1,795 research outputs found

    Reconfiguration Time Aware Processing on FPGAs

    Get PDF
    The possibility of partial reconfiguration of FPGAs during run-time can be used to implement systems that adapt their execution area over time. Two things are presented in this context: 1) For detailed investigations of partial reconfiguration, the two topics modeling and practical realization of reconfigurable systems must be rooted in the design process. We have developed a tool that meets this requirement. It eases the design of partial bitstreams for Xilinx FPGAs for research purpose. The tool wraps the obstacles of partial bitstream generation, motivating people new to this field. Moreover, the backend of the tool, a single UML class diagram that represents the whole characteristics of the reconfigurable system under development abstractly, allows to model reconfigurable systems in a comprehensive manner on a high level of abstraction. The UML diagram is filled during the design process until enough information for the generation of bitstreams is available. 2) In the single machine environment, several scheduling algorithms exist that allow to quantify schedules with respect to feasibility, optimality, etc. In contrast, reconfigurable devices execute tasks in parallel, which intentionally collides with the single machine principle and seems to require new methods and evaluation strategies for scheduling. However, the reconfiguration phases of adaptable architectures usually take place sequentially. Run-time adaptation is realized using an exclusive port, which is occupied for some reasonable time during reconfiguration. Thus, we can find an analogy to the single machine environment. We investigate the appliance of single processor scheduling algorithms to task reconfiguration on reconfigurable systems. We determine necessary adaptations and propose methods to evaluate the scheduling algorithms

    A novel tool flow for increased routing configuration similarity in multi-mode circuits

    Get PDF
    A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration (RTR) of an FPGA, all the modes can be time-multiplexed on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration of the reconfigurable region for every mode separately. This results in configurations that are bit-wise very different. Thus, in this case, many bits need to be changed in the configuration memory to switch between modes, leading to long reconfiguration times. In this paper we present a novel tool flow that retains the placement of the conventional RTR flow, but uses TRoute, a reconfiguration-aware connection router, to implement the connections of all modes simultaneously. TRoute stimulates the sharing of routing resources between connections of different modes. This results in a significant increase in the similarity between the routing configurations of the modes. In the experimental results it is shown that the number of routing configuration bits that needs to be rewritten is reduced with a factor between 2 and 4 compared to conventional techniques

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    ParaFPGA 2013: Harnessing Programs, Power and Performance in Parallel FPGA applications

    Get PDF
    Future computing systems will require dedicated accelerators to achieve high-performance. The mini-symposium ParaFPGA explores parallel computing with FPGAs as an interesting avenue to reduce the gap between the architecture and the application. Topics discussed are the power of functional and dataflow languages, the performance of high-level synthesis tools, the automatic creation of hardware multi-cores using C-slow retiming, dynamic power management to control the energy consumption, real-time reconfiguration of streaming image processing filters and memory optimized event image segmentation

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Criticality Aware Soft Error Mitigation in the Configuration Memory of SRAM based FPGA

    Full text link
    Efficient low complexity error correcting code(ECC) is considered as an effective technique for mitigation of multi-bit upset (MBU) in the configuration memory(CM)of static random access memory (SRAM) based Field Programmable Gate Array (FPGA) devices. Traditional multi-bit ECCs have large overhead and complex decoding circuit to correct adjacent multibit error. In this work, we propose a simple multi-bit ECC which uses Secure Hash Algorithm for error detection and parity based two dimensional Erasure Product Code for error correction. Present error mitigation techniques perform error correction in the CM without considering the criticality or the execution period of the tasks allocated in different portion of CM. In most of the cases, error correction is not done in the right instant, which sometimes either suspends normal system operation or wastes hardware resources for less critical tasks. In this paper,we advocate for a dynamic priority-based hardware scheduling algorithm which chooses the tasks for error correction based on their area, execution period and criticality. The proposed method has been validated in terms of overhead due to redundant bits, error correction time and system reliabilityComment: 6 pages, 8 figures, conferenc
    • …
    corecore