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Abstract 

 
 
In the study of tubular structures such as pipeline sections, musical wind instruments and 

human airways, acoustic pulse reflectometry has become established as a useful tool for 

non-invasively measuring the input impulse response, from which the internal duct 

dimensions can be calculated. 

In this thesis, the theory describing wave propagation in a duct of varying cross-

section is outlined, culminating in a discussion of the layer peeling algorithm used to 

reconstruct a duct’s bore profile from its input impulse response. Experimental 

measurements of the input impulse responses of various test objects, together with the 

subsequent bore reconstructions, are then presented. 

The problem of offset in input impulse response measurements is discussed and the 

effect on the bore reconstruction is shown. The offset is found to consist of both a DC 

component and a sinusoidal component. Methods for eliminating the two offset 

components are explored and the resultant improvement in the stability and reproducibility 

of the bore reconstructions is demonstrated. 

Two adaptations to the reflectometry technique, designed to extend the bandwidth of 

input impulse response measurements, are described. The improved high frequency content 

brought about by these adaptations is shown to lead to bore reconstructions of high axial 

resolution, allowing rapid changes in cross-sectional area to be more accurately 

reproduced. 

 



 III

Finally, limitations of the acoustic pulse reflectometry technique (particularly those 

brought about by the bandwidth improvements) are discussed and potential future ways of 

overcoming the limitations are proposed. 
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Chapter 1  

Introduction  

 
 

Determining the internal dimensions of ducts of varying cross-section is a problem 

common to many branches of science and industry. In certain situations the dimensions can 

be measured directly, and with a high degree of accuracy, using tools such as rulers and 

calipers. However, it is often not possible to access the whole length of a duct, either due to 

its geometry or to the surrounding environment. Buried pipelines and musical wind 

instruments containing a number of bends are just two examples of ducts whose 

dimensions cannot be completely determined through direct measurement. Another 

example can be found in the medical field where it is often desirable to be able to monitor 

changes in human airway geometry. For inaccessible ducts such as these, a means of 

determining the internal dimensions indirectly and non-invasively must be employed. One 

such approach involves measuring the acoustical properties of the duct under investigation 

and then using this information to carry out a bore reconstruction. Algorithms for bore 

reconstruction typically start from the input impulse response of the duct, which is most 

commonly measured in the time domain using the technique of acoustic pulse reflectomery 

that is central to this thesis. However, the bore may also be reconstructed from the duct’s 

input impedance, which is usually measured in the frequency domain. 

In the next section, the history of bore reconstruction from acoustical measurements is 

discussed. The description starts with an outline of the development of the acoustic pulse 

reflectometry technique for determining duct dimensions from input impulse response 

measurements. It then goes on to discuss methods which calculate duct geometries from 

measurements of input impedance. 
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1.1  History of bore reconstruction 

 

1.1.1 Input impulse response approach 

 

Acoustic pulse reflectometry is a non-invasive, time domain based technique for measuring 

the input impulse response of a duct. From this, with the application of a bore 

reconstruction algorithm, the duct’s dimensions can be calculated.  

Acoustic pulse reflectometry was originally developed as a technique for studying the 

earth’s crust. The earth’s crust is made up of layers of different types of rock. When an 

impulsive pressure wave is produced, for instance during oil exploration, it travels down 

into the earth where it is partially reflected at each of the changes in impedance that occur 

between rock layers of different densities. The reflections return to the surface where they 

are recorded and termed the input impulse response. [Ware and Aki 1969] were the first to 

calculate the reflection coefficients of the layer boundaries from the input impulse 

response. However, their algorithm does not compensate for any losses experienced by the 

input and reflected pressure waves while travelling through the rock layers. 

In a largely theoretical paper published in 1971,  [Sondhi and Gopinath 1971] 

suggested adaptations  to the acoustic pulse reflectometry technique to enable the geometry 

of the vocal tract to be measured. They described how, by applying a sound pulse to an 

airway and recording the returning reflections, the airway dimensions could be calculated. 

This calculation was mathematically complex but, like the Ware-Aki algorithm, did not 

take into account any losses in the airway. An attempt to include the effect of losses was 

discussed in a later paper [Sondhi 1974] with some experimental results published in  

[Sondhi and Resnick 1983]. However, the treatment was not rigorous, with a number of 

simplifying approximations made in the modelling of the losses. 
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[Jackson et al. 1977, Jackson and Olsen 1980] reported an early design of pulse 

reflectometer which they used to measure the area profiles of the airways and lungs of 

dogs. A spark discharge was used to produce a sound pulse, which was then directed into 

the airway under investigation via a cylindrical tube referred to as the source tube. 

Reflections returning from the airway were recorded by a microphone in the source tube 

wall. Analysis of the reflections using the Ware-Aki algorithm then enabled Jackson et al. 

to reconstruct the profile of the airway. Similar measurements on human patients were 

carried out by [Fredberg et al. 1980] and later by [Marshall 1992] in a series of clinical 

trials.  

The earliest reported attempt to apply the acoustic pulse reflectometry technique to the 

analysis of musical wind instruments was by [Benade and Smith 1981]. Using a spark 

source, a sound pulse was produced and injected into a tuba. The reflections, recorded by a 

microphone positioned at the tuba mouthpiece, were considered to be the input impulse 

response of the tuba. Similar work was reported by [Ayers et al. 1985a; Ayers et al. 

1985b].   

At the University of Surrey, [Goodwin 1981] and [Duffield 1984] carried out further 

research into the use of acoustic pulse reflectometry for measuring musical wind 

instruments. They developed a reflectometer with a source tube which used a loudspeaker 

rather than a spark source. The non-impulsive nature of the pulse produced by the 

loudspeaker required the recorded reflections returning from the instrument under test to be 

deconvolved with the pulse shape in order to determine the input impulse response of the 

instrument. This deconvolution procedure was initially unsuccessful with the first 

successful implementation achieved by [Deane 1986] 

During the 1980s the work continued and reconstructions of brass instruments, 

calculated from input impulse response measurements made using acoustic pulse 

reflectometry, were presented by [Smith 1988] and Watson and Bowsher [Watson 1989; 

Watson and Bowsher 1987; Watson and Bowsher 1988]. The algorithms employed were 
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those developed by Sondhi and by Ware and Aki. As these algorithms do not take into 

account losses, the reconstructions of the instruments tended to increasingly underpredict 

the radius with the distance along the bore. Watson attempted to prevent this 

underprediction by manually adjusting the DC value of the input impulse response until the 

reconstructed radius matched with a measured radius at an arbitrary position towards the 

end of the measurement. However, this approach was not a rigorous method of 

compensating for the losses experienced by the input pulse and instrument reflections. 

 A reconstruction algorithm which takes into account losses precisely was developed 

by [Amir et al. 1995]. This ‘layer peeling’ algorithm was used by [Sharp and Campbell 

1997] in their work on the development of acoustic pulse reflectometry. Also in this 

research, to ensure the DC value of the input impulse response was correctly calculated, 

Sharp proposed the insertion of a 50 cm long cylindrical tube between the reflectometer 

and the duct under test. Since there should be no signal reflected back from this cylindrical 

tube, the start of the input impulse response should be zero. By averaging over the first few 

milliseconds, any DC offset present in the input impulse response can be found and then 

removed. The combination of this calibration procedure with the use of the lossy layer 

peeling algorithm enabled Sharp to achieve accurate reconstructions with no 

underprediction. 

The virtual DC tube method developed by [Kemp et al. 2001] is a variation of the DC 

tube method. By employing the virtual DC tube method, the need for insertion of the 

cylindrical tube is eliminated.  Reconstructions obtained using this method were shown to 

be much the same as those using the standard DC tube method. 
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1.1.2 Input impedance approach 

 

There is relatively little in the literature discussing bore reconstruction from frequency 

domain measurements of input impedance. The earliest reports of such work came in the 

medical research field with the papers of [Mermelstein 1967] and [Schroeder 1967]. Both 

of these researchers described how, by measuring the input impedance at the mouth, the 

cross-sectional area of an airway as a function of distance could be estimated from the 

resonance frequencies. Despite having to assume the overall vocal tract length and using 

only the first few resonances, [Schroeder 1967] in particular achieved good area profile 

reconstructions of several test objects.  

More recently, [Kausel 2003] described how, by performing a bilinear transform and 

then an Inverse Fourier Transform, measured input impedance data could be used to 

determine the input impulse response of a tubular object. Subsequently, the area profile of 

the object could be found by applying a reconstruction algorithm. However, this method of 

bore reconstruction from input impedance data was shown to be very sensitive to the 

accuracy of the measurements at low frequencies and to using the correct value for the 

characteristic impedance. 

In the same paper, Kausel proposed an alternative approach to bore reconstruction 

from measurements of input impedance. In this approach, the input impedance of a duct 

model made up of cylindrical sections of arbitrary initial radii is calculated theoretically. 

Using optimization techniques, the radii of the cylindrical sections are then adjusted until 

the calculated input impedance data matches a preciously measured impedance curve for 

the tubular object under investigation. Once this matching has been achieved, the 

theoretically modelled duct profile exhibits the same geometry as the tubular object whose 

input impedance was measured. This approach has been shown to provide bore 

reconstructions of good accuracy but is very computationally demanding. 
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1.2 Aims and outline of thesis 

 

The main aims of this research project are:  

1) to investigate causes of inconsistency and inaccuracy in measurements made 

using a standard pulse reflectometry system. 

2) to find ways of improving the consistency and accuracy of the pulse 

reflectometry technique. 

3) to increase the high frequency energy injected into the duct to be measured and 

thereby improve both the axial resolution of bore reconstructions and the accuracy 

with which regions of rapidly changing cross-sectional area are reconstructed. 

The outline of thesis is as follows: 

Chapter 2 describes the theory of plane wave propagation in a duct of varying cross-

section. The duct is modelled using piecewise cylindrical sections and the reflection and 

transmission of plane waves between the sections is discussed. Finally, the input impulse 

response of a duct of known geometry is theoretically derived. 

In chapter 3, the basic theory relating to the determination of the dimensions of a duct 

of varying cross-section from its input impulse response is discussed. The layer-peeling 

algorithm (in which losses are taken into account) that underpins the technique of acoustic 

pulse reflectometry is described. The success of the algorithm in reconstructing the bore 

profile of a stepped tube from a simulated input impulse response is then demonstrated. 

A working acoustic pulse reflectometer is described in chapter 4, with the 

experimental procedure for operating it discussed in detail.  A test object is measured on 

the reflectometer and its experimental input impulse response is presented. 

In chapter 5, problems with the consistency and accuracy of the pulse reflectometry 

technique are investigated. The origin of the offset introduced into measurements of input 

impulse response is studied. Possible sources of the offset are then identified and methods 
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of preventing the offset are proposed. Finally, an accurate bore reconstruction of a test 

object, calculated from an improved input impulse response measurement where the offset 

has been eliminated, is presented. 

In chapter 6, the improvements in bore reconstructions brought about by the 

elimination of offsets from input impulse response measurements are illustrated using both 

stepped tubes and musical instruments as test objects. 

The finite bandwidth of an input impulse response measurement made using 

reflectometry limits the axial resolution of the calculated bore profile and is one of the 

reasons why regions of rapidly changing cross-section are poorly reconstructed. In chapter 

7, the importance of the high frequency content of the input impulse response to the 

accuracy of the bore reconstruction is demonstrated. A method is proposed for increasing 

the acoustic energy entering the duct under investigation. The approach involves 

supplementing the standard sound pulse measurement by probing the duct further with 

bursts of high frequency sinusoidal pressure waves.  

 In chapter 8, an alternative means of improving the bandwidth of input impulse 

response measurements is discussed. This involves shortening the reflectometer’s source 

tube. Whilst this reduces the losses incurred within the source tube, the reduction in length 

results in the input pulse and object reflections overlapping. A new calibration method for 

separating the signals of interest is described and results are presented. 

In the last chapter, the effect of higher order modes of propagation on bore 

reconstructions made using acoustic pulse reflectometry is demonstrated and discussed. 

Some ideas for future work are also outlined. 
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Chapter 2  

Wave propagation in a duct of varying cross-section— 

the direct problem 

 

2.1 Introduction 

 

In general, sound waves have non-planar wavefronts and propagate in a complex three-

dimensional manner. Consequently, their motion can be difficult to model. However, there 

are conditions under which a simplified model is sufficient to describe acoustic wave 

propagation. This is the plane wave model, in which sound waves are assumed to have the 

same direction of propagation everywhere in space and their wavefronts are in planes 

perpendicular to that direction of propagation.  

When a sound wave is travelling inside a tube and the wavelength is large compared 

with the diameter of the tube, wave propagation is very nearly one-dimensional. That is, 

waves inside the duct can be considered to be plane waves.  

In this chapter, the plane wave model is discussed and the propagation of waves in 

ducts of both uniform and varying cross-section is considered. 
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2.2 One-dimensional wave equation 

 

2.2.1 Waves travelling in air 

 

Acoustic waves in air are longitudinal in nature, meaning that the motion of the air 

particles transmitting the wave is parallel to the direction of propagation of the wave. For 

one-dimensional propagation in the x-direction, the wave equation in terms of the pressure 

p is expressed as [Morse and Ingard 2000] 

 

                
2

2

22

2 1
t

p
cx

p
∂
∂

=
∂
∂                                                   (2.1) 

 

where c is the acoustic wave velocity and t is the time. Note that ρκ=2

1
c

, where ρ and κ 

are respectively the equilibrium density of air and the compressibility of air.  

It is necessary to point out that equation (2.1) is restricted to homogeneous, isotropic 

fluids and that small wave amplitude is also assumed. For this reason, equation (2.1) is 

often referred to as the linear, lossless wave equation.  

A solution of equation (2.1) has the form  

 

                   ),(),(),( txptxptxp −+ +=                                       (2.2) 

where 

 

)(),( kxtiAetxp −+ = ω                                               (2.3a) 

)(),( kxtiBetxp +− = ω                                               (2.3b) 
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where ω is the angular frequency (given by ω = 2π f, where f is the frequency in Hertz) 

and k = ω / c is the wave number.  p+(x, t) in equation (2.3a) refers to waves travelling in 

the +x direction and p-(x, t) in equation (2.3b) refers to waves travelling in the –x direction. 

A and B therefore represent the amplitudes of the waves travelling in the +x direction and 

the waves travelling in the –x direction respectively.  

The equation of wave motion written in terms of velocity u is  

 

                      
x
p

t
u

∂
∂

−=
∂
∂

ρ
1                                                  (2.4) 

 

Solving equation (2.4), the particle velocity in the x-direction is given by 

 

                  ][1),( )()( kxtikxti BeAe
c

txu +− −= ωω

ρ
                           (2.5) 

 

According to  (2.3a) and (2.3b), 

     
c

txptxu
ρ

),(),(
+

+ =                                                  (2.6a)  

                       
c

txptxu
ρ

),(),(
−

− −=                                                (2.6b) 

 

The ratio of the acoustic pressure p to the velocity u is known as the specific acoustic 

impedance z. That is,  

 

u
pz =                                                            (2.7) 

 

Combining equations (2.6) and (2.7), for plane wave propagation:  
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                                     c
u
pz ρ±==                                                    (2.8) 

 

with the positive value applying to waves travelling in the +x direction and the negative 

value applying to waves travelling in the –x direction. The product ρc is defined as the 

characteristic impedance zc of the medium (in this case, the medium is air). 

 

2.2.2 Waves travelling in a duct 

 

Acoustic waves of sufficiently large wavelength (low frequency) travelling in a cylindrical 

tube, to a good approximation, propagate as plane waves. This is because, in a cylindrical 

tube, higher order modes are evanescent at low frequencies. That is, they decay rapidly 

with distance along the duct and so do not propagate.  

Each higher order mode has a cut off frequency ωc associated with it. Below this cut 

off frequency, the corresponding higher order mode is non-propagating. The cut off 

frequency corresponding to the first nonplanar mode is ωc = 1.84c/r for an air-filled 

cylindrical duct, where r is the radius of the tube. Expressed in Hertz, this is 

approximately fc = 100/r [Kinsler et al. 2000]. For example, in a cylindrical tube of radius r 

= 8×10-3 m, the first nonplanar mode has a cut off frequency fc = 12.5 kHz. At frequencies 

lower than fc, higher order modes do not propagate inside the duct. Consequently, waves 

with frequencies smaller than the cut off frequency can be considered to propagate as plane 

waves. One-dimensional wave propagation inside the tube can be conveniently described 

using equation (2.1) at such frequencies.  

As the extent of the wavefronts is restricted by the dimensions of the cylindrical tube, 

it is convenient to introduce the volume velocity ,SuU = where S is the cross-sectional 
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area of the tube. The acoustic impedance at any cross-section in the tube is defined as the 

ratio of the pressure and the volume velocity: 

       

                                     
U
pZ =                                                                         (2.9) 

 

Combining equations (2.8) and (2.9), the acoustic impedance at a cross section of area S is 

given by: 

 

                                                    
S
c

Su
pZ ρ

±==                                                    (2.10) 

 

with the positive value applying to waves travelling in the +x direction and the negative 

value applying to waves travelling in the –x direction. The term 
S
cρ  is defined as the 

characteristic impedance Zc of the fluid-filled duct (in the current discussion, the fluid is 

air).  

 

2.2.3 Reflection and transmission at a single discontinuity 

 

If a planar acoustic wave propagating in an air-filled duct encounters a change in cross-

sectional area, the associated change in characteristic impedance causes partial reflection 

and partial transmission of the incident wave. 

Figure 2.1 shows the junction between two cylinders, one with cross-sectional area S0 

and one with cross-sectional area S1. The incident and reflected waves in the first 

cylindrical tube are represented by ),(0 txp+ and ),(0 txp−  respectively while ),(1 txp+ is the 

transmitted wave in the second cylindrical tube. If it is assumed that the second cylinder is 

semi-infinite, there will be no backward travelling waves present.  
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Figure 2.1: Scattering junction  

 

The incident and reflected waves in the first cylinder take the form 

 

)(
00 ),( kxtieAtxp −+ = ω                                             (2.11a) 

                                              )(
00 ),( kxtieBtxp +− = ω                                     (2.11b) 

 

While the transmitted wave in the second cylinder can be written as 

 

)(
11 ),( kxtieAtxp −+ = ω                                                (2.12) 

 

The pressure and volume velocity at the junction are continuous. At x = 0, therefore 

 

                     ),0(0 tp+  + ),0(0 tp− = ),0(1 tp +                                         (2.13) 

                 
1

1

0

0

0

0 ),0(),0(),0(

ccc Z
tp

Z
tp

Z
tp +−+

=−                                        (2.14)     

 

where 
0

0 S
cZ c

ρ
=  is the characteristic impedance of the first cylinder and 

1
1 S

cZ c

ρ
=  is the 

characteristic impedance of the second cylinder. 

x = 0

p0
+(x ,t) 

p0
-(x ,t) 

p1
+(x, t) 

S0 S1 
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Combining equations (2.13) and (2.14), 

 

10

10

01

01

0

0

),0(
),0(

SS
SS

ZZ
ZZ

tp
tp

cc

cc

+
−

=
+
−

=+

−

                                       (2.15) 

 

Examination of equations (2.11a) and (2.11b) reveals that, at x = 0, the ratio of the 

instantaneous pressures of the reflected and incident waves is simply the ratio of their 

amplitudes. 

 

                                           
0

0

0

0

),0(
),0(

A
B

tp
tp

=+

−

                                                    (2.16) 

 
Therefore, combining equations (2.15) and (2.16) yields the reflection coefficient r0,1 (the 

ratio of the pressure amplitude of the reflected wave to that of the incident wave) for the 

boundary between first cylinder and second cylinder: 

                   

                  
10

10

0

0

0

0
1,0 ),0(

),0(
SS
SS

tp
tp

A
B

r
+
−

=== +

−

                                                 (2.17) 

 

The reflection coefficient depends only on the change of cross-sectional area. 

 

2.3 Plane wave propagation in a duct of varying cross-section  

 

A duct whose cross-section varies along its length can be modelled as a series of short 

cylindrical segments, each of length L with corresponding two-way travel time T = 2L/c 

[Marshall et al. 1991]. Figure 2.2 shows such a discretised tube consisting of segments 
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from 1 to N, terminated at the left end by a semi-infinite cylinder (defined as being the 

‘zeroth’ segment). 

 

Figure 2.2: Cylindrically segmented duct 

 

Consider the situation where both forward and backward travelling pressure waves 

propagate within each segment. T is defined as two-way travelling time within each 

segment. At the junctions between segments, each travelling wave experiences reflection 

and transmission. In Figure 2.3, the pressure signals around an arbitrary junction (between 

the jth and (j+1)th cylindrical segments) are shown. +
rjp , [nT] and −

rjp , [nT] represent  the 

forward and backward travelling waves at the right side of the jth segment, +
+ ljp ,1 [nT] 

and −
+ ljp ,1 [nT] represent the forward and backward travelling pressure waves at the left side 

of the (j+1)th segment, and +
+ rjp ,1 [nT]  and −

+ rjp ,1 [nT] represent the forward and backward 

travelling waves at the right side of the (j+1)th segment (all at time nT, where n = 0, 1/2, 1, 

3/2, 2… ). Note that the pressure signals are now only represented at discrete times (integer 

multiples of the time taken to propagate across one cylindrical segment). 

 0        L         2L       3L (j-1)L     jL    (j+1)L  (N-1)L     NL 

 Segment Number 0         1         2          3   j        j+1      j+2     N-1       N 

x =      
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Figure 2.3: The jth and the(j+1)th cylindrical segments  

 

Over the next two sections, wave scattering at a junction between two segments and 

wave propagation across a cylindrical segment are discussed. These discussions are then 

drawn together, resulting in a model that describes wave propagation in a duct of varying 

cross-section. 

 

2.3.1 Plane wave scattering at a junction 

 

The pressure and volume velocity across the junction between two cylindrical segments 

must both be continuous. These conditions can be used to derive an expression relating the 

pressure on either side of the boundary. Consider, for example, the junction between the jth 

and (j+1)th segments illustrated in Figure 2.3. The continuity conditions mean that:  

 

 (j+1)L   jL 

+
+ rjp ,1 [nT] 

−
+ ljp ,1 [nT] 

+
+ ljp ,1 [nT] +

rjp , [nT]

−
rjp , [nT]

  j                                  j+1 

−
+ rjp ,1 [nT] 

 (j-1)L 

Segment Number 

x = 
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                     ][, nTp rj
+  + ][, nTp rj
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+ +                             (2.18) 
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where 
j

cj S
cZ ρ

=  is the characteristic impedance of jth cylindrical segment and 

1
)1(

+
+ =

j
jc S

cZ ρ  is the characteristic impedance of (j+1)th cylindrical segment. 

 

Equations (2.18) and (2.19) can be rearranged and written in a matrix form as 
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which, in terms of cross-sectional area, can be written 
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If equation (2.17) is extended to the junction between the jth and (j+1)th segments, the 

reflection coefficient can be expressed as:  

 

1

1
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−
=
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jj SS
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Consequently, by combining equations (2.21) and (2.22), the scattering equation can also 

be expressed in terms of the reflection coefficient. 
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                           (2.23) 

 

2.3.2 Plane wave propagation through a cylindrical segment 

 

If it is assumed for the moment that waves propagating within a duct experience no 

attenuation then, referring again to Figure 2.3, the forward and backward travelling waves 

( +
+ ljp ,1 [nT] and −

+ ljp ,1 [nT]) at the left end of the (j+1)th cylindrical  segment can be 

expressed in terms of the forward and backward travelling waves ( +
+ rjp ,1 [nT]  

and −
+ rjp ,1 [nT]) at the right side of the segment by using two delay lines, each of duration 

L/c = T/2 seconds (as shown in Figure 2.4). 

 

Figure 2.4: Cylindrical segment modelled as delay lines 

 

−
+ rjp ,1 [nT] −

+ ljp ,1 [nT] 

+
+ ljp ,1 [nT] 

 

jL (j+1)L

Delay t =L/c 

Delay t =L/c 

+
+ rjp ,1 [nT] 
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The effect of these delay lines is to add a time of L/c seconds to the forward travelling 

waves and subtract L/c seconds from the backward travelling waves. That is, 

 

]
2

[][ ,1,1
TnTpnTp rjlj += +

+
+

+                                      (2.24a) 

]
2

[][ ,1,1
TnTpnTp rjlj −= −

+
−

+                                     (2.24b) 

 

The delay of T/2 can be expressed in terms of a complex exponential term: 

 

                  ][][ ,1,1 nTpenTp rj
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+
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+ =                                       (2.25a) 
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+ =                                    (2.25b)       

        

Equations (2.25a) and (2.25b) can be written in a matrix form as 
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Note that, so far in the discussions, it has been assumed that sound propagation is lossless. 

In fact, viscous losses and heat conduction losses are significant when sound waves 

propagate within tubular objects of the sizes used in this project. The effect of such losses 

should be therefore taken into account.  

 

The term ikLe−  (where k = ω/c) represents a delay of T/2 in frequency domain. To include 

losses, this term is replaced by 

 

                      LeH Γ−=)(ω                                                     (2.27)    
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where Γ is a complex wavenumber. For losses in a cylinder of radius r and length L, an 

expression for Γ is given by  [Keefe 1984], 

 

                     
pvi ωωα +=Γ )(                                                   (2.28) 

 

where α(ω) is the frequency dependent attenuation due to boundary layer effects, ω is the 

angular frequency and νp is the phase velocity. These parameters can be written as: 

 

                    ( )321)( −−− ++= vvv CrBrAr
c
ωωα                                         (2.29)        

                      ( )311 −− −+= vv
p
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ωω                                               (2.30) 

where rrv

2
1

⎟
⎠
⎞⎜

⎝
⎛= η
ωρ is the ratio of the duct radius to the viscous boundary layer, ρ is the 

air density and η is the coefficient of shear viscosity of air. The coefficients A, B and C 

depend on the thermodynamic constants: 
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where ,κ
η pCv = vD )1( −= γ , Cp is the specific heat of air at constant pressure, κ is 

the thermal conductivity of air, γ is the ratio of the principal specific heats of 
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air, 273/16.331 τ+=c  is the speed of sound in air in ms-1 and τ is the air temperature in 

Kelvin. 

When losses are taken into consideration, the matrix representation of wave propagation in 

the (j+1)th segment becomes: 
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2.3.3 Plane wave propagation through multiple segments 

 

By combining equations (2.23) and (2.34), a single matrix equation describing plane wave 

propagation from one cylindrical segment to the next can be derived. The equation 

describes the pressure waves on the right side of the jth segment in terms of those on the 

right side of the (j+1)th segment. 
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where 
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For a duct like that of Figure 2.2, which is modelled as N cylindrical segments and is 

coupled at the left end to a semi-infinite tube (the ‘zeroth’ segment), each of the segments 

has a matrix of the same form as equation (2.36). The forward and backward travelling 
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waves at the junction between the semi-infinite tube and the first segment can be expressed 

in terms of those in the final Nth segment through the multiple application of equation 

(2.35).  
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The product of this group of matrices can be written simply as  
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The ratio of the backward travelling waves and the forward travelling waves at the entry of 

the duct is defined as the reflectance IIR(ω). The reflectance of the duct can therefore be 

found by combining equations (2.37) and (2.38),  
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Providing that the dimensions of the duct (and hence the elements of matrix M) are known, 

the reflectance can be determined from the ratio of the forward and backward travelling 

waves at the right end of the duct. This ratio depends on how the duct is terminated at the 

far end. Two termination conditions are considered here: 
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1. If a semi-infinite tube is coupled to the right end of the duct, there are no 

backward propagating pressure waves; i.e. 0][, =− nTp rN . Therefore, the ratio 

0
][
][

,

, =+

−

nTp
nTp

rN

rN and     

 

                         
aa

ba

M
MIIR =)(ω                                                        (2.40) 

 

2. If the duct terminates in an open end, some of the sound energy is radiated 

out into free space but most is reflected to produce backward waves. In this case, the 

load impedance ZL at the end of the duct is the radiation impedance. For an unflanged 

cylindrical duct, the radiation impedance is given by [Kinsler et al. P274]. 
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4
1 2                                          (2.41) 

 

where k is wave number and r is the radius at the end of the duct. Again, ZcN is the 

characteristic impedance of the Nth cylindrical segment. 

As a result of the pressure and volume velocity continuity conditions, the load 

impedance ZL can also be expressed in terms of the pressure and the characteristic 

impedance ZcN.  It is given by 
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Rearranging this equation yields an expression for the ratio of backward travelling 

wave and forward travelling waves at the right end of the duct. 
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From equations (2.39), (2.41) and (2.43), the reflectance of the duct becomes 
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2.3.4 Simulated input impulse response 

 

Figure 2.5 shows the reflectance of a 310 mm long stepped tube (comprising two 

cylindrical sections of length 0.13 m and radii 6.2 mm and length 0.18 m and radii 9.45 

mm respectively) calculated using the theory outlined in this chapter. The stepped tube is 

discretised into 45 cylindrical segments each of approximate length L = 6.9 mm. It is clear 

that, at very long wavelengths, little energy is radiated out of the open end. However, at 

high frequencies, more and more energy radiates out of the open end and the reflectance is 

decreased. 

As mentioned previously, the reflectance is the ratio of the reflected waves to the 

incident waves at the input of the duct in the frequency domain. In the time domain, this 

ratio is known as the input impulse response (iir) of the duct. This is simply the response 

that would be measured if the duct were probed with an acoustic impulse. That is, when the 

incident wave is an impulse, the reflected wave is the input impulse response               
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][][,0 nTiirnTp r =−                                                              (2.46) 

 

where ][nTiir represents the discrete form of the input impulse response. 

 

 

Figure 2.5: Reflectance of a stepped tube 

 

Figure 2.6 shows the input impulse response of the stepped tube obtained by 

performing an inverse FFT on the reflectance shown in Figure 2.5. Each of the reflections 

in the input impulse response can be identified. The first negative peak is the reflection 

from the first expansion in the stepped tube (from a radius of 6.2 mm to a radius of 9.45 
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mm). The second negative peak is the reflection from the open end. Subsequent peaks are 

multiple reflections which have taken place within the stepped tube. 

 

Figure 2.6: Input impulse response of a stepped tube 

 

2.4 Concluding remarks 

 

In this chapter, the reflection and transmission of plane waves within varying cross-section 

ducts of known dimensions has been discussed. This type of problem is referred to as the 

‘Direct Problem’. Solving the ‘Direct Problem’ is in essence predicting the reflectance, and 

hence the input impulse response of a duct, given knowledge of its dimensions. In the 

following chapter, we will discuss the ‘Inverse Problem’. As the name suggests, solving 

the ‘Inverse Problem’ involves calculating the dimensions of a duct given its input impulse 

response. As will become clear, this is the basic theory that underpins acoustic pulse 

reflectomery.  
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Chapter 3 

Wave propagation in a duct of varying cross-section— 

the inverse problem 

 

3.1 Introduction 

 

In this chapter, the inverse problem of determining the dimensions of a duct from its input 

impulse response is discussed. The algorithm used to calculate duct dimensions is first 

introduced with no account taken of viscous thermal losses. However, such losses are 

significant when sound waves propagate in tubular objects of the sizes examined in this 

study. Consequently, the algorithm is then extended to incorporate the effect of visco-

thermal losses. 

 

3.2 The reconstruction algorithm 

 

The first means of solving the inverse problem was provided by [Ware and Aki 1969]. 

However, as the Ware-Aki algorithm does not compensate for the effect of losses, the bore 

reconstructions it produces tend to underpredict the duct’s radial dimensions. An 

alternative layer peeling approach, developed by Amir et al. [Amir et al. 1995], allows 

losses to be taken into account. It is this solution to the inverse problem that was used by 

[Sharp and Campbell 1998] in their development work on the acoustic pulse reflectometry 

technique and which has been adopted in this present study. 
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3.2.1 Lossless method 

 

Consider a duct of varying cross-section that is modelled as a series of short cylindrical 

segments, each of length L, and terminated at one end by a semi-infinite cylinder (such as 

the duct shown previously in figure 2.2). An incident wave injected into the duct via the 

‘zeroth segment’ (the semi-infinite tube) will experience partial reflection and partial 

transmission at each segment boundary within the duct. The wave propagation in the 

zeroth and first segments in such a case is shown in Figure 3.1.   

 

 

Figure 3.1: Forward and backward travelling waves in a duct. 

 

If the incident wave injected into the duct is an acoustic impulse ( ][][,0 nTnTp r δ=+ ), 

then the reflected wave is the input impulse response ( ][][,0 nTiirnTp r =− ).  At time  t = 

0 (defined as being the instant that the incident wave arrives at the entrance to the duct—

the boundary between the zeroth and first segments), there are no backward travelling 

waves in the first cylindrical segment. That is, ][,1 nTp l
−  and ][,1 nTp r

− are both zero. 

Consequently, the backward travelling wave in the zeroth segment is simply the reflection 
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of the forward travelling wave in that segment. The reflection coefficient at the boundary 

between the segment 0 and segment 1 is therefore: 

              

  ]0[
]0[
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−

                                        (3.1) 

 

where ]0[,0 Tp r
+  and ]0[,0 Tp r

− are the incident and reflected waves and ]0[ Tiir is the input 

impulse response, all at t = 0. 

In equation (2.22), the reflection coefficient for the boundary between two arbitrary 

segments (the jth and the (j+1)th) was expressed in terms of the cross-sectional areas of 

those segments. Rearranging equation (2.22) therefore allows the cross-sectional area of 

the (j+1)th segment to be expressed in terms of the area of the jth segment and the 

reflection coefficient rj,j+1: 
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Therefore, assuming that the cross-sectional area 0S of the zeroth segment (the semi-

infinite cylinder) is known, the area 1S of the first segment can be found from the reflection 

coefficient r0,1 using equation (3.2).  

The forward and backward travelling pressure waves at the left side of the first segment, 

][,1 nTp l
+ and ][,1 nTp l

− , can be obtained from the forward and backward waves in the zeroth 

segment by rearranging the scattering equation (2.23), to give:  
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Next the pressure waves at the right side of the first segment must be found. To determine 

the forward and backward travelling pressure waves, ][,1 nTp r
+  and ][,1 nTp r

− , at the right 

side of the first segment, a delay of T/2 is added to ][,1 nTp l
+ and subtracted from ][,1 nTp l

−  

using the delay equation (2.24).  

At the boundary between the first and second segments, when t = T/2, there is no backward 

travelling wave in the second segment. Therefore, the reflection coefficient at the junction 

between the first and second cylindrical segments is given by: 

                    

                    1 ,
1 , 2

1 ,

[ 2 ]
[ 2 ]

r

r

p T
r

p T

−

+=                                                 (3.4) 

 

It should be noted that, when implementing the algorithm in practice, it is more convenient 

and entirely equivalent to subtract a delay of T from ][,1 nTp l
−  and leave ][,1 nTp l

+  

unchanged. The time origin shift then requires the reflection coefficient r1,2 to be calculated 

at t = 0 rather than at t = T/2. 

Again, using equation (3.2), the cross-sectional area 2S  can be obtained from the 

previously calculated cross-sectional area 1S and the reflection coefficient r1,2.  

The layer peeling procedure is carried out recursively until the reflection coefficient at 

each junction is determined and the entire area profile of the duct is calculated.  

 

3.2.2 Incorporating the effect of losses 

 

In the previous section, it was assumed that waves propagating from one side of a 

cylindrical segment to the other experienced a time delay of T/2 but experienced no  

viscous and thermal (heat conduction) losses in doing so. In order to calculate the duct 
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profile accurately, however, such visco-themal losses must be taken into account. A digital 

filter representing the losses in a cylindrical segment has been developed by [Amir et al. 

1996]. This filter depends on the length and radius of the segment. To compensate for the 

effect of losses, in addition to the T/2 delay, such a digital filter is applied to each segment 

in the layer peeling algorithm. (Note that at each stage of the algorithm, the radius of the 

following segment is calculated, so the appropriate lossy filter can also be calculated). 

Referring back to equations (2.27) and (2.28), the continuous frequency domain lossy filter 

for waves propagating through a cylindrical segment is given by 

 

                 pvlill eeeH /)()( ωωαω −−Γ− ==                                     (3.5) 

 

The numerical computation of the equivalent digital frequency domain lossy filter is 

detailed in [Amir et al. 1995 and 1996]. By inverse Fourier Transforming the discretized 

lossy filter, the digital filter hj[nT] is found. 

Moving from the left side to the right side of a cylindrical segment, the forward travelling 

wave ][, nTp lj
+ , is simply passed through the filter hj[nT]. Meanwhile the backward 

travelling wave ][, nTp lj
− , is passed through the inverse filter of hj[nT]. Therefore, to include 

losses in the reconstruction procedure, the following equations are applied before adding 

and subtracting the delays of T/2 from ][, nTp lj
+  and ][, nTp lj

− : 

 

              ][][][ ,, nThnTpnTp jljlj ⊗= ++                                         (3.6a) 

              ][][][ 1
,, nThnTpnTp jljlj

−−− ⊗=                                         (3.6b) 

 

where the operators ⊗ and ⊗-1 represent convolution and deconvolution, and hj[nT] is the 

digital lossy filter in the jth segment.  
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3.3 Bore reconstruction using simulated data 

 

Figure 3.2 shows the bore reconstruction of a 310 mm long stepped tube (comprising 

cylindrical sections of radius 6.2 mm and 9.45 mm respectively). The reconstruction was 

calculated by applying the layer peeling algorithm to the simulated input impulse response 

of Figure 2.6. The cylindrical sections of radius 6.2 mm and 9.45 mm are reconstructed 

accurately. 

 

Figure 3.2: The reconstruction resulting from the application of layer-peeling 
algorithm to simulated data 

 
 

3.4 Concluding remarks 

 

In this chapter, the basic theory of solving the inverse problem of determining the 

dimensions of a duct of varying cross-section from its input impose response was 
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discussed. The layer-peeling algorithm that underpins the technique of acoustic pulse 

reflectometry has been described and successfully applied to the bore reconstruction of a 

stepped tube from simulated input impulse response data. In the next chapter, the technique 

of acoustic pulse reflectometry is introduced, detailing how it is used for measuring the 

input impulse response of ducts (from which the geometry can then be deduced using the 

layer peeling algorithm). 
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Chapter 4  

Experimental measurement of input impulse response 

 

4.1 Introduction 

 

The acoustic pulse reflectometry technique for measuring various different duct properties 

was first introduced in chapter 1. It involves injecting a sound pulse via a source tube into 

the duct under investigation. The reflections returning from the duct are recorded by a 

microphone embedded in the source tube wall and then analyzed to find the input impulse 

response of the duct, from which its internal dimensions and input impedance can be 

deduced. The technique is particularly useful in cases, such as human airways and certain 

musical wind instruments, where parts of the duct are inaccessible to tools such as 

measuring calipers and rulers.  

In this chapter, the acoustic pulse reflectometry experimental apparatus developed by 

Sharp [Sharp 1996] is described and input impulse response measurements are presented. 

 

4.2 Experimental Procedure 

 

Figure 4.1 shows a schematic diagram of the reflectometer used in the present study. A 

photograph of the apparatus is shown in Figure 4.2. 
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Figure 4.1: Schematic diagram of acoustic pulse reflectometer 

 

 

Figure 4.2: Photo of reflectometer  
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A 5V electrical pulse of 40 µs duration is produced by a computer with data 

acquisition facilities, sent to an amplifier and then used to drive a loudspeaker. The 

resultant sound pressure pulse travels down a 10 m long coiled source tube of internal 

radius 5 mm and is injected into the duct under test. The duct reflections are recorded by a 

microphone embedded in the wall of the source tube and are sampled by the computer’s 

data acquisition card using a sampling rate of Fs= 50 kHz. The sampled duct reflections are 

stored on the PC. This experimental procedure is repeated 1000 times and the sampled 

reflections are averaged to improve the signal-to-noise ratio.  

The source tube is necessary to separate forward and backward travelling signals. The 

section l2 = 3 m ensures that input pulse has fully passed the microphone before the first of 

the reflections returning from the duct reaches it. The section l1 = 7 m ensures that the duct 

reflections are separated from any further reflections from the loudspeaker. Once the duct 

reflections reach the microphone, they can be recorded for up to 2l1/c seconds (the time 

taken to travel the distance from the microphone to the loudspeaker and back, where c is 

the speed of sound) before the loudspeaker reflections return and contaminate the received 

signal. 

 

4.3 Deconvolution  

 

If the incident sound pressure pulse were an ideal delta function then the reflections 

recorded by the microphone would be the input impulse response of the duct. In practice, 

though, it is impossible to produce a delta function sound pressure pulse. However, making 

use of signal processing techniques, the deconvolution of the duct reflections with the 

incident wave enables the input impulse response of the duct to be determined.   
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The incident wave ][,0 nTp r
+ produced by the experimental reflectometer is a pulse of 

finite width. Therefore, to obtain the input impulse response of the duct, the measured 

reflections are deconvolved with the input pulse. By rigidly terminating the source tube 

using a cap with a flat face, the backward reflected pulse is recorded and used as the input 

pulse. This ensures that both the duct reflections and the input pulse travel up and down the 

same length l2 of source tube and hence experience the same source tube losses. It also 

ensures that the deconvolution yields just the input impulse response of the duct under test, 

without the section l2 of source tube included. The deconvolution is carried out by 

performing a FFT on both the duct reflections and the input pulse. A complex division is 

then carried out in the frequency domain: 

 

                                         
)(
)()(

ω
ωω

I
RIIR =                                           (4.1a) 

 

where ω is the discretized angle frequency, I(ω) is the Fourier Transform of the input pulse 

and R (ω) is the Fourier Transform of the duct reflections. IIR(ω) is the Fourier transform 

of the input impulse response, which is then inverse FFTed to give the  input impulse 

response in the time domain, iir[nT]. 

In practice, a constrained deconvolution is used:                      

                    

qII
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ωωω                                 (4.1b) 

 

where I*(ω) denotes the complex conjugate of I(ω) and q is a constraining factor, used to 

prevent division by zero at higher frequencies where the input pulse drops below the 

background noise level [Marshall 1990]. It therefore acts like a low-pass filter. Again, the 

input impulse response iir[nT] is found by inverse FFTing  IIR(ω). 
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The frequency domain division of the duct reflections R(ω) by the input pulse I(ω) is 

considered to be an ill-posed problem [Sondhi 1981; Sondhi and Resnick 1983]. The 

introduction of the constraining factor q in the deconvolution, as shown in equation (4.1b), 

is one means of resolving the problem. Another means of overcoming the problem is 

provided by the method of Singular Value Decomposition (SVD), as described in detail in 

[Forbes  et al. 2003]. By truncating the singular value decomposition of the convolution 

matrix of the input pulse, the input impulse response is obtained.  

 

4.4 Optimising the reflectometer 

 

When recording the input pulse (reflected from the rigid termination provided by the 

source tube end cap) and the duct reflections, it is important to ensure that the signal-to-

noise ratio is as high as possible. This is achieved through adjustment of the two amplifiers 

present in the reflectometer set-up (see Figure 4.1). However, there are upper limits on the 

amount of amplification that can be used. To avoid damage to the loudspeaker, the 

amplification of the initial electrical pulse must not be too great. In addition, the output of 

the microphone amplifier must remain within the  -6V to +6V range over which the 

amplifier behaves linearly. In fact, both the recorded input pulse and the duct reflections 

actually need to be within a -5V to +5V range as this is the maximum input range of the 

data acquisition card. 

Taking these limits into consideration, it might be considered optimal to adjust the 

amplifiers so that the input pulse (returning to the microphone after reflection from the end 

cap) has an amplitude of approximately +5V. However, when this is done, distortion is still 

introduced into the input pulse. This can be seen clearly in Figure 4.3. The solid line shows 

the reflected input pulse recorded when the amplifiers were adjusted to give it an amplitude 

of just less than +5V. This pulse is plotted together with a second reflected pulse (plotted 
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as a dashed line), this time recorded when the amplifiers were adjusted to give it an 

amplitude of just under  +1V (on the graph, the pulse has been scaled up by ×5 for 

comparison purposes). If the reflectometer were behaving linearly, the two curves should 

coincide. However, close examination reveals that this is not the case. 

 

Figure 4.3: Comparison of measured input pulses (amplifier behaving non-linearly) 

 

The reason for this is that the effect of the initial forward travelling pulse has not been 

considered. When the amplification is adjusted to ensure that the reflected input pulse has 

an amplitude of +5V, safely within the -6V to +6V range of the amplifier, the initial 

forward travelling pulse has an amplitude of +15V, which is clearly outside the amplifier’s 

linear range. This is highlighted in Figure 4.4 which shows both the +15V initial forward 

travelling pulse as it passes the microphone (the signal data outside of the  -6V to +6V 

range of the amplifier is cut off and not shown) and the returning +5V reflected pulse. 
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Figure 4.4: The initial forward travelling and reflected pulses 

 

Consequently, to avoid distortion, it is actually necessary to adjust the amplifiers so 

that the initial forward travelling pulse has an amplitude of approximately +5V. Figure 4.5 

demonstrates this. The solid line shows the reflected input pulse of approximately +1.5 V 

amplitude, recorded when the amplifiers were adjusted to give an initial forward travelling 

pulse of +5 V amplitude. Also shown is the reflected input pulse recorded when the initial 

forward travelling pulse has an amplitude of +1 V (on the graph, as before, the pulse has 

been scaled up by ×5 for comparison purpose and is shown as a dashed line). The two 

curves coincide, indicating that with these levels of amplification the reflectometer behaves 

linearly. 
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Figure 4.5: Comparison of measured input pulses (amplifier behaving linearly) 

 

4.5 Input impulse response measurements of a stepped tube 

 

In this section, measurements made using the reflectometer shown in Figure 4.2, of a 

stepped tube consisting of a 0.13 m long cylinder of 6.2 mm radius and a 0.18 m long 

cylinder of 9.45 mm radius (shown in Figure 4.6), are presented. Figure 4.7 shows the 

input pulse (the signal reflected from a rigid termination at the end of the source tube) 

recorded by the microphone in the source tube wall. Figure 4.8 shows the reflections from 

the stepped tube. The input impulse response of the stepped tube is obtained by 

deconvolving the reflections in Figure 4.8 with the input pulse in Figure 4.7. The result is 

shown in Figure 4.9. The first reflection shown in the graph is from the expansion of the 

source tube up to the 6.2 mm radius section of the stepped tube. The second reflection is 

from the expansion between the 6.2 mm radius section and the 9.4 mm radius section. The 
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third reflection is from the open end of the stepped tube. The following small positive and 

negative reflections are multiple reflections at changes of the stepped tube.   

The application of the layer peeling algorithm described in chapter 3 to the measured 

input impulse response of the test object (in this case, the stepped tube) should enable the 

bore profile of the test object to be reconstructed accurately. However, in practice, the 

presence of a DC offset, together with the lack of low frequency content in the test object’s 

experimentally determined input impulse response, causes the reconstructed bore profile 

either to expand or contract spuriously. In the following chapter, the problem of DC offset 

and the lack of low frequency content are discussed in detail.  

 

 

 

Figure 4.6: Test object and couplers 



 43

       

0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

V
ol

ts
 (v

)

 

 

Figure 4.7: Input pulse                            
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Figure 4.8: Reflections of the stepped tube 
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Figure 4.9: Input impulse response of the stepped tube 
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Chapter 5  

The problem of offset in acoustic pulse reflectometry  

measurements 

 

5.1 Introduction 

 

In this chapter, the nature of the offset introduced into reflectometry measurements is 

studied. Possible sources of the offset are then identified and methods of preventing the 

offset are investigated. Finally, accurate bore reconstructions of a test object, calculated 

from input impulse response measurements where the offset has been eliminated, are 

presented. 

 

5.2 Demonstration of the offset problem 

 

A measurement of the input impulse response of a duct made using acoustic pulse 

reflectometry generally contains an offset. The presence of this offset causes the calculated 

duct profile to expand or contract spuriously.  Figure 5.1 shows the input impulse response 

of the stepped tube measured in chapter 4 and previously shown in Figure 4.8. The 

expansion of the y-scale in Figure 5.1 makes the offset in the input impulse response 

clearly visible.  
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Figure 5.1: Input impulse response of stepped tube with offset from x = 0 line 

 

Figure 5.2 shows the duct profile calculated when the layer peeling algorithm 

described in chapter 3 is applied to the input impulse response of Figure 5.1. The dotted 

line shows direct measurements of the radii of the cylindrical sections made using calipers. 

It can be clearly seen that, in the reconstruction, the radius of each section of the stepped 

tube decreases with distance along the tube rather than remaining constant. To obtain an 

accurate reconstruction, the offset must be prevented from occurring or removed from the 

input impulse response before application of the reconstruction algorithm. 
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Figure 5.2: Reconstruction of stepped tube 

 

Ideally, the introduction of offset into the input impulse response should be prevented 

in the first place. In order to be able to do this it is first necessary to establish the origin of 

the offset.  

 

5.3 Theoretical analysis of the nature of the offset  

 

In pulse reflectometry analysis, the input impulse response iir’(n) of a duct is obtained by 

performing an Inverse Discrete Fourier Transform of IIR’(ω), calculated from the input 

pulse and reflection measurements. This experimental input impulse response can be 

expressed as  
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where IIR’(k), is the kth element of the discrete form of IIR’(ω), and IIR’(0) is the first 

element (0 Hz value) of the input impulse response in frequency domain. From equation 

(5.1), it can be seen that iir’(n), the nth element of the experimental impulse response in 

the time domain, consists of both a constant component and a number of sinusoidal 

components. 

If the true input impulse response is defined as being iir(n) in the time domain and 

IIR(k) in the frequency domain, it can be expressed as 
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The offset ∆ in the experimental input impulse response is the difference between the 

experimental input impulse response iir’(n) and the true input impulse response iir(n). It 

can be written as:  

 

                   )()(' niirniir −=∆                                              (5.3) 

 

Substituting equations (5.1) and (5.2) into equation (5.3) yields: 
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Examination of equation 5.4 reveals that the offset in the experimental input impulse 

response is a result of the incorrect measurement of both constant and sinusoidal 

components. That is, the total offset ∆ is made up of a DC offset ∆1 and a sinusoidal offset 

∆2.  

In the following section, the causes of the DC offset are discussed and possible 

methods of eliminating them are presented. Then, in section 5.5, the cause of the sinusoidal 

offset is investigated and a means of preventing the offset is implemented.  

 

5.4 Eliminating the DC offset in the input impulse response 

 

5.4.1 Origin of DC offset  

 

According to Discrete Fourier transform (DFT) theory, for an input vector x of length N, 

the DFT is a vector X also of length N defined by  
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Therefore, the first elements of the input pulse and the duct reflections in the frequency 

domain are given respectively by 
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where )(ni  represents the input pulse and )(nr represents the duct reflections in the time 

domain. That is, the first element of the input pulse in the frequency domain is the sum 

over all sample points of the input pulse in the time domain. Similarly, the first element of 

the duct reflections in the frequency domain is the sum over all sample points of the duct 

reflections in the time domain.  

From equations (4.1a), (5.6) and (5.7) 
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Examination of equation (5.1) reveals that the DC level in the experimental input 

impulse response depends on IIR’(0) which, according to equation (5.8), in turn depends 

on the sum of over all sample points of the input pulse and reflections in the time domain. 

To eliminate DC offset from the experimentally measured input impulse response, any DC 

offset in the input pulse and duct reflections must be prevented from occurring. 
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5.4.2 Eliminating the DC offset in the input pulse and reflections 

 

Figure 5.3 shows a typical input pulse measured on a pulse reflectometer. The inset shows 

the first 6 milliseconds of the pulse in detail. A small DC offset of approximately  5 mV is 

clearly visible. The most likely cause of this offset is a slight inaccuracy in the calibration 

of the data acquisition card, which contains the D/A and A/D converters[Fincham 1985]. 

Any DC offset introduced by the data acquisition card can be removed by performing two 

reflectometry measurements. In the first measurement, a positive electrical pulse is used to 

drive the loudspeaker. The resultant positive pressure pulse (Figure 5.3) is recorded by the 

microphone. In the second measurement, a negative electrical pulse is used to drive the 

loudspeaker. This time a negative pressure pulse (Figure 5.4) is produced and is recorded 

by the microphone. Again a systematic DC offset of approximately 5 mV is visible. The 

negative pressure pulse is then inverted (Figure 5.5) and the DC offset becomes –5 mV. 

Averaging the inverted pulse of Figure 5.5 with the pulse of Figure 5.3 gives a pulse with 

no DC offset (Figure 5.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The positive input pulse 
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Figure 5.4: The negative pulse 

 

Figure 5.5: Inverted input pulse 
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Figure 5.6: Input pulse without DC offset 

 

Figures 5.7 and 5.8 show the reflections, which return from the 310 mm long stepped 

tube described in chapter 4 when positive and negative electrical pulses are used to drive 

the loudspeaker. Figure 5.9 shows the result of averaging the signals of Figures 5.7 and 

5.8. Again, the averaged reflections have no DC offset. 

By alternating the pulse polarity in this way, it is possible to obtain measurements of 

both the input pulse and the duct reflections with no DC offset. However, when such 

measurements are used to calculate an impulse response, the response generally still 

contains a DC offset. Figure 5.10 shows the impulse response calculated from the input 

pulse and stepped tube reflections of Figures 5.7 and 5.9. The impulse response can be 

seen to contain a DC offset.  The cause of the DC offset in the calculated input impulse 

response is investigated in the next section. 
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Figure 5.7: Reflections from stepped tube  

 

Figure 5.8: Inverted reflections from stepped tube 
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Figure 5.9: Stepped tube reflections without DC offset  

 

 
Figure 5.10: Stepped tube input impulse response 
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5.4.3 Generating a pulse with greater polarity 

 

From equation (5.4) it can be seen that the offset ∆1 depends on IIR’(0) which, according to 

equation (5.8), is equal to the sum of all the sample points which make up the duct 

reflections divided by the sum of all the sample points which make up the input pulse (all 

in the time domain). Close examination of Figures 5.6 and 5.9 reveals that neither the input 

pulse nor the duct reflections exhibit strong polarity. That is, the sum of the sample points 

which make up the input pulse and the sum of the sample points which make up the duct 

reflections are both close to zero. Consequently, the calculation of IIR’(0) can result in a 

division by zero or near-zero causing numerical instability[Marshall 1990]. The incorrect 

evaluation of IIR’(0), is the cause of the DC offset in the input impulse response.  

If an input pulse of greater polarity could be produced, the duct reflections resulting 

from using such an input pulse would also show a greater degree of polarity. Thus division 

by zero problems would be removed allowing the DC level, IIR’(0), to be accurately 

determined and input impulse responses to be measured with no DC offset [Li et al. 2002]. 

 

5.4.3.1 The ‘step method’ 

 

Various methods have been used to produce impulse-like pressure pulses. For example, 

[Jackson et al. 1977] used spark discharges while [Watson and Bowsher 1988], [Sondhi 

and Resnick 1983] and others used a loudspeaker driven by short delta-like electrical 

pulses. Another method of producing short duration polar pressure pulses, named the ‘step 

method’, is described by Marshall [Marshall 1992]. As name suggests, the excitation sent 

to the loudspeaker is a step voltage. The motivation for Marshall’s work was to remove the 

deconvolution stage required to determine the impulse response. In a similar manner, 
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[Fredberg et al. 1980] used a ‘ double pulse ’ excitation of a loudspeaker, consisting of 

equal-amplitude 200 µs and 150 µs pulses, separated by 150 µs.  

In this section, Marshall’s method is adopted in an attempt to produce a more 

polarised input pulse. For a square electrical driving signal, the response of a loudspeaker 

takes the form of a damped sinusoid P(t) = Aexp-αt sinωt, where  A is the amplitude, ω is 

the angular frequency and α is the damping coefficient. If, for instance, A = 0.78, α = 250, 

and ω = 200 rad s-1 (giving a period of T = 2π/ω = 0.0314 s), the damped sinusoid will 

take the form shown in Figure 5.11. This is very similar to the input pulse shape in the 

present study (Figure 4.5). To create a more polarised pulse, it is necessary to isolate the 

first cycle of the damped sinusoid. Suppose that at time t = T/2 an additional step of 

relative amplitude exp-αt is applied. Assuming that the loudspeaker behaves linearly, the 

response to the additional step will be exactly out of phase with the response to the original 

step. From time t, the two responses will cancel out, leaving only the first half cycle of the 

response to the first step. The stepped electrical driving signal is shown in Figure 5.12, the 

two responses to the two steps of the driving signal are shown in Figure 5.13 and the ideal 

polar pressure pulse remaining after the cancellation of the two responses is shown in 

Figure 5.14. 

In the present study, a number of different combinations of stepped electrical signals 

(with different amplitudes of electrical (square) pulses and different time intervals between 

the electrical pulses) were used to drive the compression driver. The most polar acoustic 

pressure pulse achieved is shown in Figure 5.15. Partial cancellation has resulted in the 

negative part being reduced from -0.4 V to -0.2 V. Only a partial cancellation was achieved 

as the step response of the transducer is not an ideal damped sinusoid. It does not have a 

simple exponential decay. Therefore, although a complete cancellation is theoretically 

possible, it proved impossible to achieve in practice. 
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Figure 5.11: Damped Sinusoidal 

      
0 50 100 150

0

0.2

0.4

0.6

0.8

1

1.2

D
riv

in
g 

V
ol

ta
ge

Samples  
 

Figure 5.12: Stepped electrical driving signal 
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Figure 5.13: Theoretical responses to two steps of electrical driving signal  
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Figure 5.14: Ideal polarised pressure pulse 
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Figure 5.15: Input pulse using step method 

 

5.4.3.2 Inverse filter method 

 

In principle, the reflectometer (loudspeaker, coupler, source tube, microphone etc.) can be 

treated as a linear system. Therefore, a filter h(t), representing the impulse response of this 

system, can be defined which describes the relationship between the electrical pulse v(t) 

sent to the speaker and the pressure pulse p(t) measured by the microphone. This 

relationship is shown schematically in Figure 5.16. 

                                                        

 Figure 5.16: Schematic describing relationship between electrical pulse v(t) and 
pressure pulse p(t) 
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The relationship can be expressed using equation 

 

                        )()()( thtvtp ⊗=                                           (5.9) 

 

where the symbol ⊗  denotes convolution.  

In theory, this relationship can be used to determine the electrical driving signal 

necessary to produce a more polarised pressure pulse. 

First of all the filter h(t) of the system is calculated. A 100 µs square electrical pulse is 

sent to the loudspeaker and the resultant pressure pulse (Figure 5.17) is recorded by the 

microphone and stored on the computer (1024 sample points are captured). A sampling 

frequency of 20 kHz is used because the maximum bandwidth of signal encountered in this 

study is approximately 10 kHz. According to equation (5.9), the filter h(t), representing the 

impulse response of the system (i.e. coupler, speaker, source tube and microphone),  is 

obtained by deconvolving the recorded pulse with the electrical signal. The calculation is 

carried out by performing a division in the frequency domain. Then, the desired polarised 

pulse (the initial positive part of Figure 5.17) is selected by setting the typical pulse to 

zeros after the main peak. To avoid discontinuity, the desired polarised pulse is convolved 

with a Gaussian window function of the same 1024 point sample length. It is shown in 

Figure 5.18. The electrical driving waveform needed to produce this more polarised pulse 

is determined by deconvolving the desired pressure pulse with the filter h(t). The required 

driving electrical waveform (with DC level removed) is shown in Figure 5.19. 
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Figure 5.17: Pressure pulse generated by 100µs square electrical pulse 

 
 

 
Figure 5.18: Desired polar pulse 

0 200 400 600 800 1000 1200
-0.2 

0 

0.2 

0.4 

0.6 

0.8 

Samples

V
ol

ts
 (v

) 

50 100 150 200
-0.2

0

0.2

0.4

0.6

0.8

Samples

V
ol

ts
 (v

)



 63

       
0 200 400 600 800 1000 1200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Samples

A
m

pl
itu

de

 

   
 

Figure 5.19: Calculated electrical driving signal 

 

Figure 5.20 shows the pressure pulse produced when the electrical signal of Figure 

5.19 is used to drive the loudspeaker. The input pulse looks similar to the pulse shown in 

Figure 5.15 with again the negative part being only partly reduced in amplitude. Like the 

step method, the ‘inverse filter’ is only partly successful in producing a more polarised 

pulse. 

Neither of the methods has been successful in producing a polar pressure pulse. It is 

impossible using the present set-up to provide a significant frequency response down to 

DC. Therefore, instead of preventing the DC offset from occurring in the input impulse 

response it must be removed by calibration. 
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Figure 5.20: Input pulse using filter method 

 

5.4.4 DC tube method 

 

The methods reported in sections 5.42 and 5.43 proved unsuccessful in preventing a DC 

offset from occurring in the experimentally measured input impulse response. In this 

section and in section 5.4.5, two methods of removing the DC offset are outlined. 

Assuming the sinusoidal components of the input impulse response have been accurately 

measured (i.e. ∆2 of equation 5.4 is zero), these two methods should enable accurate 

reconstructions to be calculated. 

The DC offset present in an experimentally measured input impulse response can be 

determined and removed by inserting a 50 cm long cylindrical tube between the source 

tube and the duct under test prior to the measurement (Figure 5.21). The internal diameter 

of the DC tube should be similar to that of the source tube. In the present study, a DC tube 
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of diameter 9.5 mm was used whilst the source tube had a diameter of 10.2 mm. The 

reflectometer measurement is then carried out in the same way as described previously 

(chapter 4). However, since there should be no signal reflected back from the DC tube, it 

can be deduced that approximately the first three milliseconds of the input impulse 

response should be zero. In principle, therefore, finding the average value over the first 

three milliseconds of the measured input impulse response should give the DC offset. This 

value can then be subtracted from the whole input impulse response. In practice, however, 

there is always a small discontinuity at the start of the DC tube due to the coupling of the 

source tube to the DC tube. To overcome this, the DC value is actually calculated by 

finding the average value over the second millisecond of the input impulse response and 

then the first millisecond of the input impulse response is set to zero [Sharp and Campbell 

1997]. Figure 5.22 shows the input impulse response of the stepped tube and the DC tube 

after the DC offset has been removed using the ‘DC tube’ method.  

 

            

 

Figure 5.21: DC tube method 
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Figure 5.22: Stepped tube input impulse response with DC offset removed 

 

Figure 5.23 shows the calculated stepped tube and the DC tube profile resulting from 

applying the reconstruction algorithm to the input impulse response of Figure 5.22. The 

first 0.5 m of the reconstruction is the ‘DC tube’. It can be seen that, although the first 

section of the stepped tube has been accurately reconstructed, the radius of the second 

section decreases with distance when compared with the direct measurement shown by the 

dotted line. The reason for this is that although the DC offset ∆1 has been removed, there is 

still a sinusoidal error ∆2 present in the input impulse response.  
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Figure 5.23: Reconstruction of stepped tube and DC tube 

 

5.4.5 Virtual DC tube 

  

The virtual DC tube method [Kemp et al. 2001] is a variation of the DC tube method. 

Signal processing methods are employed which enable part of the source tube to be used as 

the ‘DC tube’. In this method, the reflections of the test object are recorded 3 ms earlier 

than the input pulse. The input pulse is then deconvolved with a filter representing the 

losses that would be experienced by the signal if it had travelled for an extra 3 ms within 

the source tube. Therefore, the input pulse and reflections of the test object experience the 

same losses travelling inside the source tube. The reconstruction obtained using this 

method is the much the same as that using DC tube method (shown in Figure 5.23). 

However, it has the advantage of eliminating the small discontinuity at the join between 

the DC tube and the source tube. 
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5.4.6 Known termination of test object 

 

If the termination of the tubular object under investigation is known (e.g. the object has an 

open end or it is closed by a rigid termination), the value of IIR’(0) in the experimental 

input impulse response can be replaced by the true value IIR(0). For instance, IIR(0) = -1 

for an open end termination. If this value is used to replace IIR’(0) in the experimental 

input impulse response, there should no longer be a DC offset ∆1. Figure 5.24 shows the 

reconstruction of the stepped tube (with an open ended termination) when IIR’(0) has been 

set to –1 in the input impulse response. Clearly the radius of the reconstructed stepped tube 

is still lacking in accuracy. Although the DC offset has been removed from the input 

impulse response there is still a sinusoidal offset present. To obtain an accurate 

reconstruction, this sinusoidal offset ∆2 must be eliminated. A method to eliminate the 

sinusoidal error is described in following section[Li et al. 2002]. 
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Figure 5.24: The reconstruction of stepped tube with known termination 
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5.5 Eliminating sinusoidal error in the input impulse response 

 

The ‘DC tube’ method of DC offset removal works on the assumption that all the 

sinusoidal components that make up the input impulse response are calculated correctly. 

This is not always the case. For example, Figure 5.25 shows an experimentally measured 

input impulse response spectrum for the stepped tube at frequencies between  0 Hz and 

1000 Hz, when a sampling frequency of 50 kHz is used. Since IIR’(ω) is a reflection 

coefficient, its amplitude should not exceed 1 at any frequency. However, examination of 

Figure 5.25 reveals that the amplitude of measured IIR’(ω) is greater than 1 at frequencies 

of 25 Hz and 50 Hz. This incorrect evaluation is due to the poor response of the 

compression driver loudspeaker at low frequencies. 
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Figure 5.25: Spectrum of input impulse response of stepped tube 
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To improve the low frequency content of the input impulse response spectrum, a 

second set of reflectometry measurements are made, this time using a bass loudspeaker 

with a good response at low frequencies. Again, a sampling frequency of 50 kHz is used. 

Figure 5.26 shows the experimental input impulse response spectrum of the stepped tube at 

frequencies between 0 Hz and 1000 Hz measured using the bass loudspeaker. It is clear 

that below 200 Hz (excluding 0 Hz), IIR’(ω) remains less than 1. By combining the 

components of IIR’(ω) between 0 Hz and 170 Hz measured using the bass loudspeaker 

with the components between 170 Hz and 25 kHz measured using the compression driver, 

a combined input impulse response spectrum of the stepped tube can be constructed (see 

Figure 5.27).  
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Figure 5.26: Input impulse response spectrum using bass speaker 
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Figure 5.27: Combined spectrum of input impulse response of stepped tube 

 

Figure 5.28 shows the calculated duct profile resulting from applying the 

reconstruction algorithm to the combined input impulse response of Figure 5.27 (again, 

after implementing the 'DC tube' method). The radii of each of the cylindrical sections of 

the stepped tube now remain constant with distance and show a good agreement with the 

values measured directly with calipers. 

After the low frequency content has been improved, there is only a DC offset ∆1 

present in the input impulse response. If the end conditions of the test object are known, 

this DC offset can be eliminated by setting IIR’(0) (the 0 Hz value of the experimental 

input impulse response) to the true value IIR(0). This has the effect of removing the DC 

offset from the experimental input impulse response obtained using the reflectometer. For 

example, Figure 5.29 shows the reconstruction of the open-ended stepped tube calculated 

from the combined input impulse response of Figure 5.27 when IIR’(0) is set to –1..         
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Figure 5.28: Reconstruction using combined input impulse response (using DC tube 
method) 

 

Figure 5.29: Reconstruction using combined input impulse response 

(using theoretical DC level) 
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5.6 Conclusions 

 

In conclusion, the offset in acoustic pulse reflectometry measurements of input impulse 

response is made up of two elements; a DC component and sinusoidal components. After 

improving the low frequency content of the input pulse, the offset caused by sinusoidal 

components is eliminated. Then the 'DC tube' method can be used to remove the DC offset 

from the input impulse response measurements. The input impulse response with improved 

low frequency content yields an accurate bore reconstruction. Alternatively, for an object 

whose end conditions are known, the DC offset can be prevented by simply replacing the 

DC level of the experimental input impulse response with a known theoretical value. In the 

following chapter, a number of stepped tubes are measured and analysed. The bore profiles 

of the stepped tubes calculated from input impulse response measurements with improved 

low frequency content are presented. 
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Chapter 6  

Bore reconstruction after low frequency improvement 

of the input impulse response 

 

6.1 Introduction  

 

In the previous chapter it was shown that improving the low frequency content (including 

the DC component) of input impulse response measurements results in more accurate bore 

reconstructions. In this chapter, the accuracy and consistency of such bore reconstructions 

are explored through measurements on a number of stepped tubes. 

   

6.2 Test object measurements  

 

Three stepped tubes, each consisting of two cylindrical sections, were used to investigate 

the improved accuracy of the reflectometry bore reconstructions. Details of the geometries 

of the three stepped tubes are given in Table 6.1, where the quoted radii were measured 

using calipers to a precision of 0.02 mm. Six couplers were produced so that each stepped 

tube could be coupled to the source tube (or, to be more precisely, to the DC tube) in two 

different ways; either with section I connected or with section II connected. The three 

stepped tubes and the six couplers are shown in Figure 6.1. 
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Section I Section II 

Test object 

Radius (mm) Length (m) Radius (mm) Length (m) 

stepped tube A 2.25 0.15 3.55 0.15 

stepped tube B 3.55 0.15 5.58 0.15 

stepped tube C 5.58 0.15 8.78 0.15 

 

 

Figure 6.1: Stepped tubes and couplers  

 

Table 6.1: Dimensions of the stepped tubes 
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Using the reflectometer and the technique described in chapter 4 (referred to from 

now on as the standard reflectometry technique), the input impulse responses of the 

stepped tubes in both orientations were measured. The layer peeling algorithm was then 

applied to each input impulse response to yield six bore reconstructions (two for each 

stepped tube). The low frequency content of the six stepped tube input impulse responses 

was then improved by carrying out further measurements in the manner described in 

section 5.5. Following this, the layer peeling algorithm was reapplied to each of the input 

impulse responses to yield six improved bore reconstructions. 

Figures 6.2 to 6.7 show bore reconstructions for the three stepped tubes in each of 

their orientations (the first 0.5 m of each reconstruction is the DC tube). In each figure, the 

dashed line is the reconstruction made using the standard reflectometry technique while the 

solid line is the reconstruction produced once the low frequency content of the input 

impulse response had been improved. The horizontal dotted lines show the actual radii of 

sections I and II of the stepped tubes as detailed in Table 6.1. 
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Figure 6.2: Bore reconstructions of stepped tube A (Section I coupled) 
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Figure 6.3: Bore reconstructions of stepped tube A (Section II coupled) 
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Figure 6.4: Bore reconstructions of stepped tube B (Section I coupled) 
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Figure 6.5: Bore reconstructions of stepped tube B (Section II coupled) 
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Figure 6.6: Bore reconstructions of stepped tube C (Section I coupled) 
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Figure 6.7: Bore reconstructions of stepped tube C (Section II coupled) 

            

Examination of the reconstructions made using the standard reflectometry technique 

reveals, in all cases, an underprediction in radius. The error increases with distance along 

the stepped tube so that the degree of underprediction is always greater for the section of 

the stepped tube which is not coupled to the DC tube. This is most likely a consequence of 

the layer peeling algorithm where any small error in the predicted radius towards the start 

of a reconstruction accumulates as the reconstruction progresses.   

The stepped tube reconstructions calculated from the improved low frequency content 

input impulse response measurements all show a much better agreement with the directly 

measured radii. In each case, this is particularly apparent for the section of stepped tube 

which is not coupled to the DC tube. By improving the measurement of the input impulse 

response at low frequencies, when the layer peeling algorithm is applied, any error in the 

predicted radius at the start of the reconstruction is significantly reduced. Consequently, 
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although the error must still accumulate as the reconstruction progresses, it remains small 

over the length of the test object. 

 

6.3 Measurements on  musical instruments 

 

6.3.1 Renaissance cornett 

 

Improving the low frequency content of the input impulse response measurements has led 

to a significant improvement in the accuracy and consistency of the bore reconstructions. 

Further evidence of this is provided in this section through measurements of a Renaissance 

cornett by Jeremy West. 

Figure 6.8 shows a bore reconstruction of the cornett made using the standard 

reflectometry technique (dashed line) together with a reconstruction calculated when a 

supplementary measurement using a bass loudspeaker was made to improve the low 

frequency content of the input impulse response (solid line). The first few centimetres of 

the reconstructed profiles show the coupler used to connect the cornett to the DC tube with 

the arrow indicating the start of the cornett bore. Both reconstructions show a good 

agreement with the radius of 3.94 mm directly measured at the mouthpiece end of the 

cornett using calipers. However, at the far end of the cornett, the reconstruction made using 

the standard reflectometry technique predicts a radius of approximately 11 mm when in 

fact the actual radius is measured as being 12.87 mm. This underprediction is not seen in 

the reconstruction calculated from the input impulse response with improved low 

frequency content where the radius at the end of the cornett closely matches the directly 

measured value. 
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Figure 6. 8: Bore reconstructions of a Renaissance Cornett 

 

6.3.2 Bugle horn 

 

The improvements in the accuracy of the bore reconstructions have enhanced the 

usefulness of the reflectometry technique as a tool for measuring the bore profiles of 

instruments non-invasively. As a demonstration of this, non-invasive measurements of an 

18th century bugle horn which is kept in the Royal College of Music Historical Instrument 

Collection, and for preservation reasons can no longer be played, are presented here. 

Figure 6.9 is a photo of the bugle horn coupled to the pulse reflectometer and Figure 6.10 

shows a 3D representation of the internal bore profile of the bugle horn obtained using 

acoustic pulse reflectometry.  
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Figure 6.9: 18th century Bugle Horn coupled to pulse reflectometer 

 

Figure 6.10: 3-D reconstruction of internal profile of Bugle Horn 
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6.4 Summary  

 

In this chapter, the improvement in the accuracy of bore reconstructions that is brought 

about by performing a second reflectometer measurement, using a bass loudspeaker to 

increase the low frequency content of the measured input impulse response, has been 

demonstrated. The improvement was shown through a series of measurements made on 

both stepped tubes and musical instruments. In the next two chapters, attention is turned to 

the effect on the bore reconstruction of increasing the high frequency content of the input 

impulse response. 
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Chapter 7  

Additional high frequency probing to improve  

bandwidth of input impulse response 

 

7.1 Introduction 

 

It was shown in the previous two chapters that the low frequency content of the input 

impulse response is vital to the stability and accuracy of the reconstructed bore profile. 

However, the fine detail in the bore reconstruction depends on a good high frequency 

content. The finite bandwidth of an input impulse response measurement made using 

reflectometry limits the axial resolution of the calculated bore profile and is one of the 

reasons why regions of rapidly changing cross-section are poorly reconstructed.  

 In this chapter, the importance of the high frequency content of the input impulse 

response to the accuracy of the bore reconstruction is demonstrated. The chapter consists 

of three main sections. In the first section, by applying the layer peeling algorithm to 

theoretically calculated input impulse responses of different bandwidths, the effect of the 

higher frequencies on the bore reconstruction is shown. In the second section, the lack of 

high frequency content in the input impulse generated by a typical pulse reflectometer is 

described and the error introduced into the measured input impulse response as a result is 

discussed. In the third and final section, a method for increasing the amount of high 

frequency energy injected into the duct under investigation is presented. The method 

involves supplementing the standard sound pulse measurement by probing the duct further 

with bursts of high frequency sinusoidal pressure waves. Results obtained using this 
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method are presented and compared with those measured using the standard reflectometry 

technique [Li et al. 2001]. 

 

7.2 Simulated data 

 

To demonstrate the importance of the high frequency signal content to the bore 

reconstruction, two theoretical input impulse response spectra for the stepped tube (which 

is 310 mm long and whose radius expands from 6.2 mm to 9.45 mm) previously described 

in chapter 4 were calculated using equation (2.39). Different sampling frequencies were 

used for the two spectra. For the first input impulse response spectrum, a sampling 

frequency of 16 kHz was employed, defining a Nyquist frequency of 8 kHz. For the second 

spectrum, a sampling frequency of 22.05 kHz was used with an associated Nyquist 

frequency of 11.025 kHz. By inverse Fourier Transforming the spectra, two input impulse 

responses were obtained. Application of the layer peeling algorithm described in chapter 3 

to these calculated input impulse responses provided two bore reconstructions of the 

stepped tube. The axial resolutions of the bore reconstructions have the following 

dependence on the sampling frequency: 

                  

       (7.1) 

  

 where Re is the axial resolution, c is the speed of sound and  Fs is sampling frequency.  

Figure 7.1 shows the simulated input impulse response spectrum of the stepped tube 

with frequency content up to 8 kHz and Figure 7.2 shows the stepped tube reconstruction 

obtained from that input impulse response. According to equation (7.1), the axial 

resolution in Figure 7.2 is about 11 mm. The oscillations along the axis are caused by the 

limited high frequency content. In addition, it is seen that the regions of rapidly changing 
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cross-section are poorly reconstructed. Figure 7.3 shows the simulated input impulse 

response spectrum of the stepped tube with frequency content up to 11.025 kHz and Figure 

7.4 shows the reconstructed stepped tube calculated from that input impulse response. The 

axial resolution is now approximately 8 mm according to equation (7.1). The 

reconstruction of regions of rapidly varying cross-section is improved due to the increased 

high frequency content. These results show that the greater the high frequency content of 

the input impulse response, the more accurate the profile of the stepped tube, especially in 

regions of rapid cross-sectional change. The remaining ripple in Figure 7.4 is caused by the 

Gibbs phenomenon [Wylie and Barrett 1982] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Simulated 8 kHz spectrum of stepped tube input impulse response  
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Figure 7. 2: Stepped tube bore reconstruction from simulated 8 kHz input impulse 

response 

 

 

Figure 7.3: Simulated 11.025 kHz spectrum of stepped tube input impulse response 
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Figure 7.4: Stepped tube bore reconstruction from simulated 11.025 kHz input 
impulse response 

 

7.3 The problem of the lack of high frequency content in the 

standard reflectometry technique 

 

An input pulse produced by a reflectometer typically has little energy at high frequencies. 

Figure 7.5 shows the frequency spectrum of an input pulse, I(ω), measured on the 

reflectometer described in chapter 4 using a sampling frequency of 22.05 kHz (so the 

Nyquist frequency is 11.025 kHz). Above about 8 kHz the signal becomes comparable in 

amplitude to the background noise level. The lack of energy at high frequencies in the 

input signal consequentially leads to any reflections measured by the reflectometer also 

having a limited bandwidth. For example, Figure 7.6 shows the frequency spectrum of the 

reflections, R(ω),which return from the stepped tube. Again, above approximately 8 kHz 

the signal becomes comparable in amplitude to the background noise level. The 

consequence of this is that, in the standard reflectometry procedure, the deconvolution of 
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the reflected and input signals, as described by equation (4.1a), can lead to a “division by 

noise” error. This can be seen clearly in Figure 7.7, where the solid line shows the stepped 

tube input impulse response spectrum, IIR(ω), calculated from the spectra shown in 

Figures 7.5 and 7.6 and the dotted line shows the theoretical input impulse response 

spectrum calculated in the previous section. Above 8 kHz, the agreement between the 

measured and theoretical input impulse response is much poorer than it is below 8 kHz. 

The bore reconstruction which results from applying the layer peeling algorithm to the 

measured input impulse response is shown in Figure 7.8. The basic shape of the stepped 

tube is reconstructed correctly but a rapidly fluctuating component is superimposed. Indeed 

it is not uncommon for this fluctuation to become unstable and cause the reconstruction 

algorithm to break down completely. 

 

 
 

Figure 7.5: Typical input pulse spectrum 
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Figure 7.6: The spectrum of reflections from the stepped tube 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: The input impulse response spectrum 
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Figure 7.8: The reconstruction of the stepped tube 

 

Previously, to overcome the “division by noise” problem when evaluating IIR(ω), 

either the sampling frequency had to be set such that the Nyquist frequency was equal to 

the bandwidth of the input pulse, or, as described previously in chapter 4, a constraining 

factor was introduced into the denominator of the deconvolution equation (see equation 

(4.1b)). This constraining factor has a low pass filter effect, preventing the “division by 

noise” error above 8 kHz. However, it also gives a small but unwanted modification of the 

input impulse response at low frequencies which can affect the accuracy of any subsequent 

bore reconstruction. 
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7.4 Sine wave packet technique 

 

In order to solve the “division by noise” problem, a new method has been developed to 

improve the high frequency content of the input signal. 

A standard reflectometry measurement is carried out as described in chapter 4 and the 

input impulse response spectrum IIR(ω), is calculated up to 8 kHz using equation (4.1a). 

Then, at frequencies between 8 kHz and 11.025 kHz, sinusoidal wave packets of 10 ms 

duration are used to probe the duct. Figure 7.9 shows one such sinusoidal wave packet 

(comprising a sine wave with Gaussian window function). I(ω) and R(ω) are recorded at 

each discrete frequency and equation (4.1 a) is used to calculate the higher frequency 

contribution to the input impulse response. 
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Figure 7.9: Sinusoidal wave packet used in reflectometer measurement 
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By combining the results of pulse and sine wave packet measurements, the input 

impulse response, IIR(ω), is found between 0 Hz and 11.025 kHz. The input impulse 

response iir(t) is then obtained, as before, by inverse Fourier Transforming IIR(ω). (This 

method also allows the extra bass measurement for preventing low frequency offset, 

described in chapter 5, to be made). 

Figure 7.10 shows the input impulse response spectrum for the stepped tube (shown 

by the solid line) obtained when the sine wave packet technique was used to supplement 

the standard reflectometry measurement. The agreement with the theoretical input impulse 

response spectrum (dotted line) is now good up to the Nyquist frequency of 11.025 kHz. 

There is a degree of background noise present. However, at a further computational cost, 

this can be reduced by averaging to improve the signal-to-noise ratio.  

Figure 7.11 shows the bore reconstruction of the stepped tube calculated from the 

input impulse response of Figure 7.9. The fluctuating component observed in Figure 7.8 

has been suppressed and therefore a better reconstruction is obtained. The underprediction 

of the radius of the second section of the stepped tube is a consequence of the poor low 

frequency content of the input impulse response (as described in chapter 5). By carrying 

out the extra bass measurement, the improved impulse response leads to the bore 

reconstruction shown in Figure 7.12. The underprediction in radius is now largely 

corrected and the reconstruction is found to be in good agreement with direct 

measurement. 
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Figure 7.10: The combined input impulse response spectrum 

 

Figure 7.11: Reconstruction using the combined input impulse response 
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Figure 7.12: Bore reconstruction of stepped tube once low frequency content of input 
impulse response has been improved 

 

7.5 Conclusions 

 

A method of supplementing the standard acoustic pulse reflectometry technique by probing 

further with bursts of high frequency (greater than 8 kHz) sinusoidal pressure waves has 

been proposed and discussed. From the measurements, it is clearly shown that this new 

method has increased the high frequency energy injected into the duct, resulting in a more 

stable and accurate bore reconstruction. The bore profile is reconstructed from digital data 

sampled and converted from continuous sound waves. The axial resolution of the duct 

profile reconstruction is dependent on the data intervals and thereby the sampling 

frequency used to record the input pulse and reflections. When a sampling frequency of 

22.05 kHz is used, the standard reflectometry technique only provides radius 

measurements at 8mm intervals along the axial of the duct. Using a higher sampling 
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frequency to record the reflections will improve the axial resolution provided that the input 

signal contains significant energy up to the new Nyquist frequency. In the standard 

reflectometry technique, the energy at higher frequencies is normally too small to 

contribute to the reconstruction. The method of sine wave packets has been shown to be 

effective in increasing the high frequency content. However, it is currently impossible to 

extend the sine wave packet method beyond 11.025 kHz, due to the very rapid attenuation 

of high frequencies. A method to overcome this problem will be discussed in next chapter. 

This should further improve the axial resolution and accuracy of reconstruction, 

particularly in regions of rapidly changing cross-section. 
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Chapter 8 

Reducing source tube to improve bandwidth of input 

impulse response 

 

8.1 Introduction 

 

The design of the reflectometer described in chapter 4 includes a source tube to separate 

the forward and backward travelling waves. Although this provides an effective means of 

isolating the input pulse and the test object reflections, the attenuation of the signal while 

travelling in the source tube can be large, resulting in poor bandwidth input impulse 

response measurements. For a test object with rapid expansions and contractions this can 

lead to significant errors in the bore reconstruction. 

In this chapter, a reflectometer with a shorter source tube is presented. The reduction 

in source tube length ensures less attenuation of the measured signals, leading to an 

improvement in the bandwidth of the experimentally determined input impulse response 

and more accurate bore reconstruction. However, the shorter source tube also means that a 

new way of separating the input pulse and test object reflections is required. Alternative 

calibration methods designed to achieve this separation are described. These methods are 

evaluated by comparing measurements of a stepped tube carried out using the original 

design of reflectometer and using the shorter source tube model[Li and Sharp 2003].   
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8.2 Reflectometer with shorter source tube 

 

The reflectometer described in chapter 4 (Figure 4.1) has a total length of 10 m. Such a 

length of source tube is necessary to separate the forward and backward travelling pressure 

waves. The section l2, of length 3 m, ensures that the input pulse has fully passed the 

microphone before the first reflection returning from the test object reaches the 

microphone. The section l1, of length 7 m, ensures that further reflections from the speaker 

are not recorded. Therefore the reflections from the test object can be recorded for up to 

2*l1/c = 0.041 seconds (the time taken to travel the distance from the microphone to the 

loudspeaker and back, where c is the speed of sound in air) before the loudspeaker 

reflections return and contaminate the signal. The longer the section l1 of the source tube, 

the longer the time period over which the test object reflections can be recorded.  

Figure 8.1 shows a schematic diagram of an acoustic pulse reflectometer with a 

shortened source tube. The source tube length l2 has been reduced to 0.5 m.  However, the 

source tube length l1 is left unchanged at 7 m so the time over which the test object 

reflections can be sampled is still 0.041 seconds. Consequently the maximum length of test 

object that can be measured using this shorter source tube reflectometer is the same as that 

using the original design of  reflectometer. The reduction in source tube length results in a 

decrease in signal attenuation and, thus, an increase in the bandwidth of the input pulse and 

test object reflections. An improved input impulse response bandwidth and more accurate 

bore reconstruction can therefore be obtained. 
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Figure 8.1: Reflectometer with shorter source tube 

 

The shorter source tube reflectometer operates in much the same way as the original 

reflectometer, with a loudspeaker producing a sound pulse which travels through the 

source tube into the test object. The returning reflections from the test object are again 

captured by a microphone, amplified and stored on a PC. However, because of the 

shortened section l2, the forward travelling pressure wave does not completely pass the 

microphone before the first reflection from the test object reaches it. Figure 8.2 shows the 

signal recorded by the microphone when the source tube is rigidly terminated. The signal is 

displayed from 2 ms before the pulse first passes the microphone so the first peak in Figure 

8.2 is the forward travelling pulse and the second peak is the backward travelling reflected 

pulse. The two signals overlap. Figure 8.3 shows the signal captured by the microphone 

when a stepped tube is coupled to the source tube (to enable DC offset removal, a DC tube 

is positioned between the source tube and stepped tube). Again the forward travelling pulse 

and the reflections from the test object overlap. To be able to use this shorter source tube 

reflectometer for input impulse response and bore profile measurements, a new means of 

separating the forward and backward travelling signals is required. In the next section, two 

different methods of separating the overlapping signals are described and their merits 

discussed. To help evaluate the success of the methods, measurements made on one of the 

stepped tubes (Stepped tube A) described in chapter 6 are presented. 
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Figure 8.2: Overlapping forward and backward travelling pulses 
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Figure 8.3: Overlapping forward travelling pulse and test object reflections 
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8.3 Signal separation methods 

 

The two new methods for separating the forward and backward travelling signals both 

involve performing an extra calibration measurement in which the source tube is 

anechoically terminated. Consider the theoretical situation where an infinite length of 

cylindrical tubing of the same diameter as the source tube is attached to the end of the 

reflectometer. A forward travelling pulse would never undergo reflection and so wouldn’t 

return to the microphone. In principle, therefore, it would be possible to measure the 

forward travelling pulse in isolation. In practice, such a measurement can be made using a 

7 m length of copper tubing as an approximation to an infinite tube. This 7 m length is 

attached to the end of the source tube and a reflectometry measurement is carried out in a 

similar manner to that described in chapter 4. A sound pulse is generated by the 

loudspeaker and travels down the source tube. Two milliseconds before the forward 

traveling sound pulse reaches the microphone, the computer starts recording the signal 

from the microphone (2300 sample points are stored at a sample rate of 50 kHz). Once the 

sound pulse reaches the end of the source tube it enters the 7 m coil of copper tubing where 

it propagates without reflection. Figure 8.4 shows an isolated forward travelling pressure 

pulse which has been measured in this manner. Such a calibration measurement forms the 

basis of the two signal separation methods described over the next two subsections. The 

methods are named as ‘one subtraction ‘method and ‘two subtractions’ method 

respectively. ‘One subtraction ‘method is considered to achieve the better results. 
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Figure 8.4: Isolated forward travelling pulse 

 

8.3.1  ‘Two subtractions’ method 

 

In the ‘two subtractions’ method, the anechoic termination calibration measurement is used 

to subtract the forward travelling pulse from both rigid termination reflection and test 

object reflection measurements (where, in both cases, due to the shorter source tube, the 

forward travelling pulse overlaps with the desired signals). For example, Figure 8.5 shows 

a separated input pulse obtained by subtracting the isolated forward travelling pulse of 

Figure 8.4 from the overlapped signals of Figure 8.2 and then extracting the last 2048 

points of the resulting signal. Similarly, Figure 8.6 shows the separated stepped tube 

reflections obtained by subtracting the isolated forward travelling pulse of Figure 8.4 from 

the overlapped signals of Figure 8.3 and then extracting the last 2048 points of the 

resulting signal. The input impulse response of the test object (or, more precisely, the DC 
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tube and the test object) can then be determined in the usual manner by deconvolving the 

separated test object reflections with the separated input pulse. Figure 8.7 shows the input 

impulse response spectrum for the DC tube and stepped tube A calculated from the input 

pulse and reflection data of Figures 8.5 and 8.6. The bandwidth of the input impulse 

response measurement is approximately 13 kHz. This is a distinct improvement over 

measurements made using the original design of reflectometer. This is apparent through 

examination of Figure 8.8 which shows the input impulse response spectrum for the same 

stepped tube A (with DC tube) measured during the experiments of chapter 6 using the 

original reflectometer. Here, the input impulse response becomes dominated by noise 

above approximately 8 kHz. 
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Figure 8.5: Input pulse 
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Figure 8.6: Reflections of DC tube and stepped tube    
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Figure 8.7: Input impulse response spectrum of DC tube and stepped tube measured 

using short source tube reflectometer 
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Figure 8.8: Input impulse response spectrum of DC tube and the stepped tube 

measured using original design of reflectometer 
 
 
 

The improved input impulse response bandwidth obtained through use of the shorter 

source tube reflectometer results in the more accurate reconstruction of regions of rapidly 

changing cross-sectional area. This can be seen clearly by comparing the two 

reconstructions of the DC tube and stepped tube shown in Figures 8.9 and 8.10. The 

reconstruction of 8.9 was calculated from the input impulse response spectrum of Figure 

8.8, measured using the original design of reflectometer. Although the calculated radii of 

the stepped tube sections are in good agreement with direct measurement, regions of 

rapidly changing cross-section are poorly reconstructed. For example, the step down from 

3.55 mm radius to 2.25 mm radius is spread over an axial distance of approximately 20 

mm. In the reconstruction of Figure 8.10, calculated from the input impulse response 

spectrum of Figure 8.7, measured using the shorter source tube reflectometer, the regions 

of rapid cross-sectional change are better reconstructed. This is due to the increased high 
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frequency content of the input impulse response measurement. The step down from 3.55 

mm radius to 2.25 mm radius is now reconstructed as occurring over an axial distance of 

approximately 12 mm. 

As an aside, it is worth noting that using the ‘two subtractions’ method has the 

additional benefit of removing any DC offset introduced by slight mis-calibration of the 

D/A and A/D converters. The removal of offset of this type was discussed previously in 

section 5.4.2. The two subtractions of one signal by another means that any DC offset in 

those signals is also subtracted out. Therefore, for example, the input pulse and stepped 

tube reflections of Figures 8.5 and 8.6 have no DC offset. 
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Figure 8.9: Bore reconstruction of stepped tube from measurements made using the 
original design of reflectometer 
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Figure 8.10: Bore reconstruction of stepped tube from measurements made using the 
shorter source tube reflectometer and the ‘two subtractions’ method 

 

8.3.2  ‘One subtraction’ method 

 

The ‘one subtraction’ method is similar to the ‘two subtractions’ method in that it too uses 

the anechoic termination calibration measurement to subtract the forward travelling pulse 

from the test object reflections measurement (resulting in a separated test object reflections 

signal). However, with this method, the input pulse is not separated in the same way. 

Instead, the isolated forward travelling pulse, measured when the source tube was 

anechoically terminated, is itself used as the input pulse signal (extracting the first 2048 

sample points of Figure 8.4). As this measured input pulse does not travel along source 

tube section l2 and back, the losses it experiences are less than in the ‘two subtractions’ 

method, ensuring further improvement in the bandwidth of the input impulse response. 
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Another difference from the ‘two subtractions’ method is that, when employing the ‘one 

subtraction’ method, no DC tube is required and the test object must be coupled directly to 

the source tube. For example, Figure 8.11 shows the signal recorded by the microphone 

when stepped tube A is coupled directly to the shorter source tube reflectometer and 

measured in the usual way. As previously, the signal comprises 2300 sample points and is 

displayed from 2 ms before the forward travelling pulse reaches the microphone. By 

subtracting the isolated forward travelling pulse of Figure 8.4 from the overlapped signals 

of Figure 8.11 (and then extracting the last 2048 sample points) the separated stepped tube 

reflections of Figure 8.12 are obtained. Deconvolving the separated test object reflections 

with the isolated forward travelling pulse then yields the input impulse response of the test 

object (or, more precisely, of the section l2 of the source tube and the test object). Any DC 

offset present in the input impulse response is then removed in a similar manner to that 

described in section 5.4.4. However, in this case the source tube section l2 acts as the DC 

tube. Figure 8.13 shows the input impulse response spectrum for the section l2 of source 

tube and stepped tube A, calculated from the input pulse and reflection data of Figures 8.4 

and 8.12. The bandwidth of the input impulse response has been extended to 15 kHz, 

which is an improvement over that achieved with the ‘two subtractions’ method. The 

improved high frequency content again leads to a more accurate bore reconstruction. 

Figure 8.14 shows the bore reconstruction of the stepped tube calculated from this input 

impulse response measurement. The change in radius from 3.55 mm to 2.25 mm is now 

reconstructed as occurring over an axial distance of 10 mm. 
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Figure 8.11: Overlapping input pulse and stepped tube reflections 
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Figure 8.12: Separated reflections from the section l2 of source tube and the stepped 
tube 
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Figure 8.13:Input impulse response spectrum of source tube section l2 and the stepped 

tube 
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Figure 8.14: Bore reconstruction of stepped tube from measurements made using 

shorter source tube reflectometer and the ‘one subtraction’ method  
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8.4 Conclusions 

 

The length of source tube in an acoustic pulse reflectometer is necessary to separate 

forward and backward travelling pressure signals, enabling them to be recorded in isolation. 

However, the losses experienced by the signals when travelling through the source tube 

limit the bandwidth of the input impulse response measurement and, consequently, the 

axial resolution of the bore reconstruction. Reducing the source tube length therefore 

results in bore reconstructions of greater accuracy but requires a new means of recording 

the input pulse and test object reflections in isolation. 

In this chapter, a reflectometer with shortened source tube was described and two 

methods for separating the input pulse and reflections data were presented. Through 

measurements on a stepped tube test object, the ‘two subtractions’ method was shown to 

increase the bandwidth of input impulse response measurements from approximately 8 

kHz to 13 kHz. This, in turn, resulted in a significant improvement in the reconstruction of 

sharp changes in cross-section in bore profile calculations. Using the same test object, the 

‘one subtraction’ method was found to give an even greater increase in the high frequency 

content of the input impulse response measurement, with a bandwidth of approximately 15 

kHz achieved. Again, the resultant improvement in the resolution of bore reconstructions 

was clearly demonstrated. 

One additional benefit of using a shorter source tube reflectometer is the improvement 

it provides at low frequencies to the input impulse response measurements. Indeed, when 

using the shorter source tube, the supplementary bass loudspeaker measurements 

(described in chapter 5) used to prevent low frequency offsets are no longer needed. 
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Chapter 9  

Concluding remarks 

 

9.1 Achievement of aims 

 

9.1.1 Objective 1 

 

The first aim of this study was to identify any sources of inconsistency and inaccuracy in 

measurements made using the standard pulse reflectometry technique.  

Previous studies on acoustic pulse reflectometry have shown that a DC offset is 

introduced into the input impulse response during the measurement process. In this study, 

it was demonstrated that the source of this DC offset is most likely a lack of polarity in the 

input pulse. Removing the DC offset from the measured input impulse response is vital for 

accurate bore reconstruction. This has usually been achieved by introducing a cylindrical 

tube of known dimensions (the so-called ‘DC tube’) between the source tube and object 

under test for calibration purposes. In this study, it was demonstrated that, providing the 

end conditions of the object being measured are known, the DC offset can be eliminated by 

replacing the 0 Hz component of the input impulse response with a corresponding 

theoretical value. The present research also revealed that, as well as a DC offset, 

reflectometry input impulse response measurements also contain a low frequency offset. 

Even if the DC offset is removed, unless the low frequency offset is also removed or 

prevented from occurring, reconstructed bore profiles will still expand or contract 

spuriously and unpredictably. Through examination of the spectra of input pulse, object 
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reflections and input impulse response measurements, the cause of the low frequency 

offset was found to be a lack of low frequency energy in the input pulse. 

 

9.1.2 Objective 2 

 

The second aim of the study was to find ways of improving the accuracy of the pulse 

reflectometry technique.  

To this end, a method of increasing the amount of low frequency energy injected into 

the object under test was devised. This method involves performing a supplementary set of 

measurements using a bass loudspeaker with a good response in the low frequency range. 

The values of the input impulse response calculated at low frequencies from the bass 

loudspeaker measurements are then combined with the input impulse response calculated 

at higher frequencies from the standard measurements. The result is an input impulse 

response with improved low frequency content which, in turn, yields a more accurate bore 

reconstruction. When this method is employed, the consistency of the technique is also 

greatly improved. These improvements were demonstrated through measurements on a 

number of stepped tubes. With the increased low frequency content, the reconstructed 

stepped tube bore profiles have radii which agree well with directly measured values. 

 

9.1.3 Objective 3 

 

The third aim of the study was to increase the high frequency energy injected by the 

reflectometer and thereby improve the axial resolution of bore reconstructions. A greater 

axial resolution also ensures that regions of rapidly changing cross-sectional area are more 

accurately reconstructed. 
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To achieve this, a method of supplementing the standard pulse reflectometry 

measurement by probing further with bursts of high frequency (greater than 8 kHz) 

sinusoidal pressure waves was developed. This method enables the bandwidth of input 

impulse response measurements to be increased to 11.025 kHz (the Nyquist frequency 

when a sampling frequency of 22.05 kHz is used). Through measurements using stepped 

tubes as test object, the improved high frequency content of the input impulse response 

was shown to lead to a more accurate, sharper reconstruction of the step change in radius. 

Extending the sine wave packet method beyond 11.025 kHz proved impossible due to the 

rapid attenuation of such high frequencies within the source tube. 

To overcome the problem of attenuation within the source tube, a reflectometer with a 

shortened source tube was produced. The reduction in source tube required a new method 

for separating forward and backward travelling waves to be developed. This method 

involves an extra calibration measurement, using a pseudo semi-infinite length of tubing, 

to enable the input pulse to be measured in isolation. The reduction in attenuation provided 

by the shorter source tube leads to input impulse response measurements with frequency 

content up to 15 kHz. Again, through measurements on stepped tubes, the improvement in 

the accuracy of bore reconstruction, particularly at regions where the cross-section changes 

rapidly, was demonstrated. 

 

9.2 Limitation of present reflectometry technique 

 

By supplementing the standard pulse reflectometry measurement with bursts of high 

frequency sinusoidal pressure waves, or by shortening the source tube, bore 

reconstructions with a higher axial resolution are obtained. This is due to the improved 

bandwidth of the input signal and, hence, the input impulse response measurement. 

However, if the bandwidth is increased beyond the first cut off frequency of the duct under 
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test, the assumption of plane wave propagation ceases to be valid. The effect of higher 

order modes on reflectometry measurements is demonstrated in this section. 

 

9.2.1 Demonstration of the effect of higher order modes  

 

In order to investigate the effect of increasing the bandwidth of the input pulse beyond the 

first cut off frequency of the duct under test, measurements have been made of a stepped 

tube consisting of two 0.15 m long cylindrical sections of wide radius (9.4 mm and 13.45 

mm respectively).  

The stepped tube was first measured using the original design of reflectometer (shown 

in Figure 4.1). Both a standard pulse measurement using a compression driver and a 

supplementary measurement using a bass loudspeaker were made. The results were then 

combined, as described in chapter 5, to yield an input impulse response measurement. 

Figure 9.1 shows the input impulse response spectrum of the DC tube and the stepped tube. 

The bandwidth of the input impulse response is approximately 10 kHz. Figure 9.2 shows 

the bore reconstruction of the DC tube and stepped tube calculated by applying the layer 

peeling algorithm to the input impulse response of Figure 9.1. The reconstruction of the 

first cylindrical section of the stepped tube is in good agreement with the directly measured 

radius of 9.4 mm. However, the reconstruction of the second cylindrical section is slightly 

narrower than the directly measured radius of 13.45 mm. 
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Figure 9.1: Input impulse response spectrum for wide radius stepped tube measured 

on original design of reflectoemter 
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Figure 9.2: Bore reconstruction of wide radius stepped tube measured on original 
design of reflectometer 
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The same stepped tube was then coupled to the shorter source tube reflectometer 

(shown in Figure 8.1). The ‘one subtraction’ method was used to measure the input 

impulse response of the stepped tube, as described in chapter 8. Figure 9.3 shows the 

spectrum of the input impulse response of source tube section l2 and the stepped tube. The 

bandwidth has now been expanded to approximately 15 kHz. Figure 9.4 shows the bore 

reconstruction which results when the layer peeling algorithm is applied to the input 

impulse response of Figure 9.3. In comparison with the directly measured values, the 

reconstruction seriously underpredicts the radii of both cylindrical sections. 
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Figure 9.3: Input impulse response spectrum of wide radius stepped tube measured on 
shorter source tube reflectometer 
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Figure 9.4: Bore reconstruction of wide radius stepped tube measured on shorter 

source tube reflectometer 
 

9.2.2 Discussions 

 

The reconstructions shown in Figures 9.2 and 9.4 both exhibit a lower degree of accuracy 

than the reconstructions presented in chapter 6 and 8 measured using the same techniques. 

In particular, the reconstruction of Figure 9.4 underpredicts the radius by over 1 mm in 

places. The reason for the observed underprediction is that the assumption of plane wave 

propagation that is integral to the layer peeling algorithm is no longer valid. That is, as well 

as plane waves, higher order modes were also propagating within the wide radius stepped 

tube during the two sets of measurements.  

The issue of higher order modes was first discussed in chapter 2. To recap, wave 

propagation in a duct can be described in terms of a sum of modes. The fundamental (plane 

wave) mode travels in an axial direction and has wavefronts that are uniform across the 

duct cross-section. Higher order modes reflect off the duct walls as they travel along its 
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length and consequently have non-uniform pressure distributions across the duct. 

Associated with each mode is a cut off frequency [Kinsler et al. 2000]: 

 

                                                    acmnc /αω =                                                        (9.1) 

 

where c is the speed of sound, a is the duct radius and αmn is the extrema of mth order 

Bessel function, which is determined by the boundary condition. At frequencies below its 

cut off frequency, a mode is evanescent. That is, it is rapidly attenuated so does not 

propagate. Above its cut off frequency, however, a mode will propagate. 

 The fundamental (plane wave) mode propagates at all frequencies. This mode is often 

described as the (0, 0) mode, with m = 0 and n = 0, and it follows that α00 = 0. The first of 

the higher order modes to become propagational is the (1,0) mode. For this mode, α10 

=1.84 so its cut off frequency (as given by [Kinsler et al. 2000] is 

 

acc /84.1=ω                                                        (9.2) 

 

Using equation 9.2, the lowest cut off frequency for the first cylindrical section of the 

stepped tube (of radius 9.4 mm) can be calculated as being 10.6 kHz. Similarly, the lowest 

cut off frequency for the section of radius 13.45 mm is found to be 7.4 kHz.  

Examination of Figure 9.1 reveals that this input impulse response measurement has a 

bandwidth of approximately 10 kHz, implying that the input signal must also have 

contained significant energy up to 10 kHz. As this is below the 10.6 kHz lowest cut off 

frequency of the first cylindrical section of the stepped tube, the assumption that only plane 

waves propagated in this section is valid. The consequence of this can be seen in Figure 9.2 

where the 9.4 mm radius section of the stepped tube is accurately reconstructed. However, 

the 10 kHz bandwidth of the input signal is greater that the 7.4 kHz lowest cut off 

frequency of the second section of the stepped tube. In this section, those frequencies 
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higher than the cut off frequency would have propagated as a mixture of both plane waves 

and wavefronts associated with the (1, 0) mode. This loss of energy to the first higher order 

mode is the reason why, in the reconstruction shown in Figure 9.2, the radius of the second 

section of the stepped tube is slightly underpredicted in comparison with the directly 

measured value of 13.45 mm.  

Examination of Figure 9.3 reveals that the input impulse response measurement made 

using the shorter source tube has a bandwidth of approximately 15 kHz. This implies that 

the input signal must also have contained significant energy up to 15 kHz. This is above 

the lowest cut off frequencies of both the 9.4 mm and 13.45 mm radius sections of the 

stepped tube. Therefore, a mixture of both plane waves and wavefronts associated with the 

first higher order mode would have propagated in both sections. This is manifested in the 

reconstruction of Figure 9.4 where, due to the loss of energy to the first higher order mode, 

the radii of both sections of the stepped tube are seriously underpredicted. 

 

9.2.3 Conclusion 

 

It was shown in chapters 7 and 8 that increasing the bandwidth of input impulse response 

measurements can result in more accurate, higher resolution bore reconstructions. 

However, this is only true provided that the frequencies present in the input signal remain 

below the lowest cut off frequency of the duct. If this is not the case then higher order 

modes begin to propagate within the duct and the assumption of plane wave propagation 

upon which the layer peeling algorithm is based becomes invalid. The result is a lowering 

of the accuracy of the bore reconstruction with underprediction of the radius of the duct 

under investigation. This has been clearly demonstrated in this section and was also 

reported by [Kemp 2003] to be the reason why the bell sections of musical wind 

instruments are poorly reconstructed. 
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To overcome this situation, the layer peeling algorithm must be adapted to take into 

account the effects of higher order modes. Several researchers have published work which 

describes the direct problem of calculating the input impedance of a duct, including the 

contributions of higher order modes, given the duct’s internal dimensions. An early 

example of such work is given by [Oie et al. 1980]. Meanwhile, more recently, [Kemp et 

al. 2001] calculated the input impedance of the horn sections of wind instruments, using 

the [Pagneux et al. 1996] [Amir et al. 1997] model to take into account of higher order 

mode contributions. However, despite the successful incorporation of higher order modes 

into the direct problem, at present the problem of including their effects in the inverse 

problem (of calculating a duct’s dimensions from its measured input impulse response or 

input impedance) remains unsolved. 

 

9.3 Future work 

 

Over the course of this thesis, modifications to the acoustic pulse reflectomery technique 

have been described which have led to great improvements in the accuracy and 

reproducibility of measurements of input impulse response and bore profile. However, 

there are still several practical limitations in the geometries of objects that can be measured 

using acoustic pulse reflectometry. Possible future work to overcome those limitations is 

discussed in this section. 

One of the main future areas of study is the inclusion of the effects of higher order 

modes in the layer peeling reconstruction algorithm. Until this is achieved, the accurate 

reconstruction of ducts with large cross-sectional areas will not be possible. In addition, 

further improvements to the axial resolution of bore reconstructions (necessary for the 

accurate reconstruction of step changes in cross-sectional area), while still maintaining 

their overall accuracy, will be prevented. 
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At present, the length of duct that can be measured on a reflectometer depends on the 

length of source tube l1 between the loudspeaker and microphone (necessary to separate 

the duct reflections from unwanted source reflections). The greater the length l1, the longer 

the object that can be measured. However, increasing l1 has the effect of increasing the 

losses experienced by the input signal, resulting in lower bandwidth input impulse 

response measurements and bore reconstructions of lower axial resolution and poorer 

accuracy. This could, to some extent, be counteracted by using a shorter source tube 

section l2 together with one of the calibration methods described in chapter 8. An 

alternative approach to increasing the length of duct that can be measured using 

reflectometry would be to eliminate source reflections completely. This would remove the 

need for a source tube and thus lift the restriction on duct length. It would also have the 

benefit of increasing the bandwidth of the input signal and consequently, the axial 

resolution of bore reconstructions. Several methods for eliminating source reflections have 

been suggested [Marshall 1992] [Louis et al. 1993] [Sharp 1998] [Kemp et al. 2001] but 

none have so far been successfully implemented. 

Finally, another potential area for further research involves ducts with sideholes (e.g. 

woodwind instruments or pipes containing holes). Acoustic pulse reflectometry has been 

used previously to detect leaks in short pipes [Sharp and Campbell 1997]. The leak 

presents a reduction in impedance to the probing pulse. This manifests itself in the 

reconstruction as a sudden widening in duct profile, allowing the leak position to be 

identified. However, the region of the duct after the leak is then incorrectly reconstructed. 

Future work could focus on, once a leak has been detected, adapting the reconstruction 

algorithm so that it compensates for the leak, enabling later sections of the duct to be 

reconstructed correctly. 
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