464 research outputs found

    New Approaches in Cognitive Radios using Evolutionary Algorithms

    Get PDF
    Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Transmit power control and data rate enhancement in cognitive radio network using computational intelligence

    Get PDF
    Underutilized radio frequencies are the chief apprehension in advance radio communication. The radio recourses are sparse and costly and their efficient allocation has become a challenge. Cognitive radio networks are the ray of hope. Cognitive radio networks use dynamic spectrum access technique to opportunistically retrieve and share the licensed spectrum. The licensed users are called primary users and the users that opportunistically access the licensed spectrum all called secondary users. The proposed system is a feedback system that work on demand and supply concept, in which secondary receivers senses the vacant spectrum and shares the information with the secondary transmitters. The secondary transmitters adjust their transmission parameters of transmit power and data rate in such a way that date rate is maximized. Two methods of spectrum access using frequency division multiple access (FDMA) and Time division multiple access (TDMA) are discussed. Interference temperature limit and maximum achievable capacity are the constraints that regulate the entire technique. The aim of the technique is to control the transmitter power according to the data requirements of each secondary user and optimizing the resources like bandwidth, transmit power using machine learning and feed forward back propagation deep neural networks making full use of the network capacity without hampering the operation of primary network

    Contribution to spectrum management in cognitive radio networks: a cognitive management framework

    Get PDF
    To overcome the current under-utilization of spectrum resources, the CR (Cognitive Radio) paradigm has gained an increasing interest to perform the so-called Dynamic Spectrum Access (DSA). In this respect, Cognitive Radio networks (CRNs) have been strengthened with cognitive management support to push forward their deployment and commercialization. This dissertation has assessed the relevance of exploiting several cognitive management functionalities in various scenarios and case studies. Specifically, this dissertation has constructed a generic cognitive management framework, based on the fittingness factor concept, to support spectrum management in CRNs. Under this framework, the dissertation has addressed two of the most promising CR applications, namely an Opportunistic Spectrum Access (OSA) to licensed bands and open sharing of license-exempt bands. In the former application, several strategies that exploit temporal statistical dependence between primary activity/inactivity durations to perform a proactive spectrum selection have been discussed. A set of guidelines to select the most relevant strategy for a given environment have been provided. In the latter application, a fittingness factor-based spectrum selection strategy has been proposed to efficiency exploit the different bands. Several formulations of the fittingness factor have been compared, and their relevance have been assessed under different settings. Drawing inspiration from these applications, a more general proactive strategy exploiting a characterization of spectrum resources at both the time and frequency domains has been developed to jointly assist spectrum selection (SS) and spectrum mobility (SM) functionalities. Several variants of the proposed strategy, each combining different choices and options of implementation, have been compared to identify which of its components have the most significant impact on performance depending on the working conditions of the CRN. To assess rationality of the proposed strategy with respect to other strategies, a cost-benefit analysis has been conducted to confront the introduced gain in terms of user satisfaction level to the incurred cost in terms of signaling amount. Finally, the dissertation has conducted an analysis of practicality aspects in terms of robustness to environment uncertainty and applicability to realistic environments. With respect to the former aspect, robustness has been assessed in front of two sources of uncertainty, namely imperfection of the acquisition process and non-stationarity of the environment, and additional functionalities have been developed, when needed, to improve robustness. With respect to the latter, the proposed framework has been applied to a Digital Home (DH) environment to validate the obtained key findings under realistic conditions.Postprint (published version
    corecore