7,280 research outputs found

    Spider Optimization: Probing the Systematics of a Large Scale B-Mode Experiment

    Get PDF
    Spider is a long-duration, balloon-borne polarimeter designed to measure large scale Cosmic Microwave Background (CMB) polarization with very high sensitivity and control of systematics. The instrument will map over half the sky with degree angular resolution in I, Q and U Stokes parameters, in four frequency bands from 96 to 275 GHz. Spider's ultimate goal is to detect the primordial gravity wave signal imprinted on the CMB B-mode polarization. One of the challenges in achieving this goal is the minimization of the contamination of B-modes by systematic effects. This paper explores a number of instrument systematics and observing strategies in order to optimize B-mode sensitivity. This is done by injecting realistic-amplitude, time-varying systematics in a set of simulated time-streams. Tests of the impact of detector noise characteristics, pointing jitter, payload pendulations, polarization angle offsets, beam systematics and receiver gain drifts are shown. Spider's default observing strategy is to spin continuously in azimuth, with polarization modulation achieved by either a rapidly spinning half-wave plate or a rapidly spinning gondola and a slowly stepped half-wave plate. Although the latter is more susceptible to systematics, results shown here indicate that either mode of operation can be used by Spider.Comment: 15 pages, 12 figs, version with full resolution figs available here http://www.astro.caltech.edu/~lgg/spider_front.ht

    Software Defined Radio Based Frequency Modulated Continuous Wave Ground Penetrating Radar

    Get PDF
    Frequency modulated continuous wave (FMCW) radar allows for a wide range of research applications. One primary use of this technology and what is explored in this thesis, is imaging in the form of ground penetrating radar. To generate proper results, spectral wide-band reconstruction has been developed to overcome hardware limitations allowing for high resolution radar. Requiring complex reconstruction algorithms, the proposed method benefits greatly in terms of performance and implementation compared to other radar systems. This thesis develops a wideband linearly frequency modulated radar leveraging a software-defined radio (SDR). The modular system is capable of a tunable wideband bandwidth up to the maximum SDR ratings. This high-resolution system is further improved through implementation of grating side-lobe suppression filters that correct for the spectral discontinuities imposed by the reconstruction. These grating lobes are managed through multiple techniques to alleviate any ghost imaging or false positives associated with object detection. The solution provided allows for generally non-coherent devices to operate with synchronous phase giving accurate sample-level measurements. Various corrections are in place as mitigation of hardware transfer functions and system level noise. First the system was theorized and simulated, illuminating the performance of the radar. Following development of the radar, measurements were conducted to confirm proper and accurate object detection. Further experiments were performed ensuring Ground Penetrating Radar (GPR) performance as designed. Applications of this work include Synthetic Aperture Radar (SAR) imaging, innovative GPR, and unmanned aerial vehicle (UAV) systems

    Acoustic pulse reflectometry for the measurement of musical wind instruments

    Get PDF
    The bore profile and input impedance of a musical wind instrument provide valuable information about its acoustical properties. The time domain technique of acoustic pulse reflectometry can be used to measure the input impulse response of a tubular object, such as a wind instrument, from which both its bore profile and input impedance can be calculated. In this thesis, after a discussion of the theory of acoustic pulse reflectometry, the operation of a practical reflectometer is described and measurements of input impulse response, bore profile and input impedance are investigated. In general, the experimentally measured input impulse response of a tubular object contains a DC offset which must be removed for accurate bore reconstruction. A new, faster method of determining the DC offset is introduced which doesn’t require prior knowledge of the object’s dimensions. The bore profile of a test object, calculated by applying a lossy reconstruction algorithm to its input impulse response (after removal of the DC offset), is found to agree with directly measured radii to within 0.05mm. Various brass instrument reconstructions of similar accuracy are presented. An input impedance curve, calculated from the input impulse response of the test object, is found to have peak frequencies which agree with those of a theoretical curve to within 0.7% (a considerably better agreement than when a standard frequency domain measurement technique is used). Impedance curves of various brass instruments are presented. Bore reconstructions are used to confirm the presence, and in certain cases, the positions of leaks in instruments. For the special case of a leaking cylinder, the impedance curve is successfully used to calculate the size of the leak. Finally, a method is investigated which allows the practical reflectometer to measure longer objects than previously possible

    Rapid Scan Electron Paramagnetic Resonance (EPR) and Digital EPR Development

    Get PDF
    Rapid scan electron paramagnetic resonance (EPR) was developed in the Eaton laboratory at the University of Denver. Applications of rapid scan to wider spectra, such as for immobilized nitroxides, spin-labeled proteins, irradiated tooth and fingernail samples were demonstrated in this dissertation. The scan width has been increased from 55 G to 160 G. The signal to noise (S/N) improvement for slowly tumbling spin-labeled protein samples that is provided by rapid scan EPR will be highly advantageous for biophysical studies. With substantial improvement in S/N by rapid scan, the dose estimation for irradiated tooth enamels became more reliable than the traditional continuous wave (CW) EPR. An alternate approach of rapid scan, called field-stepped direct detection EPR, was developed to reconstruct wider EPR signals. A Mn2+ containing crystal was measured by field-stepped direct detection EPR, which had a spectrum more than 6000 G wide. Since the field-stepped direct detection extends the advantages of rapid scan to much wider scan ranges, this methodology has a great potential to replace the traditional CW EPR. With recent advances in digital electronics, a digital rapid scan spectrometer was built based on an arbitrary waveform generator (AWG), which can excite spins and detect EPR signals with a fully digital system. A near-baseband detection method was used to acquire the in-phase and quadrature signals in one physical channel. The signal was analyzed digitally to generate ideally orthogonal quadrature signals. A multiharmonic algorithm was developed that employed harmonics of the modulation frequencies acquired in the spectrometer transient mode. It was applied for signals with complicated lineshapes, and can simplify the selection of modulation amplitude. A digital saturation recovery system based on an AWG was built at X-band (9.6 GHz). To demonstrate performance of the system, the spin-lattice relaxation time of a fused quartz rod was measured at room temperature with fully digital excitation and detection

    Synthesis and design of suspended substrate stripline filters for digital microwave power amplifiers

    Get PDF
    In this paper, a synthesis method for suspended substrate stripline filters for digital microwave power amplifier applications is presented. The synthesis method combines a lumped element and full-wave mixed approach in a very efficient way. In order to achieve high amplifier efficiency the filter must exhibit a high input impedance in the stopband. This has been implemented for the first time by using a capacitively end coupled filter combined with stepped impedance resonators. A third order filter was designed. Simulations show that the final stage drain efficiency of the power amplifier and suppression of out-of-band frequency components can be significantly improved when the new structure is used

    Development and characterisation of an easily configurable range imaging system

    Get PDF
    Range imaging is becoming a popular tool for many applications, with several commercial variants now available. These systems find numerous real world applications such as interactive gaming and the automotive industry. This paper describes the development of a range imaging system employing the PMD-19 k sensor from PMD technologies. One specific advantage of our system is that it is extremely customisable in terms of modulation patterns to act as a platform for further research into time-of-flight range imaging. Experimental results are presented giving an indication of the precision and accuracy of the system, and how modifying certain operating parameters can improve system performance

    Design and Implementation of a Stepped Frequency Continuous Wave Radar System for Biomedical Applications

    Get PDF
    There is a need to detect vital signs of human (e.g., the respiration and heart-beat rate) with noncontact method in a number of applications such as search and rescue operation (e.g. earthquakes, fire), health monitoring of the elderly, performance monitoring of athletes Ultra-wideband radar system can be utilized for noncontact vital signs monitoring and tracking of various human activities of more than one subject. Therefore, a stepped-frequency continuous wave radar (SFCW) system with wideband performance is designed and implemented for Vital signs detection and fall events monitoring. The design of the SFCW radar system is firstly developed using off-the-shelf discrete components. Later, the system is implemented using surface mount components to make it portable with low cost. The measurement result is proved to be accurate for both heart rate and respiration rate detection within ±5% when compared with contact measurements. Furthermore, an electromagnetic model has been developed using a multi-layer dielectric model of the human subject to validate the experimental results. The agreement between measured and simulated results is good for distances up to 2 m and at various subjects’ orientations with respect to the radar, even in the presence of more than one subject. The compressive sensing (CS) technique is utilized to reduce the size of the acquired data to levels significantly below the Nyquist threshold. In our demonstration, we use phase information contained in the obtained complex high-resolution range profile (HRRP) to derive the motion characteristics of the human. The obtained data has been successfully utilized for non-contact walk, fall and limping detection and healthcare monitoring. The effectiveness of the proposed method is validated using measured results

    Absolute calibration and beam reconstruction of MITO (a ground-based instrument in the millimetric region)

    Full text link
    An efficient sky data reconstruction derives from a precise characterization of the observing instrument. Here we describe the reconstruction of performances of a single-pixel 4-band photometer installed at MITO (Millimeter and Infrared Testagrigia Observatory) focal plane. The strategy of differential sky observations at millimeter wavelengths, by scanning the field of view at constant elevation wobbling the subreflector, induces a good knowledge of beam profile and beam-throw amplitude, allowing efficient data recovery. The problems that arise estimating the detectors throughput by drift scanning on planets are shown. Atmospheric transmission, monitored by skydip technique, is considered for deriving final responsivities for the 4 channels using planets as primary calibrators.Comment: 14 pages, 6 fiugres, accepted for pubblication by New Astronomy (25 March
    • 

    corecore