.1) is a KKT point for (4.4.2), i.e., there exist w∗ ∈ ∂f(x∗), λ∗ ∈ Rm1 , v∗ ∈ Rm2

such that

w∗ +

m1∑
i=1

[λ∗]i∇[h1(x∗)]i +

m2∑
i=1

[v∗]i∇[h2(x∗)]i = 0; h1(x∗) = 0; and h2(x∗) = 0, (4.4.7)

where λ∗, v∗ are column vectors with components {[λ∗]i}m1
i=1 and {[v∗]i}m2

i=1 respectively.

In this section, we establish the subsequence convergence property of Algorithm I, i.e.,

there exists at least one convergent subsequence of the sequence generated by Algorithm I

and it converges to a KKT point of (4.4.2).

Theorem 4.4.1. Suppose that γ > 1 and the sequences
{
ρk
}
k∈N, {(C

k,W k, Qk, P k)}k∈N
generated in Algorithm I satisfy the following conditions: �rstly, there exists a positive con-

stant M such that

‖Ck‖2 ≤Mρk, k ∈ N, (4.4.8)
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and secondly, there exists a positive constant ε such that

|λi(Zk)− λj(Y k)| ≥ ε, ∀i, j, k ∈ N, (4.4.9)

where λi(Z
k), λj(Y

k) denote respectively the i-th eigenvalue of Zk, the j-th eigenvalue of Y k

with the matrices
{
Zk
}
k∈N,

{
Y k
}
k∈N de�ned by

Zk := B>B + λL>L+ ρkI, Y k := ρkW k(W k)>, k ∈ N. (4.4.10)

Then, the limit point set of {(Ck,W k, Qk, P k)}k∈N is non-empty, and every limit point is a

KKT point of the original problem (4.1.3).

Proof. [Sketch of the proof] The proof of the subssequence convergence property of Algo-

rithm I in this section is organized as follows. Firstly, in subsection 4.4.1, we establish a crucial

ingredient needed by the convergence analysis, namely the linear independence of the gradient

vectors {∇[h1(x)]i}m1
i=1 ∪ {∇[h2(x)]i}m2

i=1 when x ∈ Γ. Consequently, any locally optimal solu-

tion to (4.4.2) is necessarily a KKT point of (4.4.2). Secondly, in subsection 4.4.2, we show

that any limit point of a sequence generated by Algorithm I is also a KKT point of (4.1.3).

Lastly, in subsection 4.4.3, we show that for (4.4.2), the sequence
{

(Ck,W k, Qk, P k)
}
k∈N

generated by Algorithm I must be bounded. These results together establish the subsequence

convergence property of Algorithm I. �

Remark 4.4.2. We remark that (4.4.8) says that
{
‖Ck‖2

}
k∈N should grow no faster than{

ρk
}
k∈N, up to a multiplicative constant, which is not that di�cult to achieve practically.

The inequality (4.4.9) is not a particularly strict condition due to the expressions of Zk and

Y k in (4.4.10) where we expect ‖W k(W k)>‖2 ≈ 1 and the parameter λ can be chosen so that

B>B + λL>L is su�ciently (symmetric) positive de�nite.

Before we commence on the subsequence convergence analysis, we �rst establish the ex-

istence of Lagrange multipliers of the problem (4.1.3) which justi�es why an augmented

Lagrangian scheme on (4.1.3) is valid.

4.4.1. Linear independence and KKT �rst order necessary conditions.

It is noted that the objective function f in (4.4.2) is only Lipschitz continuous on bounded

sets, which is equivalent to the notion of strict continuity (see [74, De�nition 9.1]). In order

to establish that a locally optimal solution satis�es the KKT �rst order necessary conditions

in the non-smooth case, we need to invoke Theorem 4.4.3 below. However, note that since

f is a sum of a convex function and a continuously di�erentiable function, it follows from
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[74, Example 9.14] that f is locally Lipschitz continuous on Rn, i.e., f is Lipschitz continuous

on any compact subset of Rn. This turns out to be equivalent to the notion of strict continuity

(see [74, De�nition 9.1]) that is a key condition we need to apply Theorem 4.4.3.

Theorem 4.4.3. [74, Exercise 10.52] (nonsmooth Lagrange multiplier rule). For a nonempty,

closed set X ∈ Rn and strictly continuous functions f0 : Rn → R and F : Rn → Rm with

F = (f1, . . . , fm), consider the problem

min
x∈X

f0(x) + θ (F (x)) ,

where θ : Rm → R is proper, lower semi-continuous and convex with e�ective domain D.

Suppose that x̄ is a locally optimal solution at which the following constraint quali�cation is

satis�ed:

0 ∈ ∂(yF )(x̄) +NX (x̄), y ∈ ND(F (x̄)) ⇒ y = 0, (4.4.11)

where y ∈ Rn and yF :=
∑m

i=1 yifi. Then there exists a vector ȳ such that

0 ∈ ∂(f0 + ȳF )(x̄) +NX (x̄), ȳ ∈ ∂θ(F (x̄)). (4.4.12)

Moreover, the set of such vectors ȳ is compact.

Before applying the above result, we �rst show that the gradient vectors {∇[h1(x)]i}m1
i=1∪

{∇[h2(x)]i}m2
i=1 of the equality constraints satisfy a linear independence constraint quali�cation

whenever x ∈ Γ, i.e., it satis�es the orthogonality constraints. This leads to the KKT �rst

order necessary conditions.

Lemma 4.4.4. Suppose that x ∈ Γ. Then, the gradient vectors {∇[h1(x)]i}m1
i=1∪{∇[h2(x)]i}m2

i=1

of the equality constraints in (4.4.2) are linearly independent. Consequently, if x̄ is a locally

optimal solution of the problem (4.4.2), then x̄ is a KKT point for (4.4.2).

Proof. From the de�nition (4.4.1) of x, (4.4.4), (4.4.5) and (4.4.6), it can be seen that

∇h1(x) =


M1(x) 0RN×mN

C> ⊗ Im×m −ImN×mN
−ImR×mR 0mR×mN

0mN×mR ImN×mN

 and ∇h2(x) =


0RN×m2

0mN×m2

0mR×m2

M2(x)

 , (4.4.13)
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where M1(x) ∈ RRN×mR, M2(x) ∈ RmN×m2 are given by

M1(x) :=
[
T1|T2| . . . |TN

]>
, Ti :=


Wi

Wi

. . .

Wi

 ∈ RmR×R, i = 1, 2, . . . , N,

M2(x) =


2P1 P2 P3 ... PN 0 0 ... 0 0 0 0

0 P1 0 ... 0 2P2 P3 ... PN
...

...
...

0 0 P1

. . .
... 0 P2 ... 0 ··· 0 0

...
...

...
. . .

. . . 0
...

. . .
. . .

... 2PN−1 PN 0
0 0 ... 0 P1 0 ... 0 P2 0 PN−1 2PN

 .

Since x ∈ Γ, the column vectors {Pi}Ni=1 are orthogonal to each other, and thus the columns

of M2(x) are orthogonal to each other. Furthermore, the �rst three blocks of ∇h2(x) form a

zero matrix. Thus, from the con�gurations of the zero and identity block matrices in ∇h1(x),

∇h2(x) as seen in (4.4.13), one can easily show that {∇[h1(x)]i}m1
i=1 ∪ {∇[h2(x)]i}m2

i=1 are

linearly independent for any x ∈ Γ.

Secondly, suppose that x̄ is a locally optimal solution of the problem (4.4.2). Then x̄ ∈ Γ.

It can be seen from the arguments above that ∇h2(x̄) is of full column rank. Furthermore,

applying (4.2.2) in Remark 4.2.4 on the smooth function h2 leads to

NΓ(x̄) = {∇h2(x̄)z |z ∈ Rm2} =

{
m2∑
i=1

[z]i∇[h2(x̄)]i
∣∣ z ∈ Rm2

}
. (4.4.14)

A direct calculation shows that the constraint quali�cation in (4.4.11) amounts to verifying

0 ∈ ∇h1(x̄)y +∇h2(x̄)z, y ∈ Rn =⇒ y = 0,

which holds true by the linear independence of {∇[h1(x̄)]i}m1
i=1 ∪ {∇[h2(x̄)]i}m2

i=1 as x̄ ∈ Γ.

Notice that δ0 is proper, lower semi-continuous and convex with e�ective domain D = {0}.
Then, by applying Theorem 4.4.3 on the setting: f0 := f , θ := δ0, F := h1 and X := Γ,

we established (4.4.12). Together with (4.4.14), we have shown the existence of vectors

w̄ ∈ ∂f(x̄), ȳ ∈ Rm1 , z̄ ∈ Rm2 such that

w̄ +

m1∑
i=1

[ȳ]i∇[h1(x̄)]i +

m2∑
i=1

[z̄]i∇[h2(x̄)]i = 0,

In other words, the locally optimal point x̄ is also a KKT point of (4.4.2). �
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4.4.2. Limit points as KKT points.

In this subsection, we show that any limit point generated by Algorithm I is also a

KKT point of (4.1.3), i.e., any limit point x∗ of the corresponding sequence {xk}k∈N w.r.t.

(Ck,W k, Qk, P k) is a KKT point for (4.4.2). Recall that the normal cone ∂δS(C,W,Q, P ) =

NS(C,W,Q, P ) in vector notation is given by (4.4.14). Thus, in vector notation, �nding the

solution satisfying the constraint (4.1.5) at Step 1 of Algorithm I is equivalent to calculating

a solution xk such that there exist vectors ωk ∈ ∂f(xk) and vk which satisfy

‖ωk +

m1∑
i=1

([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +

m2∑
i=1

[vk]i∇[h2(xk)]i‖2 ≤ εk (4.4.15)

with h2(xk) = 0, k ∈ N.

Remark 4.4.5. Algorithm I can be recast as an equality constrained version of [4, Al-

gorithm 3.1] in vector notation. However, we cannot directly apply the results provided in

[4, Theorems 4.1-4.2] to our problem, as our objective function f de�ned by (4.4.3) is not in

C1.

In vector notation, the main result is as follows.

Theorem 4.4.6. Suppose that
{
xk
}
k∈N is a sequence generated by Algorithm I. Let x∗ be

a limit point of this sequence, i.e., there exists a subsequence K ⊆ N such that lim
k∈K

xk = x∗.

Then x∗ is also a KKT point of (4.4.2).

Proof. The proof consists of two main parts. The �rst part shows that x∗ is a feasible

point of (4.4.2), i.e., h1(x∗) = 0 and h2(x∗) = 0. The second part shows that x∗ satis�es the

remaining KKT property in (4.4.7).

We start with the proof of the feasibility of x∗ for h2. After running Step 1 of Algorithm

I, we obtain h2(xk) = 0 for all k ∈ K, therefore, h2(x∗) = 0, i.e., x∗ ∈ Γ. The next step is to

show h1(x∗) = 0, which is discussed in two cases. We now prove the case where the sequence{
ρk
}
k∈N is bounded. Recall that in Algorithm I, γ > 1. Thus, the update rule (4.1.7) on ρk in

Step 3 suggests that from some iteration k0 onwards, the penalty parameter ρk will keep the

same, which implies that ‖h1(xk+1)‖∞ ≤ τ‖h1(xk)‖∞, k ≥ k0, for some constant τ ∈ [0, 1).

The feasibility h1(x∗) = 0 is then proved.

In the other case where the sequence
{
ρk
}
k∈N is not bounded, for each k ∈ K, there exist

vectors δk with ‖δk‖ ≤ εk and εk ↓ 0 such that

wk +

m1∑
i=1

([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +

m2∑
i=1

[vk]i∇[h2(xk)]i = δk, (4.4.16)
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for some wk ∈ ∂f(xk). Dividing both sides of (4.4.16), we have

m1∑
i=1

(
[λ̄k/ρk]i + [h1(xk)]i

)
∇[h1(xk)]i +

m2∑
i=1

[v̂k]i∇[h2(xk)]i =
δk − wk

ρk
, (4.4.17)

where v̂k := (ρk)−1vk. De�ne

Ξ(x)> := [∇h1(x) | ∇h2(x)],

and

ηk :=
(

[λ̄k/ρk]1 + [h1(xk)]1, . . . , [λ̄
k/ρk]m1 + [h1(xk)]m1 , [v̂

k]1, . . . , [v̂
k]m2

)>
.

Then the equality (4.4.17) can be re-written as

Ξ(xk)>ηk = (δk − wk)/ρk.

By Lemma 4.4.4, {∇[h1(x∗)]i}m1
i=1∪{∇[h2(x∗)]i}m2

i=1 are linearly independent as x
∗ ∈ Γ. More-

over, the gradient vectors ∇h1, ∇h2 are continuous and h2(xk) = 0 for all k ∈ K. Note that
by the continuity of the gradient vectors ∇h1 and ∇h2, Ξ(xk) → Ξ(x∗), which has full rank

as x∗ ∈ Γ.

Therefore, the matrix Ξ(xk) has full row rank with su�ciently large k by a standard

continuity argument in optimization. Thus, Ξ(xk)Ξ(xk)> is nonsingular, which leads to

ηk = [Ξ(xk)Ξ(xk)>]−1Ξ(xk)(δk − wk)/ρk.

Since f is the summation of a convex function and a continuously di�erentiable function,⋃
x∈M ∂f(x) is a bounded set wheneverM is bounded using a simple modi�cation of (4.2.3).

Here, we set M = {xk}k∈K which is clearly a bounded set. Thus, we have
{
wk
}
k∈K is

bounded. Together with ‖δk‖ ≤ εk ↓ 0, taking limits as k ∈ K goes to in�nity gives ηk → 0.

The boundedness of the safeguard Lagrange multipliers {λ̄k}k implies that [h1(x∗)]i = 0 = [v̂]j

for all i, j. Thus, h1(x∗) = 0 and this ends the �rst part of the proof.

Next, we will show that x∗ is a KKT point of the problem (4.4.2). Since
{
wk
}
k∈K

is bounded, there exists a subsequence K2 ⊆ K such that limk∈K2 w
k = w∗. Recall that

limk∈K2 x
k = x∗ and wk ∈ ∂f(xk). Thus,

w∗ ∈ ∂f(x∗),

due to the closedness property of the limiting Fréchet subdi�erential. Together with the fact

that [λk+1]i = [λ̄k]i + ρk[h1(xk)]i, it can be seen from Algorithm I that for k ∈ K2,

wk +

m1∑
i=1

[λk+1]i∇[h1(xk)]i +

m2∑
i=1

[vk]i∇[h2(xk)]i = δk, (4.4.18)
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for some vectors δk with ‖δk‖ ≤ εk ↓ 0 and wk ∈ ∂f(xk). De�ne

πk :=
(

[λk+1]1, . . . , [λ
k+1]m1 , [v

k]1, . . . , [v
k]m2

)>
. (4.4.19)

Then (4.4.18) can be re-written as

Ξ(xk)>πk = δk − wk.

By the same arguments in the �rst part, we have the matrix Ξ(xk)Ξ(xk)> is nonsingular for

su�ciently large k ∈ K2 and

πk = [Ξ(xk)Ξ(xk)>]−1Ξ(xk)(δk − wk). (4.4.20)

Hence, by taking the limit on (4.4.20) as k ∈ K2 goes to in�nity, we have

πk → π∗ = −[Ξ(x∗)Ξ(x∗)>]−1Ξ(x∗)w∗.

By the de�nition (4.4.19) of πk, taking limit as k ∈ K2 approaches in�nity on both sides of

(4.4.18) leads to

w∗ +

m1∑
i=1

[λ∗]i∇[h1(x∗)]i +

m2∑
i=1

[v∗]i∇[h2(x∗)]i = 0,

where λ∗, v∗ are obtained from π∗ similar to (4.4.19). Thus x∗ is a KKT point of (4.4.2) and

this completes the second part of the proof. �

4.4.3. Existence of limit points.

The results presented in the previous subsections assume the existence of a limit point

of the sequence {xk}k∈N, i.e., the sequence generated by Algorithm I contains at least one

convergent subsequence. In this subsection, we prove the existence of such a subsequence by

showing that the sequence is bounded.

Proposition 4.4.7. Let {(Ck,W k, Qk, P k)}k∈N be the sequence generated by Algorithm

I. Suppose that γ > 1 and the sequences
{
ρk
}
k∈N , {(Ck,W k, Qk, P k)}k∈N generated in Al-

gorithm I satisfy the conditions (4.4.8) and (4.4.9). Then, {(Ck,W k, Qk, P k)}k∈N is bounded

and thus contains at least one convergent subsequence.

Proof. The boundedness of {P k}k∈N is easy to see from Step 1 of Algorithm I. It remains

to show that {(Ck,W k, Qk)}k∈N is bounded. Using a direct extension of the result [18,
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Proposition 3], the �rst three partial subdi�erentials of L in (4.1.5) yield the following: there

exist φk ∈ µ∂‖Qk‖1 and matrices
ζk1 = (B>B + λL>L+ ρkI)Ck − [B>F + ρk(Qk + Λ̄k1)>W k];

ζk2 = ρkW k((Ck)>Ck + I)− [(Λ̄k1 + ρkQk)Ck + ρkP k + Λ̄k2];

ζk3 = φk + ρk[Qk − (W kCk> − 1
ρk

Λ̄k1)],

(4.4.21)

where ‖ζki ‖∞ ≤ εk, i = 1, 2, 3. Post-multiplying Ck to the terms in the third equation of

(4.4.21) and then summing its resultant with the �rst equation of (4.4.21), we obtain

W k = P k +
1

ρk
(ζk2 − Λ̄k2) +

1

ρk
(ζk3 − φk)Ck.

Now
{

(P k, ζk2 , Λ̄
k
2, ζ

k
3 , φ

k)
}
k∈N is bounded and

{
ρk
}
k∈N is a non-decreasing positive sequence.

Together with the �rst assumption (4.4.8), we deduce that
{
W k
}
k∈N is bounded.

We now establish that with the second assumption (4.4.9),
{
Ck
}
k∈N and

{
Qk
}
k∈N are

bounded sequences. Substituting the third equation of (4.4.21) into the �rst equation of

(4.4.21) gives

ZkCk − CkY k = Ek,

where

Ek := ζk1 +B>F + (ζk3 − φk)>W k

is bounded as all the terms in Ek are bounded. Invoking again the classical result involving

the Vec notation and the Kronecker product yields

[Zk ⊗ I − I ⊗ Y k]Vec(Ck) = Vec(Ek).

By [54, Theorem 13.16], the eigenvalues of [Zk ⊗ I − I ⊗ Y k] are given by λi(Z
k)− λj(Y k),

where λi(Z
k), λj(Y

k) denote respectively the i-th eigenvalue of Zk, the j-th eigenvalue of Y k.

Thus the condition (4.4.9) ensures that
{

[Zk ⊗ I − I ⊗ Y k]
}
k∈N is a sequence of invertible

matrices with bounded inverses. Therefore,{
Vec(Ck)

}
k∈N

=
{

[Zk ⊗ I − I ⊗ Y k]−1Vec(Ek)
}
k∈N

is bounded. By the third equation of (4.4.21),

Qk =
1

ρk
(ζk3 − φk) + (W k(Ck)> − 1

ρk
Λ̄k1).

So
{
Qk
}
k∈N is bounded since

{
ρk
}
k∈N is a non-decreasing positive sequence and{
(ζk3 , φ

k,W k, Ck, Λ̄k1)
}
k∈N

is bounded. This completes the proof. �



CHAPTER 5

An Augmented Lagrangian Method for `1-Regularized

Optimization on Stiefel Manifolds

As it turns out, the PAMAL method in Chapter 4 can be applied on a class of `1-

regularized optimization problems de�ned on Stiefel manifolds which are commonly used in

applications. This �nal chapter is based on a paper submitted for publication [33] and is

organized as follows. In section 5.1, we give an introduction to `1-regularized optimization

problems with orthogonality constraints and review related work and optimization methods,

including the SOC method [53]. Section 5.2 describes in detail the PAMAL method (by

Algorithms 1 and 2) when applied to `1-regularized optimization problems with orthogonality

constraints. In section 5.3, we provide the convergence analysis of Algorithms 1 and 2.

Numerical results in section 5.4 illustrate that for the compressed modes problem [69], the

PAMAL method is noticeably faster than the SOC method in producing compressed modes

with comparable quality.

5.1. `1-Regularized Optimization Problems with Orthogonality Constraints

In the last few decades, the concept of sparsity has been extensively exploited in a wide

range of applications in imaging and information science. Most of these methods focus on the

sparsity of the coe�cients used for representing the corresponding vector with a set of atoms.

The majority of sparsity-driven applications use the `1-norm as the convex relaxation of

the sparsity-prompting function in their variational formulations. Such applications include

compressed sensing [28, 31, 40], model selection and learning [62, 81], and image recovery

[32, 76, 77]. Most of the optimization problems arising from these applications are convex

problems. In the last ten years, there has been a huge growth in literature on e�cient

numerical solvers for these problems; see e.g., [24,49,67].

Nevertheless, there are also many applications in which the data must satisfy non-convex

constraints. One commonly seen non-convex constraint is the orthogonality constraint, i.e.,

121
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the data for estimation can be expressed as an orthogonal matrix. Examples of such ap-

plications include sparse principal component analysis [57], eigenvalue problems in subspace

tracking [87] and mathematical physics [69], and orthogonal Procrustes problem in shape

analysis [41]. Because orthogonality constraints are non-convex, such problems can be di�-

cult, except in a few simple cases. In recent years, the idea of sparsity is also exploited for

data with orthogonal constraints, and `1-regularization is introduced in the resulting varia-

tional model to regularize the sparsity of the data. We brie�y describe two representative

applications that involve `1-regularized optimization problems with orthogonality constraints.

(a) Compressed modes (waves) in physics [69,70]. Compressed modes are spatially localized

solutions to the eigenvalue problem of the Schrödinger's equation. By considering the

independent-particle Schrödinger's equation for a �nite system of electrons, the corre-

sponding eigenvalue problem can be reformulated as follows:

min
X∈Rn×m

1

µ
‖X‖1 + Tr(X>HX) s.t. X>X = Im, (5.1.1)

where ‖X‖1 :=
n∑
i=1

m∑
j=1
|Xi,j |, µ is a pre-de�ned positive parameter that balances the

sparsity and the accuracy of the solution, H denotes the discretized Hamiltonian and the

columns of X denote the eigenvectors with local support, the so-called compressed modes.

(b) Feature selection [80,88]. Feature selection seeks to choose a smaller subset of features

with most information from high dimensional feature sets. It is used in computer vision

[80] and social media data [88], etc. The models for feature selection in [80, 88] ad-

here to the following `1-regularized optimization problem with (weighted) orthogonality

constraints:

min
X∈Rn×m

1

µ
‖X‖2,1 + Tr(X>HX), s.t. X>MX = Im, (5.1.2)

where ‖X‖2,1 :=
n∑
i=1

(
m∑
j=1

X2
i,j)

1/2, H is a symmetric matrix andM is a symmetric positive

de�nite matrix of the form M = R>R, for some R ∈ Rn×n.

This chapter aims at developing a numerical method to solve (5.1.1), as well as (5.1.2)

with minor modi�cations. The proposed PAMAL method can be viewed as a method that

hybridizes the augmented Lagrangian method [4] and the proximal alternating minimization

(PAM) techniques proposed in [7]. The convergence analysis established in this chapter

shows that under very mild assumptions on the associated penalty parameters, the sequence

generated by the proposed method has the subsequence convergence property, i.e., there exists
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at least one convergent subsequence and any convergent subsequence converges to a Karush-

Kuhn Tucker (KKT) point of (5.2.1) (see (5.3.3) for details).

We now give a brief review on the existing methods that can be applied to solve problems

with orthogonality constraints:

min
X∈Rn×m

J(X) s.t. X>X = Im, (5.1.3)

where J might be non-convex and non-di�erentiable. Existing numerical methods that are

applicable to (5.1.3) can be classi�ed under two categories: feasible and infeasible approaches.

The feasible approaches satisfy the constraints during each iteration, i.e., each point of the

sequence generated by the approach satis�es the orthogonality constraints in (5.1.3). In fact,

various optimization methods such as Newton's method, the conjugate gradient method, and

the method of steepest descent have been used to solve (5.1.3) as feasible approaches. Most of

the existing methods are based on the study of the manifold structures of the orthogonality

constraints (see e.g., [1, 42, 48, 60, 86]). These methods require the objective function J

to be di�erentiable, which is not applicable to the problem (5.1.1) studied in this chapter.

Furthermore, it is not trivial to satisfy the orthogonality constraints in (5.1.1) during each

iteration, as suggested in [53]. Therefore, the feasible approach might not be ideal to solve

(5.1.3) as its objective function is often non-di�erentiable.

The PAMAL method proposed in this chapter is an infeasible approach. The infeasible

approaches simplify the constrained problem (5.1.3) by relaxing the constraints and itera-

tively diminish the degree of infeasibility. As a result, intermediate points of the generated

sequence may not satisfy the orthogonality constraints. The penalty method (e.g., [13,66])

approximates the problem (5.1.3) by penalizing the deviations from the constraints:

min
X∈Rn×m

J(X) +
1

2κ
‖X>X − Im‖2F ,

where κ denotes some penalty parameter decreasing to zero. If J(X) = Tr(X>HX), then

the quadratic penalty model can be viewed as an exact penalty method with a �nite penalty

parameter κ; see e.g., [85]. While the penalty method is simple, it su�ers from ill-conditioning

issues, especially when the penalty parameter κ decreases to zero. Thus, the standard aug-

mented Lagrangian method [44,45] is often preferred as it does not require the parameter κ

to decrease to zero. When being applied to solve (5.1.3), the standard augmented Lagrangian

method yields the following scheme:{
Xk+1 ∈ argminXJ(X) + ρk

2 ‖X
>X − Im‖2F + Tr((Λk)>(X>X − Im)),

Λk+1 = Λk + ρk((Xk+1)>Xk+1 − Im).
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The �rst subproblem of the above augmented Lagrangian scheme is rather complex and

generally has no analytic solution. Indeed, it is not trivial to design an e�cient solver for the

�rst subproblem.

Aiming at a more computationally e�cient method for solving (5.1.3), the splitting of

orthogonality constraints (SOC) method [53] introduces auxiliary variables to split the or-

thogonality constraints, which leads to another formulation of (5.1.3):

min
X,P∈Rn×m

J(X) s.t. X = P, P>P = Im. (5.1.4)

Using the ideas of alternating direction method of multipliers (ADMM) and the split Bregman

method, the SOC method solves (5.1.4) by alternately updating three variables {X,P,B}:
Xk+1 ∈ argminXJ(X) + ρ

2‖X − P
k +Bk‖2F ;

P k+1 ∈ argminP
ρ
2‖P − (Xk+1 +Bk)‖2F , s.t. P>P = I;

Bk+1 = Bk +Xk+1 − P k+1.

(5.1.5)

In contrast with the standard augmented Lagrangian method, each subproblem in the itera-

tions of the SOC method has an analytic solution. However, the trade-o� is its challenging

convergence analysis. To the best of our knowledge, it remains an open question whether the

SOC method (5.1.5) has the subsequence convergence property.

5.2. An Augmented Lagrangian Method with Proximal Alternating

Minimization

In this section, we apply the PAMAL method on the following selected class of `1-

regularized optimization problems with orthogonality constraints:

min
X,Q,P∈Rn×m

1

µ
‖Q‖1 + Tr(X>HX) + δS(P ) s.t. Q−X = 0, P −W = 0. (5.2.1)

Denoting the Lagrange multipliers as Λ1, Λ2 , Λ := (Λ1,Λ2) and ρ as a given positive param-

eter, the corresponding augmented Lagrangian of (5.2.1) is then given by

L(X,Q,P ; Λ, ρ) :=
1

µ
‖Q‖1 + Tr(X>HX) + δS(P )

+ 〈Λ1, Q−X〉+
ρ

2
‖Q−X‖2F

+ 〈Λ2, P −X〉+
ρ

2
‖P −X‖2F .

(5.2.2)

We now describe Algorithm 1 which is analogous to Algorithm I in the previous chapter.
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5.2.1. Algorithm 1.

Here is an outline of Algorithm 1.

Algorithm 1: Method for solving (5.2.2)

Given pre-de�ned parameters {εk}k∈N, Λ̄1 = (Λ̄1
1, Λ̄

1
2), ρ1, Λ̄p,min, Λ̄p,max, τ , γ that satisfy the

conditions in Remark 5.2.1, for k = 1, 2, . . .,

(1) Compute (Xk, Qk, P k) such that there exists Θk ∈ ∂L(Xk, Qk, P k; Λ̄k, ρk) satisfying

‖Θk‖∞ ≤ εk, (P k)>P k = I, (5.2.3)

where
{
εk
}
k∈N is a sequence of positive tolerance parameters.

(2) Estimate the multipliers Λk+1
1 , Λk+1

2 by

Λk+1
1 = Λ̄k1 + ρk(Qk −Xk), Λk+1

2 = Λ̄k2 + ρk(P k −Xk),

where Λ̄kp is the projection of Λkp onto the set
{

Λp : Λ̄p,min ≤ Λp ≤ Λ̄p,max

}
, p = 1, 2,

given by (4.1.6).

(3) Update the penalty parameter ρk+1 by

ρk+1 =

ρk, if ‖Rki ‖∞ ≤ τ‖R
k−1
i ‖∞, i = 1, 2,

γρk, otherwise,

where Rk1 := Qk −Xk, Rk2 := P k −Xk, k ∈ N.

Similar to the steps in Algorithm I, Step 1 of Algorithm 1 seeks the updates of primal

variables such that there is an associated sub-gradient element of L, which satis�es a speci�ed

level of tolerance. Step 2 of Algorithm 1 updates the multiplier estimates by �rst computing

the �rst-order approximations of the multipliers, which are then projected on a suitable box

to ensure compactness. Step 3 of Algorithm 1 updates the penalty parameter ρk according

to the degree of infeasibility. Here, a signi�cant di�erence between Algorithms 1 and I lies in

the choice of the parameters εk, Λ̄p,min, Λ̄p,max, ρ
k, γ, τ to ensure that Step 1 is well de�ned.

Remark 5.2.1 discusses the setting of the parameters for Algorithm 1.

Remark 5.2.1. (Parameter setting) The parameters in Algorithm 1 are set as follows.

The sequence of positive tolerance parameters
{
εk
}
k∈N in (5.2.3) is chosen such that

lim
k→∞

εk = 0.
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The safeguard matrices Λ̄p,min, Λ̄p,max are �nite-valued matrices satisfying

−∞ < [Λ̄p,min]i,j < [Λ̄p,max]i,j < +∞, ∀i, j, p = 1, 2.

As we shall see, for Step 1 to be well de�ned, it su�ces to have γ > 1, τ ∈ [0, 1) and ρ1 to be

a positive penalty parameter such that

2H + ρ1I � 0,

where H is the (discrete) Hamiltonian given in (5.1.1).

Remark 5.2.2. (Relation with the SOC method) Both the PAMAL and the SOC methods

[69] use the same splitting technique as described in (5.2.1). The main di�erence between the

PAMAL method and the SOC method lies in how (Xk, Qk, P k) is updated. In the PAMAL

method, the update (Step 1) is done by calling Algorithm 2 which runs several inner iterations

to obtain an approximate solution to a critical point (Xk, Qk, P k) for Lk with a pre-de�ned

tolerance εk, i.e.,

Θk ∈ ∂L(Xk, Qk, P k; Λ̄k, ρk), s.t. ‖Θk‖ ≤ εk. (5.2.4)

The tolerance parameter sequence {εk}k∈N can be set to decrease to zero. In contrast, the

SOC method only uses a single inner iteration in every outer iteration to solve the problem in

Step 1. Thus, there is no guarantee that the corresponding tolerance sequence will converge

to zero, which makes the convergence analysis of the SOC method a very challenging task.

Despite the fact that multiple inner iterations might be used in Algorithm 1, the �exibility on

the accuracy of the solution in Step 1, which is controlled by the setting of the parameters,

makes it actually more computationally e�cient. For example, when being applied to solving

compressed modes problems, the PAMAL method uses much less outer iterations to meet the

stopping criteria, and the number of the inner iterations in most outer iterations is only 1 or

2. As a result, the total number of inner iterations of the PAMAL method is less than that

of the SOC method (see Tables 5.4.1 and 5.4.2).

Step 1 is the most crucial and di�cult step of Algorithm 1. The constraints (5.2.3) can

also be viewed as the relaxed KKT conditions for minimizing the augmented Lagrangian L

given by (5.2.2).

Thus, there are two questions to answer when executing Step 1 of Algorithm 1:

(1) Is Step 1 of Algorithm 1 well posed? In other words, is the existence of the points

(Xk, Qk, P k) satisfying (5.2.3) guaranteed?
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(2) How can we e�ciently compute such points with arbitrarily given accuracy, i.e., can

the perturbation εk be arbitrarily small?

In the next subsection, we will �rst describe the method for solving (5.2.3) that answers

Question 2. Then, we will also show that this method will answer Question 1 positively.

5.2.2. Algorithm 2 for step 1 of Algorithm 1.

It can be seen that the constraint (5.2.3) is actually an εk-perturbation of the so-called

critical point property

0 ∈ ∂L(X,Q,P ; Λ̄k, ρk). (5.2.5)

Thus, we need a method that can evaluate the corresponding critical points (Xk, Qk, P k) of

the functional L(X,Q,P ; Λ̄k, ρk) with arbitrary accuracy.

Based on the PAM algorithm [7], we propose a coordinate-descent method with proxi-

mal regularization. The PAM method [7] is proposed for solving a class of non-smooth and

non-convex optimization problems. Under certain conditions on the objective function, it is

shown in [7, Theorem 6.2] that the PAM method has global convergence, i.e., the sequence

generated by the method converges to some critical point. As we will show later, the func-

tional L(X,Q,P ; Λ̄k, ρk) indeed satis�es the su�cient conditions for the global convergence

of the PAM method, provided that the penalty parameters
{
ρk
}
k∈N satisfy a mild condition.

In other words, Step 1 is well de�ned provided that the parameters in Algorithm 1 are ap-

propriately chosen when the PAM method is employed. Algorithm 2 gives the outline of the

method for solving (5.2.3).

The PAM method can be applied to solve Step 1 of Algorithm 1. Indeed, at the k-th

outer iteration, the problem (5.2.5) can be solved with arbitrary accuracy using the following

set of inner iterations, which can be viewed as a proximal regularization of a three block

Gauss-Seidel method:
Xk,j ∈ argminX L(X,Qk,j−1, P k,j−1; Λ̄k, ρk) +

ck,j−1
1

2 ‖X −Xk,j−1‖2F ;

Qk,j ∈ argminQ L(Xk,j , Q, P k,j−1; Λ̄k, ρk) +
ck,j−1
2

2 ‖Q−Qk,j−1‖2F ;

P k,j ∈ argminP L(Xk,j , Qk,j , P ; Λ̄k, ρk) +
ck,j−1
3

2 ‖P − P k,j−1‖2F ,

(5.2.6)

where the proximal parameters {ck,ji }k,j can be arbitrarily chosen as long as they satisfy

c ≤ ck,ji ≤ c, k, j ∈ N, i = 1, 2, 3,

for some pre-determined positive values c and c.



5.2. AN AUGMENTED LAGRANGIAN METHOD WITH PROXIMAL ALTERNATING MINIMIZATION 128

It turns out that all subproblems in (5.2.6) have analytic solutions. The solution to the

�rst subproblem is the respective least squares solution, the solution to the second subproblem

can be obtained by soft-thresholding, and the solution to the last subproblem can be obtained

by the singular value decomposition (SVD). We terminate the algorithm (5.2.6) when there

exists Θk,j ∈ ∂L(Xk,j , Qk,j , P k,j ; Λ̄k, ρk) satisfying

‖Θk,j‖∞ ≤ εk, (P k,j)>P k,j = Im.

An explicit expression of the term Θk,j := (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ) is given as follows:

Θk,j
1 := ρk(Qk,j−1 −Qk,j + P k,j−1 − P k,j) + ck,j−1

1 (Xk,j−1 −Xk,j);

Θk,j
2 := ck,j−1

2 (Qk,j−1 −Qk,j);

Θk,j
3 := ck,j−1

3 (P k,j−1 − P k,j).

(5.2.7)

Algorithm 2 describes the method proposed for solving (5.2.3), which completes Algorithm 1.

Algorithm 2: Proposed method for solving (5.2.3).

(1) Let (X1,0, Q1,0, P 1,0) be any initialization. For k ≥ 2, set (Xk,0, Qk,0, P k,0) :=

(Xk−1, Qk−1, P k−1).

(2) Re-iterate on j until ‖Θk,j‖∞ ≤ εk, where Θk,j is de�ned by (5.2.7).
1. Xk,j = (Zk,j−1)−1[Λ̄k1 + Λ̄k2 + ρkQk,j−1 + ρkP k,j−1 + ck,j−1

1 Xk,j−1],

2. Qk,j = T 1
η (

ρkXk,j−Λ̄k1+ck,j−1
2 Qk,j−1

ρk+ck,j−1
2

),

3. P k,j = UIn×mV
>,

where

Zk,j−1 := 2H + (2ρk + ck,j−1
1 )In,

η := ηk,j−1 := µ · (ρk + ck,j−1
2 )−1, T 1

η is the soft-thresholding operator de�ned in

(1.1.12), and the matrices U := Uk,j , V := V k,j are obtained from the SVD of the

following matrix

ρkXk,j + ck,j−1
3 P k,j−1 − Λ̄k2

ρk + ck,j−1
3

=: UΣV >.

(3) Set (Xk, Qk, P k) := (Xk,j , Qk,j , P k,j) and

Θk := Θk,j .
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5.2.3. Well-posedness of Algorithms 1 and 2.

In this subsection, we will show that Step 1 of Algorithm 1 is well de�ned by using

Algorithm 2, provided that some mild condition is satis�ed. By denoting

W := (X,Q,P ),

we get L(X,Q,P ; Λ, ρ) = L(W ; Λ, ρ). In other words, we will show that the solutions for

(5.2.3) are non-empty and Algorithm 2 can always �nd a solution, under some mild condition.

For Step 1 to be well de�ned, it needs an important property of Algorithm 2, i.e., for each

k ∈ N,

(Xk,j , Qk,j , P k,j)→ (X̄k, Q̄k, P̄ k), j →∞, (5.2.8)

where (X̄k, Q̄k, P̄ k) is a critical point of L(X,Q,P ; Λ̄k, ρk). The proof of the limiting property

(5.2.8) is based on the PAM result in [7]. For the k-th iteration, recalling thatW = (X,P,Q),

then the functional de�ned in (5.2.2) can be expressed as

Lk(W ) := L(X,Q,P ; Λ̄k, ρk) = f1(X) + f2(Q) + f3(P ) + gk(X,Q,P ), (5.2.9)

where 
f1(X) := Tr(X>HX), f2(Q) := 1

µ‖Q‖1, f3(P ) := δS(P ),

gk(X,Q,P ) := 〈Λ̄k1, Q−X〉+ ρk

2 ‖Q−X‖
2
F

+〈Λ̄k2, P −X〉+ ρk

2 ‖P −X‖
2
F .

Then, we have

Proposition 5.2.3. For each k ∈ N, denote the functional given by (5.2.9) by Lk, and

denote the sequence generated by Algorithm 2 by {(Xk,j , Qk,j , P k,j)}j∈N. Then, Θk,j de�ned

in (5.2.7) satis�es

Θk,j ∈ ∂L(Xk,j , Qk,j , P k,j ; Λ̄k, ρk), ∀ j ∈ N.

If the parameters γ, ρ1 in Algorithm 1 are chosen such that

γ > 1, ρ1 > 0, ρ1In + 2H � 0, (5.2.10)

then for each k ∈ N,

‖Θk,j‖∞ → 0 as j →∞.

Proof. To establish the �rst part of this proposition, recall the functions gk, f1, f2, f3,

as de�ned by Lk in (5.2.9). Then, a direct calculation shows that Θk,j = (Θk,j
1 ,Θk,j

2 ,Θk,j
3 )
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de�ned by (5.2.7) can be expressed in terms of partial derivatives of g := gk as

Θk,j
1 = −∇Xg(Xk,j , Qk,j−1, P k,j−1)− ck,j−1

1 (Xk,j −Xk,j−1) +∇Xg(Xk,j , Qk,j , P k,j);

Θk,j
2 = −∇Qg(Xk,j , Qk,j , P k,j−1)− ck,j−1

2 (Qk,j −Qk,j−1) +∇Qg(Xk,j , Qk,j , P k,j);

Θk,j
3 = −∇P g(Xk,j , Qk,j , P k,j)− ck,j−1

3 (P k,j − P k,j−1) +∇P g(Xk,j , Qk,j , P k,j).

(5.2.11)

On the other hand, given (Xk,j−1, Qk,j−1, P k,j−1), the PAM scheme (5.2.6) yields the following

necessary �rst order optimality condition:
∇f1(Xk,j) +∇Xg(Xk,j , Qk,j−1, P k,j−1) + ck,j−1

1 (Xk,j −Xk,j−1) = 0;

νk,j +∇Qg(Xk,j , Qk,j , P k,j−1) + ck,j−1
2 (Qk,j −Qk,j−1) = 0;

ωk,j +∇P g(Xk,j , Qk,j , P k,j) + ck,j−1
3 (P k,j − P k,j−1) = 0,

(5.2.12)

where νk,j ∈ ∂f2(Qk,j) and ωk,j ∈ ∂f3(P k,j). Replacing the corresponding terms in (5.2.11)

by (5.2.12) gives
Θk,j

1 = ∇f1(Xk,j) +∇Xg(Xk,j , Qk,j , P k,j) ∈ ∂XLk(W k,j),

Θk,j
2 = νk,j +∇Qg(Xk,j , Qk,j , P k,j) ∈ ∂QLk(W k,j),

Θk,j
3 = ωk,j +∇P g(Xk,j , Qk,j , P k,j) ∈ ∂PLk(W k,j).

Thus, for each k ∈ N,

Θk,j ∈ ∂L(Xk,j , Qk,j , P k,j ; Λ̄k, ρk), ∀ j ∈ N.

As for the second part of the proposition, to prove that for each k ∈ N, ‖Θk,j‖∞ → 0,

as j → ∞, it su�ces to show that for each k ∈ N, the sequence {(Xk,j , Qk,j , P k,j)}j∈N is

convergent. Then it remains to verify that the functionals Lk(W ) satisfy the conditions and

assumptions made in Theorem 4.3.1. From its de�nition (5.2.9), it can be seen that the

function Lk satis�es the assumptions (i) and (ii) of the function given by (4.3.3), and Lk(W )

is also a K-� function according to Remark 4.3.2. Thus, we only need to verify that for

each k ∈ N, Lk is bounded below and the sequence {W k,j}j∈N is bounded. For each k ∈ N,
the lower bound of Lk is proved by showing that Lk is a coercive function provided that

the parameters γ, ρ1 satisfy (5.2.10). Clearly, the two terms f2 and f3 of Lk in (5.2.9) are

coercive. For the remaining term, f1(X) + gk(X,Q,P ), we may rewrite it as the following:

f1(X) + gk(X,Q,P ) := g1,k(X,P ) + g2,k(X,Q),
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where{
g1,k(X,P ) := 1

2Tr(X
>(2H + ρkIn)X)− 〈ρkP + Λ̄k2, X〉+ 〈Λ̄k2, P 〉+ ρk

2 ‖P‖
2
F ,

g2,k(X,Q) := ρk

2 ‖Q−X + Λ̄k1/ρ
k‖2F − ‖Λ̄k1/ρk‖2F .

It can be seen that g2,k is bounded below. Since P ∈ S (i.e., P>P = Im), so ‖P‖∞ = 1 and

‖P‖F =
√
m. Thus we have

g1,k(X,P ) ≥ 1

2
Tr(X>(2H + ρkIn)X)− ‖X‖1 − 〈Λ̄k2, X〉 − ‖Λ̄k2‖1 +

ρkm

2
.

Therefore, g1,k is coercive as long as 2H + ρkIn is symmetric positive de�nite and P ∈ S.
Notice that the sequence

{
ρk
}
k∈N is set in Step 3 of Algorithm 1 such that it is non-decreasing

when γ > 1 which implies that ρk ≥ ρ1 for any k > 1. If the initial parameter ρ1 is set

su�ciently large such that ρ1In + 2H � 0, we have the positive de�niteness of 2H + ρkIn for

any k ≥ 1 and thus the term f1 + gk is also coercive. In short, the functions {Lk}k∈N de�ned

as (5.2.9) are all coercive.

The boundedness of the sequence {W k,j}j∈N is proved by contradiction. Suppose on the

contrary that the sequence {W k0,j}j∈N is not bounded. This means that lim
j→∞

‖W k0,j‖F =∞.

As Lk0(W ) is a coercive function, we have then lim
j→∞

Lk0(W k0,j) = +∞. However, by setting

x := W , f := Lk0 , λ := c in the last inequality of [18, page 31], we have that

Lk0(W k0,j+1) + c‖W k0,j+1 −W k0,j‖2F ≤ Lk0(W k0,j), j ∈ N,

which implies that {Lk0(W k0,j)}j∈N is a non-increasing sequence, which leads to a contradic-

tion. This completes the proof. �

Remark 5.2.4. The condition 2H + ρ1In � 0 is a mild condition. Take the compressed

modes problem [69] for example. In the case of the free-electron (FE) model, the discretized

Hamiltonian matrix H � 0 and thus ρ1 can be taken to be any positive number. In the

case of the Kronig-Penney (KP) model, the magnitudes of the negative eigenvalues of the

corresponding matrix H are generally less than 1. Thus, we may set ρ1 > 2.

5.3. Convergence Analysis

For the convenience of notation and discussion, we rewrite the problem (5.2.1) using the

notation of vectors. Let x ∈ R3mn denote the column vector formed by concatenating the

columns of X,Q,P :

x := Vec([X|Q|P ]). (5.3.1)
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Then, the problem (5.2.1) can be rewritten as the following:

min
x∈R3mn

f(x), subject to h1(x) = 0; and h2(x) = 0; (5.3.2)

where h1(x) ∈ R2mn denotes Vec([Q − X|P − X]), h2(x) denote the fracm(m+ 1)2 × 1

vector obtained by vectorizing only the the lower triangular entries of the symmetric matrix

P>P − Im given in (4.4.4), and

f(x) =

m∑
j=1

(
µ−1‖Qj‖1 +X>j HXj

)
.

Let λ denote the concatenation of the two Lagrange multiplier vectors of Λ1 and Λ2 given by

λ := Vec([Λ1|Λ2]).

Then, the corresponding augmented Lagrangian of (5.3.2) can be expressed as

L(x, λ; ρ) := f(x) +

m1∑
i=1

[λ]i[h1(x)]i +
ρ

2

m1∑
i=1

[h1(x)]2i , subject to x ∈ Γ,

where m1 := 2mn,m2 := m(m+ 1)/2, and

Γ = {x : h2(x) = 0}.

Therefore, a point (X∗, Q∗P ∗) is a KKT point for (5.2.1) if and only if the vector x∗

de�ned by (5.3.1) is a KKT point for (5.3.2), i.e., there exists w∗ ∈ ∂f(x∗), λ∗ ∈ Rm1 ,

v∗ ∈ Rm2 such that

w∗ +

m1∑
i=1

[λ∗]i∇[h1(x∗)]i +

m2∑
i=1

[v∗]i∇[h2(x∗)]i = 0;h1(x∗) = 0; and h2(x∗) = 0. (5.3.3)

where λ∗, v∗ are column vectors with components {[λ]i}m1
i=1 and {[v]i}m2

i=1 respectively.

In this section, we establish the subsequence convergence property of Algorithm 1, i.e.,

there exists at least one convergent subsequence of the sequence generated by Algorithm 1

and it converges to a KKT point of (5.3.2).

Theorem 5.3.1. Suppose that the positive parameters γ, ρ1 in Algorithm 1 are chosen so

that γ > 1, 2H + ρ1In � 0. Let {(Xk, Qk, P k)}k∈N be the sequence generated by Algorithm 1.

Then, the limit point set of {(Xk, Qk, P k)}k∈N is non-empty, and every limit point is a KKT

point of the original problem (5.3.2).
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Proof. [Sketch of the proof] The proof of the subsequence convergence property of Al-

gorithm 1 is organized as follows. Firstly, in section 5.3.1, we establish a crucial ingredient

needed for the convergence analysis, namely the linear independence of the gradient vectors

{∇[h1(x)]i}m1
i=1 ∪ {∇[h2(x)]i}m2

i=1 when x ∈ Γ. Consequently, any locally optimal solution to

(5.3.2) is necessarily a KKT point of (5.3.2). Secondly, in section 5.3.2, we show that any

limit point of a sequence generated by Algorithm 1 is also a KKT point of (5.2.1). Lastly,

in section 5.3.3, we show that for (5.3.2), the sequence
{

(Xk, Qk, P k)
}
k∈N generated by Al-

gorithm 1 must be bounded. These results together establish the subsequence convergence

property of Algorithm 1. �

Before we commence on the subsequence convergence analysis, we �rst establish the ex-

istence of Lagrange multipliers of the problem (5.2.1) which justi�es why an augmented

Lagrangian scheme on (5.2.1) is valid.

5.3.1. Linear independence and KKT �rst order necessary conditions.

Analogous to the previous chapter, we have the corresponding linear independence and

KKT �rst order necessary conditions in this subsection.

Lemma 5.3.2. Suppose that x ∈ Γ. Then the gradient vectors {∇[h1(x)]i}m1
i=1∪{∇[h2(x)]i}m2

i=1

of the equality constraints in (5.3.2) are linearly independent. Consequently, if x̄ is a locally

optimal solution of the problem (5.3.2), then x̄ is a KKT point for (5.3.2).

Proof. From the de�nition (5.3.1) of x, by setting m3 := mn, it can be seen that

∇h1(x) =


−Im3×m3 −Im3×m3

Im3×m3 0m3×m3

0m3×m3 Im3×m3

 and ∇h2(x) =


0m3×m2

0m3×m2

M(x)

 , (5.3.4)

where M(x) ∈ Rm3×m2 is given by

M(x) =


2P1 P2 P3 ... Pm 0 0 ... 0 0 0 0

0 P1 0 ... 0 2P2 P3 ... Pm
...

...
...

0 0 P1

. . .
... 0 P2 ... 0 ··· 0 0

...
...

...
. . .

. . . 0
...

. . .
. . .

... 2Pm−1 Pm 0
0 0 ... 0 P1 0 ... 0 P2 0 Pm−1 2Pm

 .
Since x ∈ Γ, the column vectors {Pi}mi=1 are orthogonal to each other, and thus the columns

ofM(x) are orthogonal to each other. Furthermore, the �rst 2m3 rows of ∇h2(x) form a zero

matrix. Thus, from the matrix structures of ∇h1(x), ∇h2(x) in (5.3.4), one can easily show

that {∇[h1(x)]i}m1
i=1 ∪ {∇[h2(x)]i}m2

i=1 are linearly independent for any x ∈ Γ.
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Secondly, if x̄ is a locally optimal solution of the problem (5.3.2), then x̄ ∈ Γ. We shall

not repeat the argument as it follows verbatim to the proof of Lemma 4.4.4. Thus, the locally

optimal point x̄ is also a KKT point of (5.3.2). �

5.3.2. Limit points as KKT points.

In this subsection, we show that any limit point generated by Algorithm 1 is also a

KKT point of (5.2.1), i.e., any limit point x∗ of the corresponding sequence {xk}k∈N w.r.t.

(Xk, Qk, P k) is a KKT point for (5.3.2). In vector notation, the main result is stated as

follows.

Theorem 5.3.3. Suppose that
{
xk
}
k∈N is a sequence generated by Algorithm 1. Let x∗

be a limit point of this sequence, i.e., there exists a subsequence K ⊆ N such that lim
k∈K

xk = x∗.

Then x∗ is also a KKT point of (5.3.2).

Proof. The proof follows verbatim of that of Theorem 4.4.6. �

5.3.3. Existence of limit points.

The results presented in the previous subsections assume the existence of a limit point

of the sequence {xk}k∈N, i.e., the sequence generated by Algorithm 1 contains at least one

convergent subsequence. In this subsection, we prove the existence of the sequence by showing

that it is bounded.

Proposition 5.3.4. Let {(Xk, Qk, P k)}k∈N be the sequence generated by Algorithm 1.

Suppose that the parameters γ, ρ1 in Algorithm 1 are chosen so that γ > 1 and 2H+ρ1In � 0.

Then, {(Xk, Qk, P k)}k∈N is bounded and thus contains at least one convergent subsequence.

Proof. The boundedness of {P k}k∈N is easy to see from Step 1 of Algorithm 1. It

remains to show that {(Xk, Qk)}k∈N is bounded. Using a direct extension of the result

[18, Proposition 3], the �rst two partial subdi�erentials of L in (5.2.3) yield the following:

there exist νk ∈ 1
µ∂‖Q

k‖1 and ζk = (ζk1 , ζ
k
2 ) ∈ Rn×m × Rn×m such that{

ζk1 = 2HXk − Λ̄k1 + ρk(Xk −Qk)− Λ̄k2 + ρk(Xk − P k);
ζk2 = νk + Λ̄k1 + ρk(−Xk +Qk),

(5.3.5)

where ‖ζk‖∞ ≤ εk. Summing the above two equations gives

(2H + ρk)Xk = ζk1 + ζk2 + Λ̄k2 + ρkP k − νk.

Together with 2H + ρkIn � 0, we have
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Xk = (2H + ρkIn)−1(ζk1 + ζk2 + Λ̄k2 + ρkP k − νk).

Let H = V diag(λ1, . . . , λn)V > denote the SVD of the symmetric matrix H. Then,

Xk = V diag(1/(2λ1 + ρk), . . . , 1/(2λn + ρk))V >(ζk1 + ζk2 + Λ̄k2 − νk)

+V diag(ρk/(2λ1 + ρk), . . . , ρk/(2λn + ρk))V >P k.

Recall that {ρk}k∈N is non-decreasing and 2H + ρ1In � 0. We have then, for k ∈ N, 2H +

ρkIn � 0, which gives 2λi + ρk > 0, i = 1, 2, . . . , n. Thus, for all k ∈ N,

0 < 1/(2λi + ρk) ≤ 1/(2λi + ρ1) < +∞, i = 1, 2, . . . , n, (5.3.6)

0 < ρk/(2λi + ρk) ≤ max(ρ1/(2λi + ρ1), 1), i = 1, 2, . . . , n. (5.3.7)

Together with the fact that {ζk}k∈N and {Λ̄k}k∈N are both bounded, combining the two

inequalities (5.3.6) and (5.3.7) shows that the sequence {Xk}k∈N is bounded. Then, the

boundedness of the sequence {Qk}k∈N can also be derived from (5.3.5). �

It is noted that the result still holds if the `1-term
1
µ‖Q‖1 in (5.2.1) is replaced by any

convex function with bounded subgradients on its domain, e.g., 1
µ‖Q‖2,1.

5.4. The Compressed Modes for Variational Problems in Physics

This section is organized as follows. In subsection 5.4.1, we present some background

information on compressed modes. In subsection 5.4.2, we review some existing methods to

obtain compressed modes, which include the SOC method introduced by Lai and Osher in

[53]. Finally, we compare the performance of the PAMAL method against that of the SOC

method in subsection 5.4.3 on the compressed modes problem.

5.4.1. Background on compressed modes.

Motivated by the localized Wannier functions [61] used in solid state physics and quantum

chemistry, a variational approach is developed in [69] to produce the so-called compressed

modes, which are spatially localized solutions to the time-independent Schrödinger's equation:

Ĥφ(x) = λφ(x), x ∈ Ω. (5.4.1)

In this equation, Ω is a bounded subset of Rd and Ĥ denotes the corresponding Hamiltonian

de�ned by

Ĥ = −1

2
∆ + V,
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where ∆ denotes the Laplacian operator and V denotes the potential energy function, repre-

sented by a multiplication operator with a bounded measurable function. Spatially localized

solutions to the eigenvalue problem (5.4.1) not only enable e�cient computations related to

the general Schrödinger's equation, but also �t certain observations in physics. For example,

the screened correlations in condensed matter are typically short-ranged [73].

In [69], the authors considered the independent-particle Schrödinger's equation for a

�nite system of N electrons, with the electron spin neglected for simplicity. The ground state

energy of these electrons, denoted by E0, can be formulated as a variational problem, which

minimizes the total energy subject to orthonormality conditions for the stationary states:

E0 = min
ΦN

N∑
j=1

〈φj , Ĥφj〉 s.t. 〈φj , φk〉 = δjk, (5.4.2)

where 〈φj , φk〉 :=
´
Ω

φj(x)φk(x) dx. The solutions ΦN = {φi}Ni=1 form a set of orthonormal

eigenfunctions which are usually not spatially localized. Therefore, an `1-regularized model

is proposed in [69] to obtain the solutions of (5.4.2) with better spatial localization:

E = min
ΨN

N∑
j=1

1

µ
|ψj |1 + 〈ψj , Ĥψj〉 s.t. 〈ψj , ψk〉 = δjk, (5.4.3)

where |ψj |1 :=
´

Ω |ψj(x)| dx and the constant µ is a pre-de�ned parameter that balances

the sparsity and the accuracy of the solution. It is shown in [8,68] that with �xed N , the

approximation error of the energy E calculated by (5.4.3) to the ground state energy E0 is

decreasing as µ → ∞. By considering Ω = [0, L]d with periodic boundary conditions and

equally spaced nodes in each direction, the discretized version of (5.4.2) is expressed as

ΨN = argminΨ∈Rn×N
1

µ
‖Ψ‖1 + Tr(Ψ>HΨ) s.t. Ψ>Ψ = I, (5.4.4)

where ‖Ψ‖1 :=
∑
i,j
|Ψi,j |, and H is a symmetric matrix formed by the discretization on Hamil-

tonian Ĥ. The solution ΨN = {ψj}Nj=1 is called the compressed modes (CMs) for the eigen-

vector problem (5.4.1).

5.4.2. Existing methods for compressed modes.

The presence of non-convex orthogonality constraints in (5.4.4) makes it a challenging

problem to solve. By re-formulating the constrained optimization problem (5.4.4) as the
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Figure 5.4.1. The comparison of the �rst �ve modes obtained for the

1D FE model with di�erent values of µ. The �rst column shows the results

computed by the SOC method [69]; and the second column shows the results

computed by the PAMAL method.

Figure 5.4.2. The comparison of the �rst �ve modes obtained for the 1D

KP model with two di�erent values of µ. The �rst column shows the results

computed by the SOC method [69]; and the second column shows the results

computed by the PAMAL method.

following,

min
Ψ,Q,P

1

µ
‖Q‖1 + Tr(Ψ>HΨ) s.t. Q−Ψ = 0, P −Ψ = 0, P>P = I,

a split Bregman iteration based method was proposed in [69] to solve it. It is demonstrated in

the numerical experiments conducted in [69] that the SOC method can produce compressed

modes of good quality. Nevertheless, to the best of our knowledge, there is no analysis of its

convergence property provided in the literature.
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Figure 5.4.3. The comparison of the �rst 50 eigenvalues obtained for the

1D FE model with di�erent values of N . The �rst column shows the results

computed by the SOC method [69]; and the second column shows the results

computed by the PAMAL method.

More recently, a convex relaxation approach is proposed in [52], which re-models the CMs

problem into a density matrix minimization problem with `1-regularization:

min
P∈Rn×n

Tr(HP ) +
1

µ
‖P‖1

s.t. P = P>, Tr(P ) = N, 0 � P � I.
(5.4.5)

In [52], the convex model (5.4.5) is solved by the split Bregman method, with the convergence

analysis provided.

5.4.3. Computations of CMs by the PAMAL method.

In this subsection, we applied the PAMAL method to solve the compressed modes problem

under the same setting as [69], which includes both the free-electron (FE) and the Kronig-

Penney (KP) models. Through the experiments, potential functions are approximated by
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Figure 5.4.4. The comparison of the �rst 50 eigenvalues obtained for the

1D KP model with di�erent values of N . The �rst column shows the results

computed by the SOC method [69]; and the second column shows the results

computed by the PAMAL method.

Gaussians. More speci�cally, we set

V ≡ 0, and V (x) = −V0

Nel∑
j=1

exp[−(x− 10j)2

2δ2
],

with V0 := 1, Nel := 5, δ := 3 respectively in the FE and KP models. Moreover, the domain

Ω := [0, 50] is discretized with n = 128 equally spaced nodes.

The parameters of the PAMAL method are set as follows: τ = 0.99, γ = 1.01, ρ1 =

2|λmin(H)|+N/2, Λ̄p,min = −100, Λ̄p,max = 100, p = 1, 2, and

εk = (0.999)k, k ∈ N.

The parameters in Algorithm 2 are set as c = ck,ji = c̄ = 0.5, for all k, j, i in both the FE and

KPmodels. In the SOCmethod, as recommended by [69], we use the same penalty parameters

(λ = µN/20, r = µN/5) in [69, equations 15�17]. In both the PAMAL method and the SOC
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method, the same random orthonormal matrix initialization is used. In order to produce CMs

of reasonable localization, we set the stopping criterion as |J(P k)− J(P k−1)| < 10−5, where

J is the objective function given in (5.4.4), i.e., J(Ψ) := 1
µ‖Ψ‖1 + Tr(Ψ>HΨ).

Both methods are implemented in MATLAB and the experiments are done on a PC

with a 1.70GHz CPU and 4G of RAM. The number of outer iterations, total number of inner

iterations and CPU time, of the PAMAL and SOC methods are averaged over 50 experimental

trials. See Table 5.4.1 and Table 5.4.2 for the comparison of the computational costs of the

two methods. In general, with the same stopping criterion, the proposed PAMAL method is

at least twice as fast as the SOC method. As discussed in Remark 5.2.2, the performance

gain of the PAMAL methods comes from the �exibility on the accuracy of the solution for

Step 1 in Algorithm 1.

Problems No. of outer iterations Total no. of inner iterations CPU time (s)

N M µ PAMAL SOC PAMAL SOC PAMAL SOC

5 5 30 77 237 82 237 0.07 0.15

5 5 50 87 499 92 499 0.07 0.27

50 50 10 512 3124 522 3124 1.35 7.25

60 50 10 484 4147 497 4147 1.54 11.02

Table 5.4.1. Computational costs of the PAMAL method and the SOC

method for the FE model.

Problems No. of outer iterations Total no. of inner iterations CPU time (s)

N M µ PAMAL SOC PAMAL SOC PAMAL SOC

5 5 50 66 304 75 304 0.06 0.17

5 5 300 62 1826 71 1826 0.05 0.94

50 50 10 496 3179 507 3179 1.38 7.44

60 50 10 478 4118 491 4118 1.55 10.99

Table 5.4.2. Computational costs of the PAMAL method and the SOC

method for the KP model.

The �rst �ve CMs of the 1D FE and KP models computed by the SOC/PAMAL methods

are shown in the �rst/second columns of Figure 5.4.1 and Figure 5.4.2 respectively. It can be

seen that the CMs computed by the PAMAL method are compactly supported functions and

their localization degree is largely similar to that of the CMs obtained via the SOC method,
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as shown in Figure 5.4.1 and Figure 5.4.2. We next examine the approximation behavior

of the unitary transformations derived from the CMs to the eigenmodes of the Schrödinger

operator. The approximation accuracy is demonstrated by comparing the �rstM eigenvalues

(σ1, . . . , σM ) of the matrix Tr(Ψ>NHΨN ) obtained by the M eigenvalues (λ1, . . . , λM ) of the

corresponding Schrödinger operators. Figure 5.4.3 and Figure 5.4.4 reveal that the approxi-

mation accuracies of the SOC and PAMAL methods are similar for the FE and KP models

respectively, where it can be seen that {σi}mi=1 converges to {λi}mi=1 with increasing number

N of CMs.

To summarize this chapter, we proposed the PAMAL method, a numerical method for

solving a class of `1-regularized optimization problems with orthogonality constraints. It

is shown that the proposed method has the subsequence convergence property, which is not

provided in the existing SOC method [69]. In addition, the experiments show that when being

applied to solve the compressed modes problem, the proposed PAMAL method is noticeably

faster than the SOC method in producing modes of comparable quality.

Remark 5.4.1. (Possible Future Research Work/Directions) It would be interesting to in-

vestigate the e�ectiveness of the PAMAL method (over the SOC method) on feature selection

problems, which include computer vision [80] and social media data [88].
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Appendix: Proofs of Theoretical Results in Chapter 3

(A) Proof of Corollary 3.1.2. We want to show that the modi�ed spherical harmonics

Ỹ m
l , |m| ≤ l, l ∈ 2N0, are eigenfunctions of the FRT R with eigenvalues 2πPl(0), i.e., for

l ∈ 2N0, |m| ≤ l,

R[Ỹ m
l ](u) = 2πPl(0)Ỹ m

l (u), u ∈ S2, (1)

where Pl(0) is the Legendre polynomial of degree l evaluated at 0, given explicitly in (3.1.11).

Note that by (1.3.19), we have a relation between Y m
l and Ỹ m

l : for |m| ≤ l, l ∈ 2N0,

Ỹ m
l =


2−1/2[Y m

l + (−1)mY −ml ], if m < 0,

Y m
l , if m = 0,

−2−1/2i[Y m
l − (−1)mY −ml ], if m > 0,

which means that in order to establish (1), it su�ces to show that the spherical harmonics

Y m
l , |m| ≤ l, l ∈ N0, are eigenfunctions of the FRT R, with eigenvalues 2πPl(0), i.e., for

l ∈ N0, |m| ≤ l,

R[Y m
l ](u) = 2πPl(0)Y m

l (u), u ∈ S2, (2)

We now show (2). Firstly, note that the FRT integral can be expressed as the following

limit:

R[Y m
l ](u) = lim

n→∞

ˆ
w∈S2

δn(u>w)Y m
l (w)dw,

where δn is a delta sequence de�ned by δn(x) := n√
π

exp(−n2x2) with

lim
n→∞

ˆ 1

−1
δn(x)f(x) dx = f(0), f ∈ C[−1, 1].

By the Funk-Hecke Theorem (Theorem 3.1.1), for |m| ≤ l, l ∈ N0,

R[Y m
l ](u) = lim

n→∞

ˆ
w∈S2

δn(u>w)Y m
l (w)dw

= lim
n→∞

2π

[ˆ 1

−1
δn(t)Pl(t) dt

]
Y m
l (u)

= 2πPl(0)Y m
l (u).

(B) Proof of Proposition 3.3.1. We want to prove (3.3.4): the sequence {P2N (0)}N∈N
decays asymptotically at the rate of N−1/2, i.e., there exist positive constants C1 and C2 such

that

C1N
−1/2 ≤ |P2N (0)| ≤ C2N

−1/2, N ∈ N.
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Note that from (3.1.11),

|P2N (0)| =
N∏
n=1

(2n− 1)

2n
, N ∈ N.

Setting an := 1
2n , n ∈ N, and taking logarithms, we have

log

N∏
n=1

(2n− 1)

2n
= log

N∏
n=1

(1− an) =
N∑
n=1

log(1− an).

With this choice of an, n ∈ N, we have the following claim which will be shown later.

Claim (I): For any N ∈ N,
N∑
n=1

(−an)− 1

2
≤

N∑
n=1

log(1− an) ≤
N∑
n=1

(−an). (3)

Note that (3) is equivalent to

exp(−1/2) · exp

{
N∑
n=1

(−an)

}
≤

N∏
n=1

(1− an) ≤ exp

{
N∑
n=1

(−an)

}
, N ∈ N. (4)

Therefore, due to (4), in order to establish the desired result (3.3.4), we need to show that

there exist positive constants C ′1 and C ′2 (independent of N) such that

C ′1N
−1/2 ≤ exp

{
N∑
n=1

(−an)

}
≤ C ′2N−1/2, N ∈ N. (5)

To show (5), we use the following result regarding the classical harmonic series:

lim
N→∞

N∑
n=1

(
1

n

)
− logN = γ,

where γ is the Euler-Mascheroni constant. Therefore, there exist positive constants C ′′1 and

C ′′2 such that

logN + C ′′1 ≤
N∑
n=1

1

n
≤ logN + C ′′2 , N ∈ N. (6)

Since an = 1
2n , n ∈ N, using (6), it is not hard to see that (5) holds.

(C) Proof of Claim (I), i.e., (3). We begin the proof by recalling the Maclaurin's

series

log(1− x) = −x−
∞∑
k=2

xk

k
, −1 ≤ x < 1. (7)

Replacing x with an = 1
2n , n ∈ N, in (7) and summing (7) gives

N∑
n=1

log(1− an) =

N∑
n=1

(−an)−
N∑
n=1

∞∑
k=2

1

k2k
· 1

nk
, N ∈ N. (8)
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To prove (3) from (8), it su�ces to show that

0 ≤
N∑
n=1

∞∑
k=2

1

k2k
· 1

nk
≤ 1

2
, N ∈ N. (9)

The lower bound in (9) is obvious, so we concentrate on establishing the upper bound of (9).

Note that for k ≥ 2, f(x) := 1
xk
, x > 0, is a concave function satisfying

N∑
n=2

f(n) ≤
ˆ N

1
f(x) dx =

1

(k − 1)
(1− 1

Nk−1
) ≤ 1, (10)

for all k ≥ 2 and N ∈ N. Thus, from (10)

N∑
n=1

1

nk
≤ 2,

which gives
∞∑
k=2

1

k2k
(
N∑
n=1

1

nk
) ≤ 2

∞∑
k=2

1

k2k
≤ 2 · (1

2
)
∞∑
k=2

1

2k
=

1

2
.

This completes the proof of Claim (I).

(D) Proof of Theorem 3.3.2. For s ≥ 0, if f ∈ Hs
sym(S2), then

f =
∑
l∈2N0

∑
|m|≤l

f̃m,lỸ
m
l ,

where its modi�ed spherical harmonic coe�cients
{
f̃m,l

}
m,l

satisfy∑
l∈2N0

∑
|m|≤l

(1 + l2)s |f̃m,l|2 <∞. (11)

It follows from Corollary 3.1.2 that

g := R[f ] =
∑
l∈2N0

∑
|m|≤l

g̃m,lỸ
m
l ,

where {g̃m,l}m,l are the modi�ed SH coe�cients of g given as

g̃m,l := 2πPl(0) f̃m,l, |m| ≤ l, l ∈ 2N0. (12)

This series expansion is well de�ned because∑
l∈2N0

∑
|m|≤l

(1 + l2)s+1/2|g̃m,l|2 <∞,

which follows from (12), (11) and {P2N (0)}N∈N ∼ O(N−1/2) from Proposition 3.3.1. Thus

g ∈ Hs+1/2
sym (S2).
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Next, consider an arbitrary g ∈ Hs+1/2
sym (S2), and de�ne the mapping R† on g as

f † := R†[g] =
∑
l∈2N0

∑
|m|≤l

f̃ †m,lỸ
m
l ,

where {f̃ †m,l}m,l are the modi�ed SH coe�cients of f † given as

f̃ †m,l := [2πPl(0)]−1 g̃m,l

Since g ∈ Hs+1/2
sym (S2), i.e., ∑

l∈2N0

∑
|m|≤l

(1 + l2)s+1/2 |g̃m,l|2 <∞.

and {[P2N (0)]−1}N∈N ∼ O(N1/2) from Proposition 3.3.1, we have∑
l∈2N0

∑
|m|≤l

(1 + l2)s|f̃ †m,l|
2 <∞.

Thus f † ∈ Hs
sym(S2).

Finally, combining what we have proved so far, we see that, given s ≥ 0, f ∈ Hs
sym(S2)

and g ∈ Hs+1/2
sym (S2), there holds R†Rf = f and RR†g = g. This shows that an inverse of R

exists and R−1 = R†, completing the proof.


