73 research outputs found

    Reconfigurable optical star network architecture for multicast media production data centres

    Get PDF
    Passive optical star networks have attractive properties for multicast traffic in data centres, but are limited in transmission bandwidth per node due to sharing a finite total throughput capacity. By adding reconfigurable switching elements to the core of an optical star topology, simulations show that the expected transmission rate per node can be increased by 26–40% (at 90% and 70% network load respectively). The proposed architecture shows no loss of multicast functionality compared to a single passive optical star, and only 7.1% increase in power consumption. Network throughput is shown to be highly dependent on the network traffic pattern, with simulations of multicast zonal media production traffic showing 6 times greater throughput than random or hotspot traffic models

    Dynamic Optical Networks for Data Centres and Media Production

    Get PDF
    This thesis explores all-optical networks for data centres, with a particular focus on network designs for live media production. A design for an all-optical data centre network is presented, with experimental verification of the feasibility of the network data plane. The design uses fast tunable (< 200 ns) lasers and coherent receivers across a passive optical star coupler core, forming a network capable of reaching over 1000 nodes. Experimental transmission of 25 Gb/s data across the network core, with combined wavelength switching and time division multiplexing (WS-TDM), is demonstrated. Enhancements to laser tuning time via current pre-emphasis are discussed, including experimental demonstration of fast wavelength switching (< 35 ns) of a single laser between all combinations of 96 wavelengths spaced at 50 GHz over a range wider than the optical C-band. Methods of increasing the overall network throughput by using a higher complexity modulation format are also described, along with designs for line codes to enable pulse amplitude modulation across the WS-TDM network core. The construction of an optical star coupler network core is investigated, by evaluating methods of constructing large star couplers from smaller optical coupler components. By using optical circuit switches to rearrange star coupler connectivity, the network can be partitioned, creating independent reserves of bandwidth and resulting in increased overall network throughput. Several topologies for constructing a star from optical couplers are compared, and algorithms for optimum construction methods are presented. All of the designs target strict criteria for the flexible and dynamic creation of multicast groups, which will enable future live media production workflows in data centres. The data throughput performance of the network designs is simulated under synthetic and practical media production traffic scenarios, showing improved throughput when reconfigurable star couplers are used compared to a single large star. An energy consumption evaluation shows reduced network power consumption compared to incumbent and other proposed data centre network technologies

    Cost-effective Information and Communication Technology (ICT) infrastructure for Tanziania

    Get PDF
    The research conducted an Information and Communication Technology (ICT) field survey, the results revealed that Tanzania is still lagging behind in the ICT sector due to the lack of an internationally connected terrestrial ICT infrastructure; Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet services due to its high cost. Therefore, an ICT backbone infrastructure is designed that exploits optical DWDM network technology, which un-locks bandwidth bottlenecks and provides higher capacity which will provide ICT services such as Internet, voice, videos and other multimedia interactions at an affordable cost to the majority of the people who live in the urban and rural areas of Tanzania. The research analyses and compares the performance, and system impairments, in a DWDM system at data transmission rates of 2.5 Gb/s and 10 Gb/s per wavelength channel. The simulation results show that a data transmission rate of 2.5 Gb/s can be successfully transmitted over a greater distance than 10 Gb/s with minimum system impairments. Also operating at the lower data rate delivers a good system performance for the required ICT services. A forty-channel DWDM system will provide a bandwidth of 100 Gb/s. A cost analysis demonstrates the economic worth of incorporating existing optical fibre installations into an optical DWDM network for the creation of an affordable ICT backbone infrastructure; this approach is compared with building a completely new optical fibre DWDM network or a SONET/SDH network. The results show that the ICT backbone infrastructure built with existing SSMF DWDM network technology is a good investment, in terms of profitability, even if the Internet charges are reduced to half current rates. The case for building a completely new optical fibre DWDM network or a SONET/SDH network is difficult to justify using current financial data

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Traffic generation for benchmarking data centre networks

    Get PDF
    Benchmarking is commonly used in research fields, such as computer architecture design and machine learning, as a powerful paradigm for rigorously assessing, comparing, and developing novel technologies. However, the data centre network (DCN) community lacks a standard open-access and reproducible traffic generation framework for benchmark workload generation. Driving factors behind this include the proprietary nature of traffic traces, the limited detail and quantity of open-access network-level data sets, the high cost of real world experimentation, and the poor reproducibility and fidelity of synthetically generated traffic. This is curtailing the community's understanding of existing systems and hindering the ability with which novel technologies, such as optical DCNs, can be developed, compared, and tested. We present TrafPy; an open-access framework for generating both realistic and custom DCN traffic traces. TrafPy is compatible with any simulation, emulation, or experimentation environment, and can be used for standardised benchmarking and for investigating the properties and limitations of network systems such as schedulers, switches, routers, and resource managers. We give an overview of the TrafPy traffic generation framework, and provide a brief demonstration of its efficacy through an investigation into the sensitivity of some canonical scheduling algorithms to varying traffic trace characteristics in the context of optical DCNs. TrafPy is open-sourced via GitHub and all data associated with this manuscript via RDR
    • 

    corecore