
A novel tool flow for increased routing
configuration similarity in multi-mode circuits

Brahim Al Farisi, Elias Vansteenkiste, Karel Bruneel and Dirk Stroobandt
Ghent University, ELIS Department

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
Brahim.AlFarisi@UGent.be

Abstract—A multi-mode circuit implements the functionality
of a limited number of circuits, called modes, of which at
any given time only one needs to be realised. Using run-time
reconfiguration (RTR) of an FPGA, all the modes can be time-
multiplexed on the same reconfigurable region, requiring only an
area that can contain the biggest mode. Typically, conventional
run-time reconfiguration techniques generate a configuration of
the reconfigurable region for every mode separately. This results
in configurations that are bit-wise very different. Thus, in this
case, many bits need to be changed in the configuration memory
to switch between modes, leading to long reconfiguration times. In
this paper we present a novel tool flow that retains the placement
of the conventional RTR flow, but uses TRoute, a reconfiguration-
aware connection router, to implement the connections of all
modes simultaneously. DRoute stimulates the sharing of routing
resources between connections of different modes. This results
in a significant increase in the similarity between the routing
configurations of the modes. In the experimental results it is
shown that the number of routing configuration bits that needs
to be rewritten is reduced with a factor between 2 and 4 compared
to conventional techniques.

I. INTRODUCTION

The inherent reconfigurability of SRAM-based FPGAs en-
ables the use of different configurations at different time inter-
vals, each optimized for the specific task in the corresponding
time interval. This is called run-time reconfiguration (RTR).
Using RTR, FPGA resources can be reused between circuits,
making it possible to use smaller and thus cheaper FPGAs.
However, at the time interval boundaries, the problem at hand
will change. Then a significant period of time, called the
reconfiguration time, is needed to reconfigure the FPGA.

A multi-mode circuit implements the functionality of a
limited number of circuits, called mode circuits or modes. At
any given time only one mode circuit needs to be realised.
Also, different modes often exhibit a lot of similarity on the
circuit-level, since the same functional blocks are used to build
up the circuit. An example of a multi-mode circuit is a mobile
transceiver that supports different communication standards
(like 3G and Wi-Fi), but only uses one at any given time. In
this case, every mode is a circuit that contains the necessary
functions to support the corresponding communication stan-
dard. Since the different modes are mutually exclusive in time,
hardware sharing techniques can be considered to optimize
area, power and execution time.
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Using run-time reconfiguration of an FPGA, all the modes
of a multi-mode circuit can be time-multiplexed on the same
FPGA area, requiring only an area that can contain the biggest
mode. This way significant area savings can be realized
compared to a static implementation of the multi-mode circuit
that uses space-multiplexing to switch between modes.

In conventional RTR systems, a configuration is generated
for every mode by implementing it separately in the recon-
figurable region. The mode configurations are bit-wise very
different and when switching between modes many bits need
to be changed in the configuration memory. This leads to
long reconfiguration times, making RTR less useful for more
dynamic applications [8].

During the reconfiguration process most time is spent in
writing the routing configuration. This is the portion in the
configuration memory that controls the reconfigurable inter-
connection network. In this paper we focus on increasing
the similarity of the routing configurations of the different
modes of a multi-mode circuit. We present a novel, auto-
mated tool flow that retains the placement of conventional
RTR, but uses TRoute to route the connections of all modes
simultaneously. DRoute is a reconfiguration-aware connection
router that stimulates sharing of routing resources between the
connections of different modes, which results in an increased
similarity of the mode configurations. Experimental results
show a reduction between 2× and 4× in the number of
routing configuration memory cells that needs to be rewritten
compared to conventional techniques. We also research the
impact this has on the wire length of the individual mode
circuits as the number of modes of a multi-mode circuit
increases.

Our paper starts with an overview of how TRoute works
in Section II. In Section III, we compare the conventional
RTR tool flow to our new, fully automated flow for multi-
mode circuits. The experiments and results are discussed in
Section IV. Finally, we conclude in Section V.

II. TROUTE: A RECONFIGURATION-
AWARE CONNECTION ROUTER

A conventional router calculates the Boolean values that
need to be stored in the configuration bits of the configurable
interconnection network so that the physical logic blocks are
connected as is specified by the nets in the mapped circuit. The
main algorithm used to solve this problem is PATHFINDER [7].
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PATHFINDER presents the available routing resources of
the FPGA in an easy-to-explore data structure, the routing
resource graph (RRG). The RRG is a directed graph, where
each node represents a routing wire on the FPGA and each
directed edge represents a routing switch on the FPGA.

In the PATHFINDER algorithm the connections that need to
be routed are organized in nets. These are sets of connections
that share the same source. Connections of a same net are
allowed to share resources. In every routing iteration, the
algorithm rips up and reroutes all the nets in the input circuit.
These iterations are repeated until no shared resources exist
between nets or, in other words, the routing trees of the nets are
disjoint. This is achieved by gradually increasing the cost of
sharing resources between nets, a technique called negotiated
congestion. The cost function of a node in the RRG is

cost(n) = b(n) · p(n) · h(n), (1)

where b(n) is the base cost, p(n) is the present congestion
penalty and h(n) is the historical congestion penalty. More
details on PATHFINDER can be found in [2].

TRoute is the reconfiguration-aware router used in the
Dynamic Circuit Specialization (DCS) tool flow presented
in [3]. This DCS tool flow takes in a design with slowly vary-
ing inputs, called parameters, and generates a parameterized
configuration. This is an FPGA configuration that expresses
the configuration bits as a Boolean function of the parameters.
Whenever the parameters change value, the Boolean functions
are re-evaluated and written in the configuration memory of
the FPGA.

An important concept in DCS is a Tunable Connection
(TCON). This is a connection, with which a Boolean function
of the parameters is associated, called the activation function.
The connection between the source and the sink of the TCON
only needs to be realized in the FPGA fabric for parameter
values for which the activation function evaluates to True. In
contrast to nets, TCONs can legally share a node in the RRG.
This is allowed when they have the same source or when they
are not active at the same time. The activation functions are
used to detect which TCONs are mutually exclusive in time.

TRoute is based on the PATHFINDER algorithm and is
developed to route a set of Tunable connections [4]. Instead
of nets, TRoute rips up and reroutes Tunable connections. The
cost function of a node in the RRG, in the case of TRoute, is

cost(n) =
b(n) · p(n) · h(n)

share(n)
, (2)

where b(n), p(n), h(n) are as in Equation (1) and share(n)
is the number of TCONs that legally share a node. Clearly,
TRoute does not only stimulate the overlap between TCONs
with the same source, but also between TCONs that have
disjoint activation functions.

In Figure 1(a) an example is shown of a set of Tunable
connections that implement the functionality of a four way
switch. The straight connections are realized when p = 0,
the crossed connections when p = 1. In Figure 1(b) the
implementation is shown of this set of TCONs, as generated
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Fig. 1: (a) Schematic representation of a set of TCONs with
the functionality of a four-way switch. (b) Implementation of
that set of TCONs (black) in a simple 2×2 island style FPGA
resource graph (grey). Wires are solid lines; Edges are thin
lines; Sources are open boxes; And sinks are filled boxes.

by TRoute on a 2×2 island-style FPGA. To generate the
parameterized configuration bits of the switches the activation
functions of the TCONs that use the switch are logically added
(OR). Note that a lot of static ones are generated. This is
because TRoute stimulates sharing of resources between con-
nection with disjoint activation functions. In this example only
eight configuration bits are parameterized, the rest are static.
It is straight-forward to generate a specialized configuration
corresponding to one of the connection patterns of the four-
way switch. Only the parameterized bits need to be evaluated
and written in the configuration memory.

III. RUN-TIME RECONFIGURATION OF
MULTI-MODE CIRCUITS

With run-time reconfiguration (RTR) it is possible to im-
plement different functions, that are not needed at the same
time in the system, on the same FPGA area. This area
is generally called the reconfigurable region. Whenever one
wants to change the implemented function, a period of time is



Fig. 2: The conventional RTR tool flow (a), compared to our
novel approach which uses a merge and TRoute (b).

needed to rewrite the configuration memory. This is called
the reconfiguration time. The subsystem that performs the
reconfiguration is called the reconfiguration manager and is
generally implemented in software. In this section we discuss
two techniques that use run-time reconfiguration to implement
multi-mode circuits: the conventional run-time reconfiguration
flow and our novel approach using TRoute.

A. Conventional RTR flow

The conventional RTR tool flow implements every mode
separately in the reconfigurable region by following the typical
steps of the FPGA CAD flow (synthesis, technology mapping,
placement and routing), as shown in Figure 2(a). For every
mode a configuration is generated, that contains the binary
values needed to write the configuration memory of the
reconfigurable region. To switch between the different modes
the reconfiguration manager writes the reconfigurable region
with the appropriate configuration. In this paper we consider
two ways of rewriting the configuration memory in the conven-
tional flow: modular-based dynamic reconfiguration (MDR)
and difference-based dynamic reconfiguration (DDR) [10]. In
the modular based approach the configuration granularity is
the complete reconfigurable region. In the difference-based
approach the configuration granularity is a single bit.

B. Merging tool flow using TRoute

Our proposed tool flow is presented in Figure 2(b). Instead
of running the tool flows completely separately for the differ-
ent modes, the idea is to have a combined implementation
of the modes at a certain point in the flow. In this case,
the tool flow is run separately until placement, generating
a placed design for each mode. Then the connections of all
the modes are merged into one set of Tunable connections.
During this merging step, the connections are automatically
annotated with the appropriate activation function. The set

of merged TCONs is then routed with TRoute, to generate
a parameterized configuration.

Figure 3 illustrates how the merged routing using TRoute
reduces the number of bits that need to be rewritten in the
configuration memory compared to the conventional RTR flow.
In Figure 3(a) a set of TCONs is shown that represents a
simple 2:1 multiplexer we would like to implement using
run-time reconfiguration. The goal is to obtain two FPGA
configurations. One corresponding to connection (i0, o0), the
other one to connection (i1, o0). By reconfiguring the FPGA
during run-time with the appropriate configuration we can
choose which input gets connected with the output.

Figures 3(b) and (c) show a possible implementation of
the connections (i0, o0) and (i1, o0) respectively, on a simple
2×1 FPGA, using the conventional RTR flow. Although the
wire length of each of the implementations is optimal, we
note that the switches being used in the two configurations
are completely different. In this example the bits of all the
10 used switches would need to be changed to obtain an
appropriate configuration. In Figure 3(d) we see the same ex-
ample implemented using TRoute. TRoute stimulates sharing
of routing resources between connections of different modes.
This results in a parameterized configuration with only 2
parameterized bits. Only these bits need to be rewritten to
specialize the parameterized configuration into the appropriate
regular configuration.

IV. EXPERIMENTS AND RESULTS

A. Benchmarks

To validate our proposed tool flow we conducted 2 exper-
iments that use different applications. In the first experiment
a typical multi-mode application was used, namely a regular
expression matching (RegExp) application. In [9] a tool was
developed that can generate a hardware engine, written in
VHDL, that matches a certain regular expression. We chose
the regular expressions out of the Bleeding Edge rules set [1]
and with this tool generated the corresponding circuits. In
the second experiment the mode circuits were benchmarks
chosen out of the general MCNC suite that were of similar
size compared to the first experiment. For every set of mode
circuits the minimum, average and maximum number of LUTs
are reported in Table I.

In each experiment 10 multi-mode circuits were generated
by picking a combination of M mode circuits out of the
generated circuits, where M was varied between 2 and 5. This
way we can analyze the quality of the implementation of the
multi-mode circuits as the number of modes increases.

TABLE I: Size of the LUT circuits used in the experiments.

Minimum Average Maximum
RegExp 224 243 261
MCNC 264 310 404
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Fig. 3: Schematic representation of a set of TCONs with the functionality of a 2:1 multiplexer (a). Implementation of that set
of connections using the conventional RTR flow (b)(c), compared to the parameterized configuration generated by TRoute (d).

B. FPGA architecture

The FPGA architecture used for each of the implementa-
tions, is described in 4lut_sanitized.arch. This is an
FPGA architecture file included in the distribution of VPR [2].
VPR is the most commonly used academic tool for place and
route algorithms in FPGAs. We note that the techniques and
tools we use in this paper are independent of the architecture
used. The number of inputs of the LUTs is simply an input
parameter of the tool flow. Also, different routing architectures
can be used since TRoute uses a standard representation of the
routing infrastructure, the routing resource graph [2].

Since there is no other functionality implemented on the
FPGA, the reconfigurable region comprises the complete
FPGA in our experiments. As recommended in [2], the square
area of the FPGA and the channel width were both chosen
20% bigger than the minimum needed. This is done to allow
relaxed routing.

C. Results

We point out that both our novel tool flow and the conven-
tional RTR flow have the same gains in area. For the regular
expression matching application and the MCNC benchmarks,
only an area of around 1/M is required compared to the static
implementation of M modes.

Two other metrics were used to further evaluate the quality
of a multi-mode circuit: reconfiguration time and wire length.
The reconfiguration time gives an indication on how fast
the system adapts to an environmental change. Wire length
is an important metric for the quality of a circuit, since it
correlates with power usage and performance (maximum clock

frequency) of a circuit [2]. In each experiment we compare our
approach to difference-based dynamic reconfiguration (DDR)
and modular-based dynamic reconfiguration (MDR), as the
number of modes M increases. We average the results over
the implemented circuits. We also use error bars to indicate
minimum and maximum values compared to the average.

1) Reconfiguration time: First, in section a, we focus on
the effects of using our new tool flow on the reconfiguration
time of only the routing. Next, in section b, we also take a
look at the effect this has on total reconfiguration time, which
includes the look-up tables (LUTs).

In current FPGAs, the reconfiguration granularity is a
collection of bits called a frame. LUTs and routing config-
uration bits reside in different frames. Since the academic
VPR framework is used to implement TRoute, we could
not measure a frame-based reconfiguration time. Instead we
assume the reconfiguration time to be linear with the number
of bits rewritten in the configuration memory. We compare our
approach with both the modular and difference-based approach
of reconfiguring in the conventional flow. The granularity of
frame-based reconfiguration is between that of the modular
and difference based approach, thus a frame-based reconfigu-
ration time will also be between these bounds.

a) a) Routing reconfiguration time: In the case of MDR
all the routing bits in the configuration memory of the re-
configurable region are rewritten. For DDR and our approach
we make a distinction between static and dynamic bits. Static
bits are bits in the configuration memory that have the same
value for all the modes, the rest is called dynamic. In the case
of DDR and our novel approach we only count the dynamic
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Fig. 4: Routing reconfiguration speed up rel. to DDR.
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Fig. 5: Routing reconfiguration speed up rel. to MDR.

bits. In Figures 4 and 5 we see the routing reconfiguration
time speed up of our approach compared to DDR and MDR
for the 2 benchmarks, the regular expression matchers and
MCNC circuits. The results for both benchmarks are similar.
Our tool flow thus works not just for typical multi-mode
circuits, that have some similarity between modes. It also
works for multi-mode circuits where the modes are general
MCNC benchmarks.

In Figure 4 we see that our novel tool flow reduces the
number of dynamic bits with a factor of 4 for 2 modes.
This factor decreases gradually to 2 for 5 modes. It is clear
that using our novel tool flow the similarity of the routing
configurations is increased significantly. A lot less routing bits
need to be altered in the configuration memory.

As expected, the speed up compared to MDR, shown in
Figure 5, decreases as the number of modes increases. This is
because for MDR the complete routing configuration memory
is rewritten in all cases. The number of parameterized bits,
however, increases with the number of modes. The ratio
decreases from around 20 for 2 modes to around 5 for 5 modes.

Given the analysis above we expect the speed up of routing
reconfiguration time to be roughly between 4× and 20×
for 2 modes. This would gradually decrease to a speed up
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Fig. 6: Total reconfiguration speed up rel. to DDR.
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Fig. 7: Total reconfiguration speed up rel. to MDR.

between 2× and 5× for 5 modes. We note that these values
are measured at minimum channel width. Since FPGAs tend
to be over provisioned in routing [6], [5], these are likely
underestimates.

b) b) Total reconfiguration time: In this section we also
assess the effect our new tool flow has on the total reconfig-
uration time. This comprises the routing reconfiguration time,
discussed in the previous section, and the LUT reconfiguration
time. For the sake of simplicity we assume to write all the
configuration cells of all LUTs in the reconfigurable region,
for our approach and both MDR and DDR. We point out that
our results would even improve if we would count only the
LUT bits that have a different value for the different modes,
since this would increase the routing to LUT ratio.

In Figure 7 we can see that, compared to MDR, our tool
flow reaches a speed up of the total reconfiguration process
of 5× for 2 modes and decreases to a speed up of 3× for 5
modes. Compared to the DDR approach the speed up, shown
in Figure 6, is around 1.5 for all modes. As mentioned before,
we expect the speed up of a frame-based reconfiguration
approach to be between that of DDR and MDR.
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Fig. 8: Wire length of our approach relative to conventional
RTR.

2) Wire length: In our proposed tool flow the different
modes are not routed separately, as is the case in the conven-
tional RTR flow, but instead a global solution is considered. In
this section we assess the impact this has on the wire length.
Each mode circuit uses a set of wires when it is active. We
compare the size of this set in the case of implementation with
the conventional RTR flow and our new tool flow. We average
over all mode circuits. We also use error bars to indicate
minimum and maximum values compared to the average. The
modular based and difference based approach have the same
wire length since they only differ in the way they rewrite the
configuration memory.

Figure 8 shows the relative wire length increase of our
approach compared to the conventional RTR flow. On average
there is, for both applications, a limited 10% increase in wire
length for 2 modes. As the number of modes increases, the
additional wire length increases too, but less than linearly. For
5 modes the average wire length increase is 25%. The mini-
mum and maximum wire length increase goes from 4% and
22% for 2 modes to 15% and 33% for 5 modes, respectively.

The importance of this wire length increase is dependent
on the application. Note, however, that there are applications
that do not run at their maximum performance, because system
requirements are not that stringent. Since FPGAs are also used
for parallel applications, like regular expression matching, they
often rely more on massive parallelism than on high clock
frequencies for performance. There are therefore applications,
for which the increase in wire length is not a major draw back,
especially given the significant speed up of the reconfiguration
process. Also the current version of TRoute is not as mature
as the conventional router. As the tool evolves, we expect the
results to further improve.

V. CONCLUSION

Conventional RTR implements the different modes of a
multi-mode circuit completely separately. This results in rout-
ing configurations that are bit-wise very different and thus
many bits need to be changed to switch between modes. In this

paper we presented a fully automated tool flow that considers
a combined implementation of the modes. It uses TRoute to
drastically reduce the number of bits that need to be changed
in the routing. TRoute routes the connections of all the modes
simultaneously and stimulates sharing of routing resources
between connections of different modes. In our experiments
we showed that the number of bits that need to be rewritten in
the routing configuration memory is reduced with a factor 4
compared to the conventional RTR flow. An attempt was made
to assess the impact on total reconfiguration time: our results
suggest that a speed up between 1.5 and 5 can be obtained
using this technique. Of course, this does not come for free,
the wire length of the different modes increases slightly due to
our combined routing approach. In our experiments we showed
that this increase is limited.

VI. FUTURE WORK

The results in this paper show that there is already much to
be gained in reduction of reconfiguration time using a merged
routing approach. The next step in our research is to implement
TRoute on a commercial FPGA to assess the exact reduction
it will have in routing configuration frames that need to be
reconfigured. We also plan to extend it to allocate the small
number of parameterized bits in a limited amount of frames.
By reconfiguring only these frames we can further reduce
reconfiguration time. In this work we retained the individual
placements of the modes and researched a merged routing
approach. We are also planning to explore optimizations
during placement to further reduce reconfiguration time.
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