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Considering nowadays FPGAs, the reconfiguration time is a non-negligible
element of reconfigurable computation. Moreover, run-time environments
that ignore the reconfiguration time can quickly lack applicability. Thus,
methods to respect this additional time are required. Looking for suitable
analogies in already evaluated fields seems to be reasonable and shall be
investigated in this work.

In the single machine environment, several scheduling algorithms exist that
allow to quantify schedules with respect to feasibility, optimality, etc. In
contrast, reconfigurable devices execute tasks in parallel, which intentionally
collides with the single machine principle and seems to require new methods
and evaluation strategies for scheduling. However, the reconfiguration phases
of adaptable architectures usually take place sequentially. Run-time adap-
tation is realized using an exclusive port, which again is occupied for some
reasonable time during reconfiguration. We have to handle the duration and
the sequential exclusiveness of reconfiguration phases. Here, we can find an
analogy to the single machine environment, as both scenarios must derive a
sequential schedule for an exclusive resource. Thus, we investigate the ap-
pliance of single processor scheduling algorithms to task reconfiguration on
reconfigurable systems in this paper. We determine necessary adaptations
and propose methods to evaluate the scheduling algorithms.

1 Introduction

Recently, several authors have proposed similar architectural concepts for fine-grained
run-time reconfigurable systems in the reconfigurable computing field. The architectures
usually based on Xilinx Virtex FPGAs comprise a specific number of slots, in which tasks
are dynamically allocated and executed. The technological capabilities of the Xilinx
FPGAs allow a deterministic (e. g., glitch-free) partial reconfiguration of these slots
during run-time, without affecting other regions. In addition, the inherent parallelism
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of fine-grained devices enables the implementation of tasks executing in space, i. e.,
mostly faster than in software. All together, flexibility and performance are merged
in a sophisticated run-time environment. This environment can be implemented as a
Reconfigurable System-on-a-Chip (RSoC).

In detail, such systems comprise a bus infrastructure for inter-task and external com-
munication. Often, a CPU is included to the system as hard- or soft-core. The CPU or a
run-time reconfiguration manager handles the reconfiguration itself. Tasks are executed
in the slots of the reconfigurable fabric. Some architectural concepts allow dynamic
width assignments of the tasks, while others hold the size fixed. Due to hardware limita-
tions, the slots always span the whole height of the FPGA so far. Future environments
based on e. g. the Xilinx Virtex 4 device will be able to define reconfigurable regions that
must not span the whole height of the FPGA. Such environments will ease routing, etc.
However, their fundamental concept of having regions for the execution of reconfigurable
tasks will most likely stay the same.

Efficient executing of tasks on such devices is proved to be not a trivial problem.
Apart from area assignment, de-fragmentation and communication problems, which are
extensively studied on the above mentioned platforms, the reconfiguration itself demands
further investigation. We itemize the main two problems of reconfiguration in the fol-
lowing:

• The system or at least the reconfigurable hardware part is usually implemented on
one single chip. Despite the possibility to execute several tasks on this chip in par-
allel, the reconfiguration of the slots is sequential. There exists one reconfiguration
port only, which is used exclusively for the reconfiguration.

• The reconfiguration time itself cannot be neglected. Fine-grained devices, like
FPGAs, are primarily designed for fast (i. e., parallel) execution of algorithms.
They are not primarily designed for fast run-time reconfiguration, a fact which
will barely change in the near future. Thus, the infrastructure provided for the
reconfiguration is limited and can be seen as the bottleneck of fine-grained recon-
figurable hardware. Note that there have been several proposals to overcome this
limitation [9], however, none of them is available commercially yet. Consequently,
the practical usefulness of such fast reconfiguring devices is difficult to prove.

Those two characteristics (exclusiveness and reconfiguration time), although funda-
mentally being a drawback, enable the appliance of methods of the single processor do-
main to the reconfigurable run-time environments. Scheduling algorithms of the single
machine domain sequentially assign a set of tasks to one processing device. The device is
used mutually exclusive. Similar, reconfiguration phases must be assigned sequentially
to the exclusive reconfiguration port.

The proposed run-time environments, as well as RSoCs in general are intended to be
used in the area of embedded systems. The idea of having many components on the same
die is basically motivated by resource efficiency, i. e., limitations in various dimensions
(power, memory, size, weight, etc.) are significant. Additionally, most such systems are
real-time systems, whose correctness not only depends on the correct result, but also on
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the time when the result is made available. Thus, real-time scheduling strategies become
a vital fact in these systems.

In this paper, we focus on such a real-time execution of tasks in slots of reconfigurable
systems respecting execution and reconfiguration time constraints. We investigate sev-
eral scheduling strategies known from single processor real-time systems, where tasks
can arrive at the same or arbitrary times to the system. We investigate independent
task sets and propose a novel approach where a task may be preempted in its reconfig-
uration phase, in order to achieve a feasible schedule. We base our research on already
known schedule algorithms and show how to adapt them for our scenario. Additionally,
we explain how guarantee tests can be realized.

The rest of the paper is organized as follows. After summarizing related work, we will
abstract the scenario and introduce helpful parameters to solve the problem. In Section 4,
we first investigate a set of independent tasks having synchronous arrival time. We show
the analogy and limitation to the single environment schedule, which would be used in
such a scenario. Then, we enhance the scenario to tasks having arbitrary arrival times.
Again, the comparison to the single machine environment is drawn. Here, we propose
to introduce preemption to the reconfiguration phases. Finally, we conclude and give an
outlook.

2 Related Work

Voluminous amount of work has already been done in online scheduling of real-time
tasks on reconfigurable architectures. Most of them divides the problem into two main
problems: task scheduling and task placement.

In the work presented in [2], the area occupied is optimized, respecting the task time
constraints, where tasks are not allowed to be preempted. In the same scenario, the
authors of [12] and [10] analyze the effect of overall response time and guarantee-base
scheduling when tasks comprise different shapes. When task preemption is allowed (e. g.,
[1] and [13]), the task acceptance rate is improved. However, hardware task preemption
represents additional costs due to still non-efficient techniques and methods available to
do it. All those concepts are based on the assumption that the reconfigurable devices
may be partial configured, which is true for some available FPGAs (e. g., Xilinx). How-
ever, we seldom find concepts that respect the reconfiguration time or even the sequential
reconfiguration. Usually, both are neglected due to the assumption that the execution
time is much higher than the reconfiguration time (e. g., [13]). Nevertheless, for com-
parable reconfiguration and execution times, the behavior of the single reconfiguration
port may decrease the system performance and needs to be taken into consideration.
Therefore, in our paper we propose the inclusion of the reconfiguration phase into the
scheduling of real-time tasks on reconfigurable devices. The placement problem is not
considered since we assume that every task comprises the same size.
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Figure 1: Exemplary architectural concept comprising three slots, a control mechanism,
an external storage place for bitstreams and the (ICAP) port for the (internal)
reconfiguration.

3 Problem Abstraction

We rely on the above mentioned RSoCs and abstract them first. If we have n tasks to be
executed, each in one of the m slots, and m < n, i. e., the number of slots is smaller than
the number of tasks to be executed, we have to reuse the same slot for multiple tasks.
Moreover, all tasks are loaded (by means of slot reconfiguration) through one single port.
In order to handle this limitation of resources, we need a suitable mechanism to schedule
the tasks. Such a schedule may satisfy an optimization criteria like the minimization of
the overall response time or the maximum lateness, etc., under the limited number of
resources and the mutual exclusiveness of the configuration port.

Considering the set of tasks in more detail, we deal with tasks arriving at the same
or arbitrary time. In the scope of this paper, all tasks are aperiodic and have no prece-
dence constraints. Additionally, the tasks are not preemptive in their execution phase.
Concerning the geometrical properties of the tasks, they all occupy a whole slot and
comprise the same size. There may be internal fragmentation, which is out of scope of
this paper.

An abstract view of the execution platform mentioned in the introduction can be found
in Figure 1. Partial reconfiguration capabilities enable a single slot to be reconfigured
keeping remaining ones in execution. The concept is similar to several different proposals
that we can find in the literature (e. g., [14, 11]). The systems’ most important fact in the
context of this work is the single reconfiguration port, which enforces us to reconfigure
the tasks sequentially.

We model every task of our system with two different phases. The reconfiguration
phase (RT ) represents the configuration of the hardware itself. The RT phase needs
to occur before the second phase, which is the execution phase (EX ). Figure 2 shows
these two phases. Horizontally, we display the available slots and their occupation over
time. RT means that this slot is in reconfiguration, while EX denotes the execution
of the task. As all tasks have the same size, the RT phases are of the same duration.
Technically speaking, the bitstreams comprise the same number of bits.
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Figure 2: Reconfiguration (RT) and execution phase (EX).

Table 1: Definitions
di execution deadline
tEX,i computation or execution time
tRT reconfiguration time
Lmax maximum lateness
d∗i reconfiguration deadline

In Figure 2, we can also find the motivation for partial reconfiguration capabilities of
such a system. Partial reconfiguration results in an improved overall response time of the
task set, as reconfiguration of new tasks can take place during the execution of current
tasks. Thus, we pipeline EX and RT phases of different tasks, hiding the reconfiguration
time.

Due to the exclusive usage of the reconfiguration port, no two reconfiguration phases
can be scheduled at the same time. However, multiple tasks can execute at the same
time. Resource conflicts during task execution (e. g., sharing of the same bus) are out of
the scope of this paper.

In order to derive a schedule for task reconfiguration, we specify the parameters of the
task ti in Table 1. The definitions are close to the ones in [3]. We want to emphasize
the maximum lateness, which is a known metric for performance evaluation Lmax =
maxi(fi − di). Further, for our special case, we define a deadline d∗i that is the deadline
for the reconfiguration phases. It is calculated using d∗i = di − tEX,i.

4 Scheduling

We investigate the two known aperiodic task scheduling strategies from single processor
design: EDD and EDF. Motivated by the similarity of the single processor scheduling
and the behavior of the reconfiguration port of the introduced execution platforms, we
show in what way we can use these algorithms from the single machine environment in
the domain of reconfigurable task scheduling. We do not address the problem of multi
processor scheduling, but propose methods for the optimization of the reconfiguration
behavior of such systems by focusing on the sequential processing reconfiguration port.

Further, we structure our procedure similar to [3], which is a comprehensive reference
for scheduling in the real-time domain. Similar, we make several assumptions on the
task set to be able to categorize the problems.
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Figure 3: Three slots and n tasks having different execution times.

Algorithm 1 Earliest Due Date for Reconfigurable Slot Architectures
1: if reconfiguration port is inactive (i. e., no RT phase is active) then
2: Find slot where no EX is active
3: if all slots are in EX phase then
4: Wait until at least one slot is available
5: end if
6: Reconfigure slot r, (r = ind (min {z1, z2, . . . , zm}))
7: end if

4.1 Synchronous arrival of independent tasks

A set of n aperiodic tasks has to be loaded into m slots (m < n), using the mutual
exclusive reconfiguration port. The tasks have synchronous arrival time, but can have
different execution time tEX,i and deadline di. Note that schedules for this scenario do
not need preemption as no new tasks will enter the system at run-time (synchronous
arrival time).

The sequential scheduling problem of the RT phases is solved in the single processor
environment with respect to minimizing the maximum lateness using Jackson’s algo-
rithm, also called earliest due date (EDD). The algorithm executes the tasks in order of
non-decreasing deadlines. We apply EDD to our scenario, using d∗i as deadlines.

We have to extend EDD due to the fact that the seamless scheduling of RT phases
can be blocked when all slots are in EX phases, as displayed in Figure 3. We may be
forced to wait to start the next reconfiguration due to full slot occupancy. A waiting
period may be enforced, which we denote as δi. In this case, the optimality of EDD
cannot be guaranteed. However, every slot is executing, i. e., the FPGA is fully utilized
and does not waste free space. The algorithm respecting such waiting phases looks as
displayed in Algorithm 1.

If we can guarantee at least one free slot at the beginning of each RT phase, all results
of EDD of the single machine environment hold and EDD is optimal in our scenario with
respect to minimizing the maximum lateness. A sufficient but not necessary condition
to guarantee a free slot is ∀i : tEX,i < tRT · (m − 1). Moreover, using this formula, we
can estimate the number of slots needed.

4.1.1 Guarantee

When we want to make a guarantee test, i. e., to guarantee that a set of tasks can be
feasibly scheduled, we need to show that, in the worst case, all tasks can complete before
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their deadlines. The guarantee test for EDD in the single processor case is ∀i = 1, . . . , n :∑i
k=1 tEX,k ≤ di. In our scenario, due to the possible delays when all slots are occupied

and the next RT phase is postponed (see Figure 3), we must extend every scheduled
task by a possible additional δi. Thus, it must hold

∀i = 1, . . . , n :
i∑

k=1

(tRT,k + δk) + tEX,i ≤ di.

The δk depend on the current occupation of all slots of the system and are difficult
to compute. Therefore, our guarantee test avoids the explicit calculation of the δk by
computing the slot occupancies iteratively. The idea is to use a vector z that holds the
current status of each slot. In the vector fields, we sum up the individual occupancy with
respect to the global availability of the reconfiguration port. Therefore, we sequentially
run through the schedule produced by EDD of Algorithm 1 filling this vector z, whose
entries zl represent the slots of the reconfigurable fabric. The vector is updated each
time a new RT phase starts. After the update, the vector’s entries display when (time)
their corresponding slots can be reconfigured next, also concerning the global condition,
i. e., the occupancy of the reconfiguration port. Thus, by extracting the field with the
smallest value, we can determine the next slot r for reconfiguration of the next task tj .
We apply

r = ind (min {z1, z2, . . . , zm}) ,

while ind is the index function (see also Line 6 of Algorithm 1). If multiple zl are
minimal, the selection is arbitrarily.

In detail, the entries of the vector are updated (zr,old ⇒ zr,new) as follows: We add
tRT and tEX,j to the field of the selected slot (zr): zr,new = zr,old + tRT + tEX,j . In order
to update all other fields zl, l 6= r, the following equation holds:

zl,new = max {zl,old, (zr,old + tRT )} . (1)

Thus, if the finishing time of the RT phase of slot r is larger than zl,old, slot l may be
reconfigured, when the currently started reconfiguration has finished (zl,new = zr,old +
tRT ). Otherwise, if slot l will still be in EX phase when slot r has finished reconfiguration,
we must not select slot l for reconfiguration. Therefore, zl keeps its value (zl,new = zl,old),
which is larger than zr,new indicating its next availability for reconfiguration.

Now, we can answer the question of feasibility of a task tj , i. e., whether the deadline
dj of task tj can be met. After each update of the vector due to the dispatching of a
task tj , it must hold zr,new ≤ dj . After scheduling all tasks, we can calculate the overall
finishing time as the max {z1, z2, . . . , zm}.

Example
An exemplary sequence of the vector during a guarantee test for the scenario of Figure 3
will look like the following. We start with an empty vector and schedule the first two
tasks:  z1

z2

z3

 :

 0
0
0

 →

 tRT,1 + tEX,1

tRT,1

tRT,1

 →

 tRT,1 + tEX,1

tRT,1 + tRT,2 + tEX,2

tRT,1 + tRT,2

 →
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Figure 4: EDD can fail to produce a feasible schedule.

The update of the vector after dispatching the third task will result in keeping of the
value of z2, according to Equation 1. tRT,1 + tEX,1

tRT,1 + tRT,2 + tEX,2

tRT,1 + tRT,2 + tRT,3 + tEX,3

 →

 tRT,1 + tRT,2 + tEX,2 + tRT,4

tRT,1 + tRT,2 + tEX,2 + tRT,4 + tEX,4

tRT,1 + tRT,2 + tEX,2 + tRT,4

 → . . .

After each update of the vector, we can prove the feasibility (zr,new ≤ dj) and deter-
mine the next slot (r = ind (min {z1, z2, . . . , zm})) and the time instance for reconfigu-
ration (min {z1, z2, . . . , zm}).

4.1.2 Limitations

As stated above, when using EDD for the reconfigurable slot scheduling of reconfigurable
architectures, we cannot guarantee optimality. In fact, EDD can miss to produce a
feasible schedule. Figure 4 shows the problems, which is due to the possible additional
δi of each task. We can also see that we have to dissociate from the statement that EDD
also reduces the maximum lateness in our reconfigurable environment.

To summarize, using EDD, we can guarantee the minimization of the maximum late-
ness only if no reconfiguration phase is delayed.

4.2 Asynchronous arrival of independent tasks

We now release the restriction of synchronous arrival of all tasks, i. e., tasks can dynam-
ically enter the system. If we have such arbitrary arrival times, preemption becomes
an important factor. In the literature, we find that when preemption is not allowed,
the problem of minimizing the maximum lateness and the problem of finding a feasible
schedule become NP-hard [8, 7, 6]. If preemption is allowed, Horn [5] found an algo-
rithm, called Earliest Deadline First (EDF), that minimizes the maximum lateness. The
algorithm dispatches at any instance the task with the earliest absolute deadline.

Preemption for tasks executing on hardware is challenging and is not in the scope of
this paper. However, we propose to preempt tasks during their RT phase, when the
calculation has not started and no context saving, etc. is necessary.

In order to realize such a preemption, we divide the area reconfigured during a RT
phase into columns cj . These columns are of equal size and comprise the equal re-
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Figure 5: EDF schedule.

Figure 6: EDF schedule 2.

configuration time t(cj), which sum up to the reconfiguration time of the whole slot:∑
t(cj) = tRT . The reconfiguration process then looks as follows: gradually all the cj

of task tv are loaded in slot sv of the reconfigurable fabric. If a new task tw enters
the system and has an earlier deadline d∗w, we preempt task tv, i. e., task tv frees the
reconfiguration port and task tw starts to reconfigure.

Depending on the current occupation of the fabric, different scenarios for the slot
assignment of task tw are possible. If we have another free slot available (sfree 6= sv),
we use this slot. After the RT phase of tw we can resume the RT phase of tv at
the interrupted point. However, if no free slot is available, we can use slot sv of the
interrupted task. sv becomes the slot for tw (sw ⇐ sv) and RTw overwrites all already
configured parts of tv. Thus, after finishing the reconfiguration of tw, we cannot resume
the reconfiguration phase (RTv) of the preempted task. Instead, we have to restart RTv

completely, as already loaded parts of the bitstream are lost.

Implementation of EDF
The implementation of EDF (refer to Algorithm 2) for our scenario bases on a queue Q,
which orders all tasks according to their deadlines d∗. As mentioned above, if a new task
dynamically arrives to the system and its deadline is smaller than the task currently in
RT phase (tcurrent), we start the preemption process. Note that we put tcurrent at the
head of the queue. Depending on the slot we use to reconfigure, we either mark tcurrent

as partly loaded and assign the rest of its reconfiguration time to the queue, or, in the
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Algorithm 2 Earliest Deadline First for Reconfigurable Slot Architectures
1: if d∗new < d∗current then
2: if all slots are in EX then
3: wait for next free slot
4: else if all other slots si 6= slot(tcurrent) are in EX then
5: add tcurrent completely to Q
6: reconfigure now free slot
7: else
8: add rest of tcurrent to Q
9: Reconfigure next free slot

10: end if
11: else
12: Insert tnew in queue Q
13: end if

case of sw ⇐ sv, we put tcurrent and its complete tRT to the head of the queue.

Technical Realization of Bitstream Preemption
Although the concept of stopping reconfiguration processes and starting in another region
opens new perspectives to the scheduling in the mentioned execution environments, it is
challenging to realize. We have to divide the bitstream for a slot into smaller columns,
i. e., bitstreams for fewer LUTs.

Each partial bitstream is preluded by a small header section which indicates the lo-
cation of the bitstream on the FPGA. Additionally to this header, each cj enforces the
reconfiguration controller to be active and initiate a new partial reconfiguration, which
increases the load of the controller. Further, the overall response time will increase as
each RT phase increases due to the additional headers.

The final technical solution of dividing partial bitstreams into small columns is ongoing
work and is not presented in this paper. However, the capabilities of the introduced
concept of RT phase preemption motivates the effort still needed.

4.2.1 Limitations

EDF in the uniprocessor domain minimizes the maximum lateness. Similar to EDD,
applying EDF for the reconfigurable port scheduling of reconfigurable environments, we
cannot guarantee this minimization. Again, if all slots are in EX phase, EDF cannot
load a dynamically arriving task as executing tasks are assumed to be non-preemptive.
As stated above, we deal with an NP-hard scenario in such a case.

Further, Figure 6 displays that a RT phase might have to be restarted completely.
This will increase the overall response time and enforces a complex scheduling test to be
done online after each new task has entered the system (acceptance test).
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5 Conclusion

Referring to the abstract, the main contribution of this work was to investigate the
adaption of known and reasonably evaluated concepts to new fields in order to pose new
perspective to open problems of current research areas. In particular, in this paper, we
have investigated scheduling strategies known from the single machine environment and
applied them on reconfigurable devices. We focused on the reconfiguration process, as re-
configuration phases are executed sequentially and thus are applicable for the uniproces-
sor scheduling algorithms. We have shown that the appliance of the scheduling algo-
rithms is possible and valuable for such scenarios, even though some limitations have to
be taken into account.

Moreover, we discuss the possibility to allow task preemption during the reconfigura-
tion phases instead of the execution phases in order to improve the schedule feasibility for
tasks with asynchronous arrival time. Also posing a challenge for the implementation,
the preemption of the reconfiguration phase opens new perspectives to the appliance of
run-time reconfiguration on FPGAs in the real-time domain.

As ongoing work, we are currently exploring the possibilities to divide bitstreams
into small columns in an efficient manner. In addition, in a future work, we plan to
extend our scenario to aperiodic and periodic real-time task sets also having precedence
constraints. Furthermore, we hope that sophisticated caching strategies in combination
with the proposed reconfiguration scheduling will improve the results.
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