
Optical Switching and Networking 46 (2022) 100695

Available online 18 June 2022
1573-4277/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Traffic generation for benchmarking data centre networks

Christopher W.F. Parsonson *, Joshua L. Benjamin, Georgios Zervas
Optical Networks Group, Department of Electronic and Electrical Engineering, University College London, Roberts Building, WC1E 7JE, London, United Kingdom

A R T I C L E I N F O

Keywords:
Networks
Performance
Analysis
Modeling
Simulations
Measurement
Benchmarking
Traffic
Generation
Traces
Data Centre

A B S T R A C T

Benchmarking is commonly used in research fields, such as computer architecture design and machine learning,
as a powerful paradigm for rigorously assessing, comparing, and developing novel technologies. However, the
data centre network (DCN) community lacks a standard open-access and reproducible traffic generation
framework for benchmark workload generation. Driving factors behind this include the proprietary nature of
traffic traces, the limited detail and quantity of open-access network-level data sets, the high cost of real world
experimentation, and the poor reproducibility and fidelity of synthetically generated traffic. This is curtailing the
community’s understanding of existing systems and hindering the ability with which novel technologies, such as
optical DCNs, can be developed, compared, and tested.

We present TrafPy; an open-access framework for generating both realistic and custom DCN traffic traces.
TrafPy is compatible with any simulation, emulation, or experimentation environment, and can be used for
standardised benchmarking and for investigating the properties and limitations of network systems such as
schedulers, switches, routers, and resource managers. We give an overview of the TrafPy traffic generation
framework, and provide a brief demonstration of its efficacy through an investigation into the sensitivity of some
canonical scheduling algorithms to varying traffic trace characteristics in the context of optical DCNs. TrafPy is
open-sourced via GitHub and all data associated with this manuscript via RDR.

1. Introduction

A benchmark is a series of experiments performed within some
standard framework to measure the performance of an object.
Researching data centre network (DCN) systems and objects such as
networks, resource managers, and topologies involves understanding
which types of mechanisms, principles or architectures are general-
isable, scalable and performant when deployed in real world environ-
ments. Benchmarking is a powerful paradigm for investigating such
questions, and has proved to be a strong driving force behind innovation
in a variety of fields [3]. A famous example of a successful benchmark is
the ImageNet project [4], which has facilitated a range of significant
discoveries in the field of deep learning over the last decade.

In order to benchmark a DCN system, a traffic trace with which to
load the network is required. This presents several challenges: (i) Data
related to DCNs are often considered privacy-sensitive and proprietary
to the owner, therefore few DCN traffic traces are openly available; (ii)
when a real DCN trace is made available, it is often specific to a
particular DCN and possibly not representative of current and future
systems, too limited for cutting-edge data-hungry applications such as

reinforcement learning, and not sufficient for stress-testing different
loads in networks with arbitrary capacities to understand system limi-
tations and vulnerabilities to future workloads; (iii) even if an attempt is
made to make a real DCN available for live testing, deploying experi-
mental systems in such large-scale production environments is often too
expensive and time consuming; and (iv) reducing or approximating DCN
traffic down to small-scale experiments is often unfruitful since many
DCN application traffic patterns only emerge at large scales.

For these reasons, most DCN researchers revert to simulating DCN
traffic in order to conduct their experiments. However, synthetic DCN
traffic generation is often plagued by numerous inadequacies. A com-
mon simplification approach is to assume uniform or ‘named’ (Gaussian,
Pareto, log-normal, etc.) distributions from which to sample DCN traffic
characteristics. However, such distributions often ignore fluctuations
caused by the short bursty nature of real DCN traffic, rendering the
simulation unrealistically simple. Sometimes researchers will try to
implement their own unique distributions to better describe real DCN
traffic, however this brings difficulties with trying to reproduce and
benchmark against literature reports since there is no standard frame-
work for doing so. Another common approach is to only focus on the

* Corresponding author.
E-mail address: zciccwf@ucl.ac.uk (C.W.F. Parsonson).

Contents lists available at ScienceDirect

Optical Switching and Networking

journal homepage: www.elsevier.com/locate/osn

https://doi.org/10.1016/j.osn.2022.100695
Received 1 April 2022; Received in revised form 7 June 2022; Accepted 8 June 2022

mailto:zciccwf@ucl.ac.uk
www.sciencedirect.com/science/journal/15734277
https://www.elsevier.com/locate/osn
https://doi.org/10.1016/j.osn.2022.100695
https://doi.org/10.1016/j.osn.2022.100695
https://doi.org/10.1016/j.osn.2022.100695
http://crossmark.crossref.org/dialog/?doi=10.1016/j.osn.2022.100695&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Optical Switching and Networking 46 (2022) 100695

2

temporal (arrival time) dependence of DCN traffic characteristics and
assume uniform spatial (server-to-server) dependencies. However, this
fails to capture the spatial variations in server-to-server communication
which are needed to accurately mimic real traffic. Works by Alizadeh
et al. [5,6] and Bai et al. [7] introduced important DCN systems, but the
traffic generators released with their papers fall short of addressing the
issues of fidelity, reproducibility, and compatibility with generic
network architectures (see Section 2).

These difficulties with simulating DCN traffic have meant that no
traffic generation framework, and subsequently no universal DCN sys-
tem benchmark, has emerged as the networking research field’s tool-of-
choice. The lack of a rigorous benchmarking framework has been a
major issue in DCN literature since individual researchers have often
used their own tests without adhering to the aforementioned re-
quirements. This has limited reproducibility, stifled network object
prototype benchmarking, and hindered training data supply for novel
machine learning systems. Without benchmarking, it is difficult to sys-
tematically and consistently test and validate new heuristics for specific
tasks such as flow scheduling. Furthermore, without sufficient training
data, state-of-the-art machine learning models are less able to replace
existing heuristics.

To address the lack of openly available traffic data sets, the afore-
mentioned problems with simulation, and the absence of a system
benchmark, a common DCN traffic generation framework is needed. We
introduce TrafPy: An open-source Python API for realistic and custom
DCN traffic generation for any network under arbitrary loads, which can
in turn be used for investigating a variety of network objects such as
networks, schedulers, buffer managers, switch/route architectures, and
topologies. TrafPy is open-access via GitHub [1] and all data associated
with this manuscript via RDR [2]. TrafPy contributes two key novel
ideas to traffic generation, which we detail in this paper:

1. Reproducibility guarantee A novel method for providing a distri-
bution reproducibility guarantee when generating traffic based on
the Jensen-Shannon distance metric (see Section 3.3).

2. Traffic generation algorithm: A novel method for efficiently
creating reproducible flow-level traffic with granular control over
both spatial and temporal characteristics (see Section 3.5).

In addition to the above, TrafPy also contains the following features
which, when combined with these novel aspects, make TrafPy a useful
tool for benchmark workload generation:

⋅ Interactivity: A distribution shaping tool for rapid creation of
complex distributions which accurately mimic realistic workloads
given only high-level characteristic descriptions (see Appendix C).

⋅ Compatibility: Compatibility with any simulation, emulation, or
experimentation environment by exporting traffic into universally
compatible file formats; and

⋅ Accessibility: Open-source code and documentation with a low
barrier to entry.

2. Related work

While there is limited literature on DCN traffic generation, data sets,
and benchmarking for the reasons outlined in Section 1, there have been
notable works striving towards their creation.

Real workloads There are a collection of publicly available DCN
workload traces and job computation graph data sets [8–29]. However,
almost all of these stem from Hadoop clusters and are limited to data
mining applications [14], therefore their use is primarily suited to
application-specific testing and evaluation rather than as a generic tool
for generating arbitrary loads and testing and designing DCN systems as
TrafPy is proposed for. Additionally, many of them lack flow-level data,
which is needed to accurately benchmark network systems.

Real workload characteristics There is a limited body of work,

primarily from private corporations, aiming to characterise real DCN
workloads without open-accessing the underlying proprietary raw data.
Benson et al. [30] built on work done by Kandula et al. [31] and Benson
et al. [32] by characterising DCN traffic into one of three categories;
university, private enterprise, and commercial cloud DCNs. They iden-
tified that each of these categories serviced different applications and
therefore had different traffic patterns. University DCNs serviced ap-
plications such as database backups, distributed file system hosting (e.g.
email servers, web services for faculty portals, etc.), and multicast video
streams. Private enterprise hosted the same applications as university
DCNs but additionally serviced a significant number of custom appli-
cations and development test beds. Commercial cloud DCNs focused
more on internet-facing applications (e.g. search indexing, webmail,
video, etc.), and intensive data mining and MapReduce-style jobs. They
also went further than prior works by quantifying the number of hot
spots and characterising the flow-level properties of DCN traffic.

The above cloud DCN studies came almost exclusively from Micro-
soft, who primarily service MapReduce-style applications. Roy et al.
[33] broke this homogeneous view of cloud traffic by reporting the
traffic characteristics of Facebook’s DCNs, thereby introducing a fourth
DCN category; social media cloud DCNs. Social media cloud applications
include generating responses to web requests (email, messenger, etc.),
MySQL database storage and cache querying, and newsfeed assembly.
This results in network traffic being more uniform and, in contrast to
Microsoft’s commercial cloud DCNs, having a much lower proportion
(12.9%) of traffic being intra-rack.

Note that the above examples did not open-access the full data sets,
but rather provided quantitative characterisations of their nature for
other researchers to inform their own traffic generators.

Traffic generators In their seminal pFabric work, Alizadeh et al. [6]
provided open-access traffic generation code which loosely replicated
web search and data mining DCN workloads by following a Poisson flow
inter-arrival time distribution whose arrival rate was adjusted to meet a
required target load and with a mix of small and large characteristically
heavy-tailed flow sizes. Additionally, the same authors [5] released a
simple generator which used a server application to create many-to-one
flow requests from 9 servers, again following a load-adjustable Poisson
arrival time distribution with 80% of flows having a size of 1 kB (a single
packet) and 20% being 10 MB. As the authors noted themselves, these
workloads were not intended to be realistic, but rather were designed to
demonstrate clear impact comparisons between different DCN design
schemes and the small latency-sensitive and large bandwidth-sensitive
flows. TrafPy, on the other hand, can facilitate the shaping of complex
inter-arrival and flow size distributions with one-to-one, many-to-one,
and one-to-many non-uniform server-server distributions with ease.
Furthermore, TrafPy enables the generation of traffic with the same
characteristics as Alizadeh et al. [5,6], but for any network topology
with an arbitrary number of servers and link capacities, allowing for the
straightforward comparison of novel DCN fabrics with pre-established
benchmark workloads.

Similarly, Bai et al. [7] conducted an extensive experiment into the
trade-off between throughput, latency, and weighted fair sharing in
scenarios where each switch port had multiple queues. Alongside their
study they released an open-access traffic generator which could take a
configuration file as input and generate both uniform and non-uniform
server-server flow requests from pre-defined discrete probability distri-
butions. However, to produce traffic, users had to manually enter
numbers into a configuration file, which made the code difficult to use.
Furthermore, Bai et al.’s generator had no mechanism for ensuring
distribution reproducibility when sampling from a pre-defined proba-
bility distribution; a feat achieved by TrafPy via the Jensen-Shannon
distance method (see Section 3.3).

The key objective of TrafPy is to augment DCN research projects such
as those cited above [5–7]. Unlike our work, the primary focus of such
projects was not on the traffic generator itself, but rather on using traffic
generation as a means of benchmarking innovative ideas. We posit that

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

3

the fidelity, generality, reproducibility, and compatibility of TrafPy,
achieved by generating custom server-level flow traffic, would make
such works easier to conduct and to compare against as baselines in
future projects.

3. Proposed framework

3.1. Design objectives

Designing successful network object benchmarks requires a flexible,
modular, and reproducible traffic generation framework. The frame-
work should enable fair comparisons between different systems whilst
maintaining a rigorous experimental setting. In light of the issues
highlighted in Section 1, the following criteria are required of such a
framework:

1 Fidelity: Generate demands which represent realistic DCN traffic.
2 Generality: Generate traffic for arbitrary DCN applications and

topologies.
3 Scalability: Efficiently scale to large networks.
4. Reproducibility: Reliably reproduce traffic traces to run multiple test

repeats or to reproduce other researchers’ traffic conditions.
5. Repeatability: Summarise traffic distributions such that, given just a

few parameters, other researchers can repeat the demand data set for
cross-validation and comparison.

6. Replicability: Interactively shape characteristic distributions visually
to replicate realistic data given only a plot or written description (i.e.
in the absence of raw data).

7. Compatibility: Export generated demands into universally compatible
data formats such that they can be imported into any simulation,
emulation, or experimentation test bed.

8. Comparability: Compare a set of standardised performance metrics
across different studies.

3.2. TrafPy overview

An overview of the TrafPy API user experience is given in Fig. 1 and
further elaborated on throughout this manuscript, with Table A.1
summarising the notation used and some API examples given in Ap-
pendix C. The core component of TrafPy is the Generator, which can be
used for generating custom, literature, or standard benchmark network
traffic traces. These traces can be saved in standard formats (e.g. JSON,
CSV, pickle, etc.) and imported into any script or network simulator.
Researchers can therefore design their systems and experiments inde-
pendently of TrafPy and use their own programming languages, making

TrafPy compatible with already-developed research projects and future
network objects. This also means that TrafPy can be used with any
simulation, emulation, or experimentation test bed. The Generator has
an optional interactive visual tool for shaping and reproducing distri-
butions, therefore little to no programming experience is required to use
it to generate and save traffic data in standard formats. As the nature of
DCN traffic changes, new traffic distributions can be generated with
TrafPy and state-of-the-art benchmarks established.

3.2.1. Flow traffic
The flow-centric paradigm considers a single demand as a flow,

which is a task demanding some information be sent from a source node
to a destination node in the network. Flow characteristics include size
(how much information to send), arrival time (the time the flow arrives
ready to be transported through the network, as derived from the
network-level inter-arrival time which is the time between a flow’s time
of arrival and its predecessor’s), and source-destination node pair (which
machine the flow is queued at and where it is requesting to be sent).
Together, these characteristics form a network-level source-destination
node pair distribution (‘how much’ (as measured by either probability or
load) each machine tends to be requested by arriving flows). When a
new flow arrives at a source and requests to be sent to a destination, it
can be stored in a buffer until completed (all information fully trans-
ferred) or, if the buffer is full, dropped. Once dropped or completed, the
flow is not re-used.

3.2.2. TrafPy distributions
At the heart of TrafPy are two key notions; that no raw data should be

required to produce network traffic, and that every aspect of the API
should be parameterised for reproducibility. To achieve the first, rather
than using clustering and autoregressive models to fit distributions to
data [34,35], TrafPy provides an interactive tool for visually shaping
distributions. This way, researchers need only have either a written (e.g.
‘the data followed a Pareto distribution with 90% of the values less than
1’) or visual description of a traffic trace’s characteristics in order to
produce it. To achieve the second, all distributions are parameterised by
a handful of parameters (termed D′; see Appendix B for an example of
the parameters used in this paper), and a third party need only see D′ in
order to reproduce the original distribution. As such, TrafPy traces are
discrete distributions in the form of hash tables, which can be sampled at
run-time to generate flows. These tables map each possible value taken
by all flow characteristics to fractional values which represent either the
‘probability of occurring’ for size and time distributions, or the ‘fraction
of the overall traffic load requested’ for node distributions. This enables
traffic traces to be generated from common TrafPy benchmarks for

Fig. 1. TrafPy API user experience for using custom or benchmark TrafPy parameters D′ to make flow traffic trace D with maximum Jensen-Shannon distance
threshold

̅̅̅̅̅̅̅̅
JSD

√
and minimum flow arrival duration tt,min for m loads {ρ1, …, ρm}. The generated trace D can then be used to benchmark a DCN system test object (e.g.

a scheduler) in a test bed (a simulation, emulation, or experimentation environment) to measure the key performance indicators PKPI. The user need only use TrafPy
to generate the traffic; all other tasks can be done externally to TrafPy in any programming language.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

4

custom network systems in a reproducible manner without needing to
reformat the original data in order to make it compatible with new
systems and topologies, as would be needed if the benchmarks were
hard-coded request data sets instead of distributions.

3.3. Accuracy and reproducibility of distributions

All TrafPy distributions are summarised by a set of parameters D′.
Once D′ has been established (by e.g. the community as a benchmark or
a researcher as a custom stress-test or future workload trace), TrafPy
must be able to reliably and accurately reproduce (via sampling) the
‘original’ distribution parameterised by D′ each time a new set of traffic
data is generated. Therefore, a guarantee that the sampled distribution
will be close to the original is required to ensure reproducibility. TrafPy
utilises the Jensen-Shannon Divergence (JSD) [36,37] to quantify how
distinguishable discrete probability distributions are from one another.
Given a set of n probability distributions {P1,…,Pn}, a corresponding set
of weights {π1, …, πn} to quantify the contribution of each distribution’s
entropy to the overall similarity metric, and the entropy H(Pi) of a
discrete distribution with m random variables Xi = {xi

1,…, xi
m} which

occur with probability Pi = {Pi(xi
1),…,Pi(xi

m)} where H(Xi) = −
∑m

j=1Pi(xi
j)logPi(xi

j), the JSD between the distributions can be calculated
as in Equation (1). In the context of TrafPy, the Pi distributions are the
hash tables of variable value-fraction pairs and the weights are simply
set to 1.

JSDπ1 ,…,πn (P1,…,Pn) = H

(
∑n

i=1
πiPi

)

−
∑n

i=1
πiH(Pi) (1)

The square root of the Jensen-Shannon Divergence gives the Jensen-
Shannon distance [37], which is a metric between 0 and 1 used to
describe the similarity between distributions (0 being exactly the same,
1 being completely different). The TrafPy API enables users to specify
their own maximum

̅̅̅̅̅̅̅̅
JSD

√
threshold,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
, when sampling data

from a set of original distributions to create their own data set(s). A
lower distance requires that the sampled distributions be more similar to
the original distributions. TrafPy will automatically sample more de-
mands until, by the law of large numbers, the user-specified

̅̅̅̅̅̅̅̅
JSD

√

threshold is met.
Fig. 2 shows how, for an example benchmark’s flow size and inter-

arrival time distribution, the
̅̅̅̅̅̅̅̅
JSD

√
between the original and the

sampled distributions changes with the number of samples (number of
demands). As shown, most characteristic parameters (mean, minimum,
maximum, and standard deviation) of the sampled distributions
converge at

̅̅̅̅̅̅̅̅
JSD

√
≈ 0.1; a threshold reached after 137,435 demands for

the flow size distribution and 27,194 for the inter-arrival times. The
greater the number of possible random variable values and complexity
in the original distribution, the more demands which will be needed to
lower the

̅̅̅̅̅̅̅̅
JSD

√
. The distribution which requires the most demands to

meet the
̅̅̅̅̅̅̅̅
JSD

√
threshold will determine the minimum number of de-

mands needed for the generated flow data set to accurately reproduce
the original set from which it is sampled.

3.4. Node distributions

‘Node distributions’ are a mapping of how much each machine
(network node) pair tends to be requested by arriving flows, as measured
by the pair’s load (flow information arriving per unit time), to form a
source-destination pair matrix. These distributions can be defined
explicitly on a per-node basis. However, explicit mappings would result
in D′ being defined for a specific topology (since each topology might
have a different number of machines and/or a different machine label-
ing convention). Therefore, TrafPy node distributions can also be
implicitly defined by high-level parameters. These parameters are the
fraction of the nodes and/or node pairs which account for some

proportion of the overall traffic load and, optionally, the fraction of the
traffic which is intra- vs. inter-cluster (where ‘clusters’ are usually
considered as ‘racks’ in the context of DCNs). In this way, node distri-
butions can be defined independently of the network topology, enabling
greater generality and the use of custom topologies with traffic traces
and benchmarks parameterised by D′, even if D′ was originally defined
for a different topology. Furthermore, this allows individual or groups of
network nodes to be set as ‘hot’, ‘cold’, or any combination of hot and
cold as desired by the user. Note that this formalism also enables both in-
cast (many-to-one) and out-cast (one-to-many) traffic patterns, since any
node(s) can have multiple out-cast and in-cast flow demands generated
at a given point in time when sampling from the node distribution.

3.5. Traffic generation methodology

Algorithm 1
TrafPy traffic generation process.

Input: P(Bs), P(Bt), P(Bn),
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
ρtarget, 〈nn, nc, Cc〉, tt,min

Output: {bs, ba, bp}
Initialise: nf, {bs, bt} empty arrays

Step 1: Partially initialise nf flows {bs, ba}
while

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bs),P(bs))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
do

bs ← Sample bs from P(Bs) nf times
nf:=⌈1.1 × nf⌉

end while
while

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bt),P(bt))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
do

bt ← Sample bt from P(Bt) nf times
nf:=⌈1.1 × nf⌉

end while

(continued on next page)

Fig. 2. How the Jensen-Shannon distances between the original (red) and
sampled (cyan) distributions and the sampled distributions’ characteristic pa-
rameters (target from original distribution plotted as red dotted line) vary with
the number of demands for (a) flow size and (b) inter-arrival time. Note that the
first sub-plots of (a) and (b) are plotting the probability distribution of the flow
characteristic in question, whereas the other sub-plots are plotting various
metrics (

̅̅̅̅̅̅̅̅
JSD

√
, minimum value, maximum value, etc.) of the generated traffic

as a function of the number of demands (flows) generated.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

5

Algorithm 1 (continued)

nf = max({length(bs), length(bt)})
Resample so that length(bs) = length(bt) = nf
Initialise ba zero array of length nf
for i in [2, …, nf] do

ba
i := ba

i− 1 + bt
i− 1

end for

ϱ =

∑nf
i=1bs

i
ba

nf
− ba

0
→ ρ =

ϱ
nn⋅Cc⋅nc

2

→ αt =
ρ

ρtarget

for i in [1, …, nf] do
ba

i := αt × ba
i

end for

ϱ :=

∑nf
i=1bs

i
ba

nf
− ba

0
→ ρ :=

ϱ
nn⋅Cc⋅nc

2

Step 2: ‘Pack the flows’ → fully initialise nf flows {bs, ba, bp}
Initialise bp and bn from P(Bn) with n2

n − nn elements
d = ϱ⋅bn⋅(ba

nf
− ba

0)

for i in [1, …, nf] do
Sort pairs in descending dp order and randomly self-shuffle equal dp pairs
First pass: Attempt dp ≈ 0∀p ∈ [1,…,n2

n − nn]

for p in [1,…,n2
n − nn] do

if dp − bs
i ≥ 0 then

bp
i = p

dp := dp − bs
i

break
end if

end for
if first pass unsuccessful then

Second pass: Ensure no link capacity exceeds
Cc

2
for p in [1,…,n2

n − nn] do
if capacity not exceeded then

bp
i = p

dp := dp − bs
i

break
end if

end for
end if

end for

Step 3: Ensure ba
nf
− ba

0 ≥ tt,min

if ba
nf
− ba

0 < tt,min then

β =

⌈ba
nf
− ba

0

tt,min

⌉

{bs, ba, bp}:= double({bs, ba, bp}) β times
end if

Given the distributions of flow sizes, inter-arrival times, and node
pairs P(Bs), P(Bt), and P(Bn) of a benchmark B, TrafPy can generate
traffic at a (optionally) specified target load fraction (fraction of overall
network capacity being requested for a given time period) ρtarget ∈ [0, 1]
with maximum Jensen-Shannon distance threshold

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
for an

arbitrary topology T with nn server nodes, nc channels (light paths) per
communication link, and Cc capacity per server node link channel
(divided equally between the source and destination ports such that
each machine may simultaneously transmit and receive data), forming
tuple 〈nn, nc, Cc〉 with total network capacity per direction (maximum
information units transported per unit time) Ct = nn ⋅Cc⋅nc

2 . Since load rate
is defined as information arriving per unit time, in order to generate
traffic at arbitrary loads, either the amount of information (flow sizes) or
the rate of arrival (flow inter-arrival times) must be adjusted in order to
change the load rate. Since DCNs tend to handle particular types of
applications and jobs which result in particular flow sizes, we posit that
a reasonable assumption is that changing loads are the result of changing
rates of demand arrivals rather than changing flow sizes (which remain
fixed for a given application type). Therefore, if a target load is specified,
TrafPy automatically adjusts the scale of the inter-arrival time

distribution values in P(Bt) by a constant factor to meet the target load
whilst keeping the same general shape of the P(Bt) distribution that was
initially input to the generator. The following 3-step traffic generation
process (summarised in Algorithm 1) is used to achieve the above:

Step 1 (generate nf flows with size and arrival time characteristics
{bs, ba}): First, nbs flow sizes and nbt inter-arrival times are indepen-
dently sampled from P(Bs) and P(Bt) to form vectors bs and bt respec-
tively, where nbs and nbt are incrementally increased by a constant factor
until

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bs),P(bs))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
and

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bt),P(bt))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
by the law of large numbers. Whichever distribution needed

fewer samples to meet
̅̅̅̅̅̅̅̅
JSD

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
is then continually sampled

such that there are nf flow sizes and inter-arrival times, where nf =

max({nbs , nbt}). Then, bt (whose order is arbitrary from the previous
random sampling process) can be converted to an equivalent arrival
time vector ba by initialising a zero array of length nf and setting ba

i :=

ba
i− 1 + bt

i− 1∀i ∈ [2,…,nf], resulting in a total time duration of tt = ba
nf
− ba

0

over which the flows arrive. Next, the load rate ϱ is evaluated with ϱ =
∑nf

i=1bs
i

tt , converted to a load fraction ρ =
ϱ
Ct

, and adjusted to meet ρtarget by
multiplying the elements of bt by a constant factor αt =

ρ
ρtarget

. Then, ba can

be re-initialised with the updated bt as before, and a set {bs, ba} of nf
flows can be partially initialised each with size bs and arrival time ba and
an overall load ρ = ρtarget on network T.

Step 2 (‘pack the flows’ → generate nf flows with size, arrival time,
and source-destination node pair characteristics {bs, ba, bp}): Next, to
meet the source-destination node pair load fractions specified by P(Bn),
the flows are packed into node pairs with a simple packing algorithm.
First, a vector of n2

n − nn node pairs bp (which do not include self-similar
pairs) and their corresponding load pair fractions bn are extracted from
P(Bn). Next, these ‘target’ load pair fractions bn are converted into a
hash table mapping each pair p of the [1,…, n2

n − nn] pairs to their current
‘distance’ from their respective target total information request magni-
tudes d = ϱ ⋅bn ⋅ tt. In other words, we take the load fractions (fraction of
overall information requested) of each node pair bn and multiply them
by the total simulation load rate (information units arriving per unit
time) ϱ and the total simulation time tt to create a vector d which, when
first initialised, represents the total amount of information which is
requested by each source-destination pair across the whole simulation.
The task of the packer is therefore to assign source-destination pairs to
each flow such that dp ≈ 0∀p ∈ [1,…, n2

n − nn]. For each sequential ith
flow ∀i ∈ [1, …, nf], after sorting the pairs in descending dp order (with
any pairs with equal dp randomly shuffled amongst one-another), the
packer will try to ‘pack the flow’ (given its size bs

i) into a source-
destination pair in two passes. For the first pass the packer loops
through each sorted pth pair ∀p ∈ [1,…, n2

n − nn] and checks that
assigning the flow to this pair would not result in dp < 0. If this condition
is met, the packer sets bp

i = p and dp := dp − bs
i before moving to the next

flow. However, if the condition is violated for all pairs, the packer moves
to the second pass, where it again loops through each sorted pair p but
now, rather than ensuring dp ≥ 0, only ensures that assigning the pair
would not exceed the maximum server link’s source/destination port
capacity Cc

2 before setting bp
i = p and dp := dp − bs

i . In other words, the
first pass attempts to achieve dp ≈ 0∀p ∈ [1,…, n2

n − nn] to try to match
P(Bn) but, failing that, the second pass ensures that no server link load
exceeds 1.0 of the link capacity. Consequently, as ρtarget approaches 1.0,
so too will the resultant packed node distribution’s server links, thereby
converging on a uniform distribution no matter what the original
skewness was of P(Bn) as shown in Fig. 3 and further elaborated on in
Appendix E. Once this packing process is complete, a set {bs, ba, bp} of nf
flows each with size bs, arrival time ba, and source-destination node pair
bp, an overall load ρtarget on network T, and a flow size, inter-arrival time,
and node distribution of approximately P(Bs), P(Bt), and P(Bn) will
have been fully initialised.

Step 3 (ensure ba
nf
− ba

0 ≥ tt,min): The final stage of the flow generation

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

6

process is then to ensure that the flow arrival duration tt is greater than
or equal to some minimum duration tt,min (a parameter often required for
test bed measurement reliability) specified by either the user. This is

done by simply doubling the set {bs, ba, bp} of flows β =
⌈

tt
tt,min

⌉
times to

make an updated set of nf:=β ⋅ nf flows with tt ≥ tt,min and the same
distribution and load statistics as before.

3.5.1. Traffic generation guidelines
Given a user- or benchmark-specified set of distribution parameters

D′, TrafPy generates traffic trace D. As such, whenever using TrafPy to
generate D, D′ should always be reported to help others reproduce the
same trace (as done in Table B.2 of Appendix B for this manuscript). For
the same reason, all traffic traces D generated from D′ should have a
maximum

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
of 0.1 as outlined in Section 3.3. Enough de-

mands should be generated so as to have a last demand arrival time tt
larger than the time needed to complete the largest demands in the user-
defined network T under the test conditions used; not doing so would
result in all large flows being dropped regardless of what decisions were
made. This would unfairly punish systems optimised for large demands,
since such systems would allocate network resources to requests which
ultimately could never be completed during the experiment. TrafPy
conveniently generates and saves traffic data sets in a range of formats
including JSON, CSV, and pickle. Therefore if desired, users may
generate traffic in TrafPy and then use their own custom test bed and
analysis scripts written in any programming language thereafter by
simply importing the TrafPy-generated traffic. For result reliability, each
trace D should be generated R times from D′ and used to test the network
object, where R should be sufficiently large enough so as to have a
satisfactory confidence interval (which might vary from project-to-
project but should be reported regardless).

4. Optical networks

The key purpose of TrafPy is for it to be used as a tool to explore
novel areas of DCN research. One such area of particular importance is
that of optical DCNs, which strive to replace electronically inter-
connected networks with optical systems in order to improve perfor-
mance whilst reducing power consumption.

4.1. Limitations of current electronic packet switched networks

The servers of traditional multi-tier data centre and high perfor-
mance computing (HPC) systems are interconnected by electronic
packet switched (EPS) networks. Such ‘electronic DCNs’ have poor
scalability, bandwidth, latency, and power consumption. Data centres
now consume 2% of the World’s electricity; more than the entire avia-
tion industry and estimated to increase to 15% by 2030, with the
network sometimes accounting for >50% of total power consumption
[38]. Furthermore, the sensitivity of electronic switches to workloads
limits their computational and application performance. Compounding
this, the slowing of Moore’s Law coinciding with new data-hungry de-
mands means that electronic switches are unable to keep up with
emerging applications (internet-of-things, artificial intelligence, genome
processing, etc.) which follow data-heavy trends [39,40]. Although the
compute power of DCN server nodes, as measured by flops per second,
has increased by a factor of 65 over the last 18 years, the bandwidth of
the DCN network facilitating communication between these nodes has
only increased by a factor of 4.8, resulting in an 8-factor decrease in
bytes communicated per flop. This has created a performance bottleneck
not in the server nodes themselves, but rather in the network connecting
them. As a result, management systems such as machine placers,
schedulers and topology controllers are being forced to minimise data
movement and constrain applications to operate locally, which would
otherwise benefit from utilising more distributed architectures. Further
degrading system and application performance, these systems also suffer
from high median and 99th percentile network latencies on the order of
100 μs and 100 ms respectively.

4.2. Optical circuit switched networks

DCNs with optical interconnects have the potential to offer orders-of-
magnitude improvements in performance and energy efficiency and
thereby address the limitations of EPS networks [48,64–66]. Optical
circuit switched (OCS) networks offer a promising avenue with which to
realise optical DCNs, and have been used in many DCN solutions as they
offer stable non-blocking circuit configurations with high-capacity and
scalability [41]. In contrast to optical packet switching, they are simpler
to implement and they eliminate the need for in-switch buffering or

Fig. 3. Visualisation of the packed flow nodes converging on uniform distributions as the total network load approaches 1.0 regardless of how skewed the original
target node distribution is. The plotted distributions are for overall network loads (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform
endpoint loads on each server at 0.9 overall load.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

7

queuing and addressing. They establish single-hop connections with a
wide range of circuit establishment time, lasting from orders of magni-
tude less than a second to hours or days. Leveraging stable circuit es-
tablishments, they can employ wavelength division multiplexing
(WDM) and modulation formats to reach higher capacity. OCS switches
are readily available [41] and are being used as part of many existing
networks. They are mainly employed as part of a hybrid network, as in
Ref. [42], in order to cater to specific types of traffic. However, they
cannot be used on their own as they suffer from two key limitations: the
long reconfiguration time (time taken to switch) and the long circuit
computation time (time taken to compute the schedule), as shown by
Fig. 4.

Fig. 4 shows the circuit computation and the reconfiguration time of
the key state-of-the-art OCS technologies. In summary, slow beam
steering and light guiding technologies (millisecond OCS) were assisted
with slow software-based circuit computation to provide reconfigura-
tion, also in milliseconds (HELIOS, Firefly and OSA) [42–44]. More
recent work has shown microsecond speed WSS-based OCS reliant on
FPGA-based control (REACToR, Mordia) [45,46]. Rotor switches and
fast SOA-based switches with schedule-less control were also explored
for fast OCS in RotorNet [47] and Sirius [48] respectively. Although
schedule-less architectures simplified the control plane, they result in
performance-inefficient networks as network resources are allocated
uniformly even in dynamic and skewed traffic environments.

However, with transceivers growing at a staggering rate, already
reaching 100 Gbps [49] (trending towards 400G and 800G) and switch
bandwidth increasing beyond 6.4 Tbps [50], the increased data-rate
makes OCS 5-6 orders of magnitude too slow. This ever increasing gap
between OCS switching/control speed and transceiver data rate makes
OCS unsuitable as standalone solutions. Hence, PULSE (indicated by a
star in Fig. 4) [51] proposed a two-fold solution: The first is the use of
SOA-aided widely tunable-switching methods to minimize the reconfi-
guration time to sub-nanoseconds [52]. The second is a custom-made
ASIC controller or scheduler that reduces reconfiguration computation
time to nanoseconds. PULSE matches OCS switching times to
packet-level granularity, making them suitable and adaptable to modern
high capacity, bandwidth and speed switching data centre networks.

However, the performance of PULSE is heavily reliant on the per-
formance of the scheduling heuristic employed. TrafPy can therefore be
used as a tool with which to evaluate the performance of different design
choices and resource management systems in novel OCS networks, such
as PULSE (an OCS DCN system which was developed with the help of

TrafPy [53]), and thereby help to realise future all-optical DCNs.

5. Experiment

Here we conduct a brief experiment into the sensitivity of 4 sched-
ulers to different traffic traces. Specifically, we look at shortest
remaining processing time (SRPT) [6,54,55], fair share [54], first fit (FF)
[56], and random DCN flow scheduling.

5.1. Network

All experiments assume an optical TDM-based circuit switched
network architecture with a 64-server folded clos (spine-leaf) topology
made up of 2 core switches, 4 top-of-the-rack (ToR) switches, and 64
servers (16 servers per rack) with bidirectional links, as shown in Fig. 5.
The server-to-rack and ToR-to-core links each have 1 channel with 10
Gbps and 80 Gbps capacity respectively, leading to a 1:1 subscription
ratio and a total network capacity of 640 Gbps (320 Gbps bisection
bandwidth). Flows are mapped to TDM circuits, and we assume ideal
server-level time multiplexing of the flows’ packets such that the
bandwidth of each channel can be fully utilised. The core switch per-
forms link/fiber switching. There are various ways to perform packet/
TDM aggregation of flows at the server and to realise such networks, but
neither are the focus of this paper.

5.2. Traffic traces

We use TrafPy to generate 2 categories of traffic with which to
investigate our schedulers; DCN traces based on real-world application
data, and custom skewed node and rack data for testing system perfor-
mance under extreme conditions. We use a maximum

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
of 0.1,

setting tt,min = 3.20 × 105μs (≈10 times larger than the time taken to
complete the largest ≈20 × 106 B flow amongst our benchmarks), and
generating traffic of loads 0.1–0.9 for each data set. We generate each set
R = 5 times to run 5 repeats of our experiments and therefore ensure
reliability. All TrafPy parameters D′ used to generate the traffic are re-
ported in Table B.2 of Appendix B for reproducibility.

5.2.1. ‘Realistic’ DCN traces
Four types of DCN and their network flow demand distributions are

explored; University [30], Private Enterprise [57], Commercial Cloud [31],
and Social Media Cloud [33]. Each DCN type services different applica-
tions and therefore has a different traffic pattern. Using TrafPy, flow
distributions for each of these categories were generated to established a
set of open-source traffic traces for the DCN benchmark. The tuned
TrafPy parameters D′ of each flow characteristic have been summarised
in Table B.2. The resultant distributions are shown in Fig. 6, and the
subsequent quantitative summary of each distribution’s characteristics
is given in Table B.3 of Appendix B.

Fig. 4. Reconfiguration and computation times of various OCS architectures.

Fig. 5. 2-layer spine-leaf topology used with 64 end point (server) nodes, 10
Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1 subscription ratio,
640 Gbps total network capacity).

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

8

5.2.2. ‘Extreme’ skewed node and rack sensitivity traces
We generated two additional traces; the skewed nodes sensitivity

benchmark and the rack sensitivity benchmark. These were not based on
realistic data, but rather designed to test and better understand our
systems under extreme conditions. Both use the same flow size and inter-
arrival time distributions as the commercial cloud data set in Fig. 6,
however the node distribution is adjusted. Specifically, the skewed
nodes benchmark is made up of 5 sets with uniform, 5%, 10%, 20%, and
40% of the server nodes being ‘skewed’ by accounting for 55% of the
total overall traffic load, named skewed_nodes_sensitivity_uniform, 0.05,
0.1, 0.2, and 0.4 respectively (see Appendix E for further justification
and analysis of these values). Similarly, the rack distribution benchmark
is made up of 5 sets with uniform, 20%, 40%, 60%, and 80% of the traffic
being intra-rack (and the rest inter-rack) named rack_sensitivity_uniform,
0.2, 0.4, 0.6, and 0.8 respectively. Therefore, these distributions allow

for investigations into DCN system sensitivity to i) the number of skewed
nodes and ii) the ratio of intra- vs. inter-rack traffic. They have been
plotted in Fig. 7.

5.3. Simulation details

We use a time-driven simulator where scheduling decisions are made
at fixed intervals. The time between decisions is the ‘slot size’; smaller
slot sizes result in greater scheduling decision and measurement metric
granularity, but at the cost of longer simulation times and the need for
scheduler and switch hardware optimisation [52,53,58–60,63]. We use
a slot size of 1 ms. We assume perfect packet time-multiplexing whereby
the scheduler is allowed to schedule as many flow packets for the next
time slot as the channel bandwidth of its rate-limiting link in its chosen
path will allow. We run 9 simulations (loads 0.1–0.9) for each

Fig. 6. TrafPy distribution plots for the DCN benchmark containing the (a) University [30], (b) Private Enterprise [57], (c) Commercial Cloud [31], and (d) Social
Media Cloud [33] data sets. Each plot contains (i) the end point node load distribution matrix and (ii) the flow size and inter-arrival time histogram and CDF
distributions.

Fig. 7. TrafPy node distribution plots for the skewed nodes sensitivity benchmark with (a) uniform, (b) 5%, (c) 10%, (d) 20%, and (e) 40% of nodes accounting for 55%
of the overall traffic load, and for the rack sensitivity benchmark with (f) uniform, (g) 20%, (h) 40%, (i) 60%, and (j) 80% traffic being intra-rack and the rest
inter-rack.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

9

benchmark data set, terminating the simulation when the last demand
arrives at t = tt (which is ≥ tt,min = 3.20 × 105μs). We set the warm-up
time as being 10% of the simulation time tt before which no collected
data contribute to the final performance metrics. Similarly, since the
simulation is terminated at tt, we exclude any cool-down period from
measurement. For each experiment, we then record: (1) mean flow
completion time (FCT); (2) 99th percentile (p99) FCT; (3) maximum
(max) FCT; (4) absolute throughput (total number of information units
transported per unit time); (5) relative throughput (fraction of arrived
information successfully transported); and (6) fraction of arrived flows
accepted. We report each of these metrics’ mean across the R = 5 runs
and their corresponding 95% confidence intervals.

6. Results

To begin the investigation into the sensitivity of different schedulers,
we first input TrafPy-generated traffic with heavily skewed nodes and
racks (see Section 5.2.2) into our simulator to understand how the four
schedulers considered behave at the extremes. We then test the same
schedulers under traces for different DCN types to see how the results
from the ‘extreme’ condition investigation translate into more realistic
scenarios. For brevity, we provide the full results in Appendix G and a
summary in this section.

Extreme Rack Conditions As shown in Table F.17, as the rack dis-
tribution becomes heavily skewed to intra-rack, the completion time
metrics of FS become increasingly superior to SRPT. This suggests that
real DCNs which have heavy intra-rack traffic (e.g. social media cloud
DCNs) would benefit from deploying pure FS scheduling policies, at least
at higher loads, whereas DCNs with heavy inter-rack traffic (e.g. uni-
versity DCNs) would benefit from deploying FS at medium loads and
SRPT at low and high loads.

In terms of throughput and demands accepted, FF is competitive with
SRPT and FS at low intra-rack traffic levels, but as the DCN becomes
more heavily intra-rack (e.g. social media cloud DCNs), SRPT and FS are
preferable, with FS achieving the best performances at higher loads.
Again, a preferable strategy would likely be to utilise SRPT strategies at
low loads before switching to FS at loads about 0.3–0.5 (depending on
the level of intra-rack traffic).

Extreme Node Conditions As shown in Table F.18, at the two ex-
tremes of heavily skewed and uniform traffic, scheduler completion time
performances are similar in that SRPT outperforms FS at low and high
loads, but FS performs well at medium loads. However, in between these
two extremes (around 40% of nodes requesting 55% of overall traffic),
there is a point where FS becomes the dominant scheduler in terms of
completion time.

In terms of throughput and demands accepted, under heavily skewed
conditions (5% nodes requesting 55% of traffic), FF and/or Rand beat
SRPT and FS across all 0.1–0.9 loads in terms of throughput and fraction
of information accepted. This suggests that FF and SRPT are strained
under high skews with respect to these two metrics. However, as
observed with the uniform distribution, this comes at the cost of the
fraction of arrived flows accepted, where SRPT and FS outperform FF
and Rand across all loads. As the proportion of nodes requesting 55% of
traffic is increased to 10%, 20%, and 40%, relative scheduler perfor-
mances converge to those seen with the uniform distribution, with FS
and SRPT being mostly dominant except at high 0.8 and 0.9 loads, where
FF often has the better throughput and fraction of information accepted.

Realistic Conditions Table F.19 summarises the results for the four
schedulers on each of the four ‘realistic’ DCN benchmarks considered. As
shown, the SRPT scheduler tends to achieve the best completion time
metrics when loads are low (≤ 0.7) and where traffic is primarily inter-
rack (the University and Private Enterprise DCNs). This is to be ex-
pected, since a policy which prioritises completion of the smallest flows
as soon as possible will keep its completion time averages low. However,
as traffic reaches higher loads (> 0.7), the fair share policy achieves the
best completion time metrics. This indicates that networks would benefit

from scheduling policies which can dynamically adapt to changing
traffic loads. Moreover, for networks with characteristically intra-rack
traffic (the Commercial Cloud and Social Media Cloud DCNs), the fair
share policy attains the best completion time and throughput metrics.
These results therefore validate the predictions made by the rack dis-
tribution sensitivity analysis study; namely that completion time metrics
in real DCN traces with heavily intra-rack (e.g. Commercial Cloud and
Social Media Cloud) traffic benefit from FS scheduling strategies. On the
other hand, at least for low loads, low intra-rack DCN traces (e.g. Uni-
versity and Private Enterprise) benefit from SRPT scheduling strategies.

These results suggest that not only should scheduling policies be
adapted to changing traffic loads, but also to changing characteristics
such as the level of inter- vs. intra-rack communication. Note that, as
expected, the fair share policy provides the best worst-case completion
time (max FCT), the greatest network utilisation (throughput), and the
strongest service guarantee (number of flow requests satisfied) across
most loads and DCN types.

7. Conclusion & further work

In conclusion, we have introduced TrafPy; an API for generating
custom and realistic DCN traffic and a standardised protocol for
benchmarking DCN systems which is compatible with any simulation,
emulation, or experimentation test bed. These systems can be any
combination of networked devices or methods such as schedulers,
switches, routers, admission control policies, management protocols,
topologies, buffering methods, and so on. TrafPy has been developed
with a focus on having a high level of fidelity, generality, scalability,
reproducibility, repeatability, replicability, compatibility, and comparability
in the context of DCN research, which in turn will aid in accelerating
innovation.

We have demonstrated the efficacy of TrafPy by briefly investigating
the sensitivity of four canonical schedulers to varying traffic loads and
characteristics. The scheduler performances were heavily dependent on
the level of intra-rack traffic and overall network load. We found that
SRPT was generally the dominant scheduler for low intra-rack traffic
(particularly at low loads), but that FS became superior across all loads
at high intra-rack levels. These insights were then found to translate into
realistic DCN traces, with low intra-rack users such as University and
Private Enterprise DCNs benefiting from SRPT policies at low and me-
dium loads and high intra-rack traces such as Commercial Cloud and
Social Media Cloud being more suited to FS strategies. This shows that
there is no ‘one size fits all’ strategy for scheduling different types of
DCNs, and that there would be great value in the development of traffic-
informed and dynamic DCN systems. With its standardised traffic gen-
eration and benchmark protocol, TrafPy is an ideal tool for developing
such systems via the benchmark paradigm described throughout this
manuscript.

The space of potential research areas from this work is vast. We hope
presently unforeseeable avenues will be pursued with the support of
TrafPy’s standardised traffic generation and rigorous benchmarking
framework. For our own work, based on the preliminary results of
scheduler sensitivity to varying load conditions and traffic trace char-
acteristics, we expect to develop new scheduling heuristics and learning
algorithms which can dynamically adapt to network traffic states and
outperform literature baselines in open-source TrafPy benchmarks. The
2.5 TB of open-access simulation data from this manuscript open some
interesting offline reinforcement learning opportunities. We also antic-
ipate adding more sensitivity-testing and realistic DCN traffic traces to
the suite of TrafPy benchmarks. Furthermore, there are some exciting
features which could enhance TrafPy. For example, although TrafPy can
generate traces without any raw data given whatever characteristic
distributions the user provides, it would be useful to be able to input real
data (e.g. Ref. [7]) and have TrafPy automatically characterise the
traffic in order to generate realistic data. Additionally, we plan to
include a computation graph view of DCN network traffic in the TrafPy

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

10

API, unifying the flow-centric paradigm from the networking commu-
nity with the job-centric perspective from computer science. This could
lead to exciting novel research, such as network- and job-aware DCN
scheduling.

Author statement

We declare that all authors made notable contributions to this
manuscript, and that this work is our own original work. This work was
completed with the support of the following funders: EPSRC Distributed
Quantum Computing and Applications EP/W032643/1; the Innovate
UK Project on Quantum Data Centres and the Future 10004793; Opto-
Cloud EP/T026081/1; TRANSNET EP/R035342/1; the Engineering and

Physical Sciences Research Council EP/R041792/1 and EP/L015455/1;
and the Alan Turing Institute.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Christopher Parsonson reports financial support was provided by the
Engineering and Physical Sciences Research Council, OptoCloud,
TRANSNET, and the Innovate UK Project on Quantum Data Centres for
the Future. Christopher Parsonson reports a relationship with The Alan
Turing Institute that includes: funding grants.

Appendix A. Table of Notation

Table A.1
Table summarising the symbol notation used throughout the paper.

Symbol Definition

D′ Set of parameters defining the TrafPy distributions
D Traffic trace generated using the D′ TrafPy parameters
P Probability distribution
X Discrete random variables
H Entropy
JSD Jensen-Shannon divergence
̅̅̅̅̅̅̅̅
JSD

√ Jensen-Shannon distance
{π1, …, πn} Weightings for the JSD of n distributions
Bs, Bt, Bn Flow size, inter-arrival time, and node pair random variables for benchmark workload B
bs, bt, bn Flow sizes, inter-arrival times, and node pairs sampled from benchmark workload B
ba Flow arrival times derived from inter-arrival times bt
T DCN network topology
ρ Load fraction (fraction of overall network capacity requested)
nn Number of server nodes
nc Number of channels per communication link
Cc Capacity per server node link channel
Ct Total network capacity per direction
nf Number of flows generated
tt Total time duration of simulation
ϱ Load rate (information arriving per unit time)
αt Inter-arrival time adjustment factor
dp Difference between a node pair’s current and target information request magnitude
β Number of flows adjustment factor
R Number of traffic traces to generate and simulate for a suitable confidence interval

Appendix B. TrafPy Distribution Parameters

Table B.2
Benchmark categories with their real traffic characteristics reported in the literature (where appropriate) and the corresponding TrafPy parameters D′ needed to
reproduce the distributions. DCN <i,ii,iii,iv> → <university, private_enterprise, commercial_cloud, social_media_cloud > Skewed <i,ii,iii,iv,v> → skewed_nodes_sensitivity_-
<uniform, 0.05, 0.1, 0.2, 0.4> Rack <i,ii,iii,iv,v> → rack_sensitivity_<uniform, 0.2, 0.4, 0.6, 0.8>.

Benchmark
Category

Applications Size, Bytes Inter-arrival Time, μs Inter- | Intra-Rack
Traffic, %

Hot Nodes | Load
Requested, %

DCNi [30,57] Database backups, hosting distributed file systems
(email, servers, web services for faculty portals etc.),
multi-cast video streams

a 80% < 10, 000
b ‘lognormal’,
{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7,
round = 25

a 10% < 400,
80% < 10, 000 b ‘weibull’,
{α: 0.9, λ: 6000}, min_val =
1, round = 25

a70|30
b r = {rd: c, p: 0.7 }

a20| 55b

‘multimodal’,
ns = d(0.2), np = e
(0.2, 0.55)

DCNii [30] University + ‘custom’ applications and development
test beds

a 80% < 10, 000
b ‘lognormal’,
{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7,
round = 25

a 80% < 1, 000
b ‘multimodal’,
min_val = 1,
max_val = 100,000,
locations = [40,1],
skews = [-1,4],
scales = [60,1000],
num_skew_samples
= [10]e3, round = 25,

bg_factor = 0.05

a 50 | 50
b r = {rd: c, p: 0.5}

a20| 55b

‘multimodal’,
ns = d(0.2), np = e
(0.2, 0.55)

DCNiii [30,31] a 80% < 10, 000
b ‘lognormal’,

a Median 10
b ‘multimodal’,

a 20 | 80
b r = {rd: c, p: 0.2}

a20| 55b

‘multimodal’,

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

11

Table B.2 (continued)

Benchmark
Category

Applications Size, Bytes Inter-arrival Time, μs Inter- | Intra-Rack
Traffic, %

Hot Nodes | Load
Requested, %

Internet-facing applications (search indexing,
webmail, video, etc.), data mining and MapReduce-
style applications

{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7,
round = 25

min_val = 1,
max_val = 100,000,
locations
= [10,20,100,1], skews =

[0,0,0,100],
scales = [1,3,4,50],
num_skew_samples
= [10,7,5,20]e3,round =

25, bg_factor = 0.01

ns = d(0.2), np = e
(0.2, 0.55)

DCNiv [33] Web request response generation (mail, messenger,
etc.), MySQL database storage & cache querying,
newsfeed assembly

a 10% < 300,
90% < 100, 000 b

‘weibull’,
{α: 0.5, λ: 21,000},
min_val = 1, max_val =
2e6,
round = 25

a 10% < 20,
90% < 10, 000 b

‘lognormal’,
{μ: 6, σ: 2.3}, min_val = 1,
round = 25

a 12.9 | 87.1
b r = {rd: c, p:
0.129}

a20| 55b

‘multimodal’,
ns = d(0.2), np = e
(0.2, 0.55)

Skewedi,
Racki

– bDCNiii
bDCNiii

b ‘uniform’, r =
None

b ‘uniform’ ns = np
= None

Skewedii – bDCNiii
bDCNiii

b ‘uniform’, r =
None

5| 55b ‘uniform’ ns
= d(0.05)
np = e(0.05, 0.55)

Skewediii – bDCNiii
bDCNiii

b ‘uniform’, r =
None

5| 55b ‘uniform’ ns
= d(0.1)
np = e(0.1, 0.55)

Skewediv – bDCNiii
bDCNiii

b ‘uniform’, r =
None

5| 55b ‘uniform’ ns
= d(0.2)
np = e(0.2, 0.55)

Skewedv – bDCNiii
bDCNiii

b ‘uniform’, r =
None

5| 55b ‘uniform’ ns
= d(0.4)
np = e(0.4, 0.55)

Rackii – bDCNiii
bDCNiii 80| 20b ‘uniform’,

r = {rd: c, p: 0.8}

b ‘uniform’ ns = np
= None

Rackiii – bDCNiii
bDCNiii 60| 40b ‘uniform’,

r = {rd: c, p: 0.6}

b ‘uniform’ ns = np
= None

Rackiv – bDCNiii
bDCNiii 40| 60b ‘uniform’,

r = {rd: c, p: 0.4}

b ‘uniform’ ns = np
= None

Rackv – bDCNiii
bDCNiii 20| 80b ‘uniform’,

r = {rd: c, p: 0.2}

b ‘uniform’ ns = np
= None

a Real traffic characteristics reported in the literature.
b Corresponding TrafPy parameters D′. c = net.graph[‘rack_to_ep_dict’] → Network cluster (i.e. rack) configuration. d(u) = int(u * len(net.graph[‘endpoints’])) →

Number of nodes to skew. e(u, v) = [v/d(u) for _in range(d(u))] → Fraction of overall traffic load to distribute amongst the skewed nodes. r|rd |p | ns | np = rack_-
prob_config | ‘racks_dict’ | ‘prob_inter_rack’ | num_skewed_nodes | skewed_node_probs.

Table B.3
Flow size, inter-arrival time, and node load distribution characteristics for the University (U), Private Enterprise (PE), Commercial Cloud (CC), and Social Media Cloud
(SMC) data sets of the DCN benchmark after generating the distributions from TrafPy parameters D′.

Variable DCN # Modes Min. Max. Mean Variance Skewness Kurtosis

Size (B) U 1 1 19.80 × 106 22.90 × 103 42 × 109 39.4 2.41 × 103

PE 1 1 19 × 106 23.30 × 103 53.50 × 109 44.1 2.79 × 103

CC 1 1 19.20 × 106 22.30 × 103 38.40 × 109 36.9 2.08 × 103

SMC 1 1 3.17 × 106 42 × 103 8.87 × 109 6.20 66.4
Inter-arrival time (μs) U 1 1 126 × 103 6.30 × 103 49.90 × 106 2.44 9.92

PE 2 1 100 × 103 2.83 × 103 154 × 106 5.7 33.1
CC 4 1 10 × 103 84.5 0.32 × 106 13 179
SMC 1 1 54.60 × 105 5.51 × 103 2.11 × 109 47.8 3.75 × 103

Variable DCN % Hot Nodes % Hot Node Traffic % Inter-Rack

Node load distribution (%) U 20 55 70
PE 20 55 50
CC 20 55 20
SMC 20 55 12.9

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

12

Appendix C. TrafPy API Examples

Appendix C.1. Custom Distribution Shaping

Appendix C.1.1. Interactively & Visually Shaping a Custom ‘Named’ Distribution in a Jupyter Notebook

Fig. C.8. Output of example code for interactively and visually shaping a ‘named’ distribution in a Jupyter Notebook.

Example of interactively and visually shaping a weibull distribution’s parameters to achieve a target distribution for some random variable in
Jupyter Notebook (output in Fig. C.8):

This same distribution can then be reproduced by using the same parameters:

Appendix C.1.2. Interactively & Visually Shaping a Custom ‘Multimodal’ Distribution in a Jupyter Notebook
To generate a multimodal distribution, first shape each mode individually (output in Fig. C.9):

Then combine the distributions, filling the distribution with a tuneable amount of ‘background noise’ (output in Fig. C.10):

This same distribution can be reproduced using the same parameters:

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

13

N.B. An equivalent function can be used for generating custom skew distributions with a single mode which also do not fall under one of the
canonical ‘named’ distributions.

Fig. C.9. Output for step 1 of example code for interactively and visually shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must first shape each
mode individually.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

14

Fig. C.10. Output for step 2 of example code for interactively and visually shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must combine your
individually shaped modes into a single distribution.

Appendix C.2. Benchmark Importing & Flow Generation

Example code for generating and visualising a load 0.1 University benchmark data set of flows for a custom topology (output in Fig. C.11):

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

15

Fig. C.11. Output of example code for generating a benchmark.

Appendix D. Pseudocode

Appendix D.1. Scheduling

The flow scheduling pseudocode is shown in Algorithm 2. First, information about the queued flows such as their characteristics (packets left, time
of arrival, flow queue, destination node, etc.), the network links requested in the source-destination path, and the bandwidth requested, is collected. If
the scheduler uses cost-based scheduling (e.g. SRPT uses flow completion time cost), a cost is also assigned to each flow. Next, for each link being
requested by the flows, while the link in question has some available bandwidth left to allocate for the current time slot, the scheduler chooses flows
until either there is no bandwidth left or there are no flows demanding the link which have not been chosen. Finally, for each flow in the set of these
provisionally chosen flows, the smallest number of packets scheduled for the flow in question across all links is chosen as the flow’s number of packets
to schedule. Note that this simulation methodology considers bandwidth bottlenecks throughout all layers of the network. The pseudocode in Al-
gorithm 3 is used to resolve any contentions and attempt to set up the flow, thus adding the flow to the ultimate set of flows chosen by the scheduler for
the given time slot. The parts which are scheduler-specific have been marked in bold.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

16

Algorithm 2
Flow scheduling process.

Collect flow information
link_allocations = []
for link in links do

while link bandwidth ∕= 0 do
link_allocations.append(scheduler choose flow)

end while
end for
chosen_flows = []
for flow in flows do

if flow in link_allocations then
flow_packets = min(packets allocated for flow in link_allocations)
establish, removed_flows = scheduler resolve_contentions(flow, chosen_flows)
if establish then

chosen_flows.append(flow)
chosen_flows.remove(removed_flows)

end if
end if

end for

Algorithm 3
Flow contention resolution process.

Require: flow, chosen_flows
removed_flows = []

while True do
if no_contention(flow) then

establish = True
return establish, removed_flows

else
contending_flow = find_contending_flow()
establish = scheduler resolve_contention(flow, contending_flow)
if not establish then

chosen_flows.append(removed_flows)
return establish

else
chosen_flows.remove(contending_flow)
continue

end if
end if

end while

Appendix D.2. TrafPy Benchmark Protocol

Algorithm 4
TrafPy benchmark protocol.

for r in range(R) do
for d in D do

for ρ ← 0.1 to 0.9 step 0.1 do
PKPI = ϒ(χ, d, ρ)

end for
end for

end for

Appendix E. Traffic Skew Convergence

A constraint of any traffic matrix is that the load on each end point (the fraction of the end point’s capacity being requested) cannot exceed 1.0.
Consequently, certain traffic skews become infeasible at higher loads (for example, it is impossible for an n > 1 network to have 1 node requesting
100% of the traffic if the overall network is under a 1.0 load). As shown in Fig. 3, this results in all traffic matrices tending towards uniform (i.e. having
no skew) as the overall network load tends to 1.0.

A question traffic trace generators may ask is: for a given load, what combination of i) number of skewed nodes, ii) corresponding fraction of the
arriving network traffic the skewed nodes request, and iii) overall network load results in the traffic matrix being skewed or not skewed? To answer
this question, we make the following assumptions:

⋅ All network end points have equal bandwidth capacities.
⋅ All end points are either ‘skewed’ or ‘not skewed’ by the same amount.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

17

⋅ ‘Skew’ is defined by a skew factor, which is the fractional difference between the load rate per skewed node and the load rate per non-skewed node
(the highest being the numerator, and the lowest being the denominator).

⋅ For a given combination of skewed nodes and the load rate they request of some overall network load, any excess load (exceeding 1.0) on a given
end point is distributed equally amongst all other end points whose loads are < 1.0.

With the above assumptions, we can calculate the skew factor for each combination of skewed nodes, corresponding traffic requested, and overall
network load. Doing this for 0–100% of the network nodes being skewed and requesting 0–100% of the overall network load under network loads
0.1–0.9, we can construct a look-up table of skew factors for each of these combinations before generating any actual traffic. Fig. E.12 shows a high
resolution (0.1%) heat map of these combinations, with any skew factors ≥ 2.0 set to the same colour for visual clarity. Fig. E.13 shows the corre-
sponding plots with lower resolution (5%) but with the skew factors labelled. As expected, above 0.6 network loads, certain combinations of number of
skewed nodes and traffic requested become restricted as to how much skew there can be in the matrix, with many combinations tending towards
uniform (skew factor 1.0) at 0.9 loads.

Fig. E.12. Skew factor heat maps for 0–100% of network nodes requesting 0–100% of the overall network traffic across loads 0.1–0.9 plotted at 0.1% resolution. For
clarity, combinations with skew factors ≥ 2 have been assigned the same colour.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

18

Fig. E.13. Labelled skew factor tables for 0–100% of network nodes requesting 0–100% of the overall network traffic across loads 0.1–0.9 plotted at 5% resolution.

Using the skew factor data from Figs. E.12 and E.13, we can be confident at 5%, 10%, 20%, and 40% of the network nodes requesting 55% of the
overall network traffic that the skew factor will be > 1.0 across loads 0.1–0.9. Fig. E.14 shows the skew factor as a function of load for these com-
binations. Therefore, these were the combinations chosen for the skewed nodes sensitivity benchmark defined in Section 5 of this manuscript.

Fig. E.14. Skew factor as a function of load for 5%, 10%, 20%, and 40% of the network nodes requesting 55% of the overall network traffic.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

19

Appendix F. Scheduler Performance Summary

Appendix F.1. Completion Time Performance Plots

Plots showing the schedulers’ completion performances are provided for the realistic DCN (Fig. F.15) uniform (Fig. F.16), extreme rack (Fig. F.17),
and extreme nodes (Fig. F.18) traffic traces.

Fig. F.15. The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion time metrics for the DCN benchmark distributions across loads
0.1–0.9, and (d) a scatter plot of flow completion time as a function of flow size for the same distribution at load 0.9.

Fig. F.16. The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion time metrics for the uniform node distribution across loads 0.1–0.9,
and (d) a scatter plot of flow completion time as a function of flow size for the same distribution at load 0.9.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

20

Fig. F.17. Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion times to the changing intra-rack distribution for loads 0.1,
0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top 2 performing schedulers (SRPT and FS)
for clarity.

Fig. F.18. Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion times to the changing skewed nodes distribution for loads
0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top 2 performing schedulers (SRPT and FS)
for clarity.

Appendix F.2. Throughput and Flows Accepted Performance Plots

Plots showing the schedulers’ throughput and accepted flow performances are provided for the realistic DCN (Fig. F.19), uniform (Fig. F.20),
extreme rack (Fig. F.21), and extreme nodes (Fig. F.22) traffic traces.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

21

Fig. F.19. The schedulers’ (a) absolute throughput (information units transported per unit time), (b) relative throughput (fraction of arrived information successfully
transported), (c) fraction of arrived flows accepted, and (d) fraction of arrived information accepted metrics for the DCN benchmark distributions across
loads 0.1–0.9.

Fig. F.20. The schedulers’ (a) absolute throughput (information units transported per unit time), (b) relative throughput (fraction of arrived information successfully
transported), (c) fraction of arrived flows accepted, and (d) fraction of arrived information accepted metrics for the uniform node distribution across loads 0.1–0.9.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

22

Fig. F.21. Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of arrived flows accepted, and (c) fraction of arrived information accepted metrics to the
changing intra-rack distribution for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top
3 performing schedulers (SRPT, FS, and FF) for clarity.

Fig. F.22. Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of arrived flows accepted, and (c) fraction of arrived information accepted metrics to the
changing skewed nodes distribution for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain
the top 3 performing schedulers (SRPT, FS, and FF) for clarity.

Appendix F.3. Performance Metric Tables

The below performance tables summarise the schedulers’ mean performances (averaged across 5 runs, 95% confidence intervals reported) for each
PKPI, each load, and each benchmark.

Appendix F.3.1. DCN Benchmarks

Table F.4
Scheduler performance summary with 95% confidence intervals for the University benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1557.2 ± 0.19% 2903.2 ± 0.77% 44249.8 ± 8.9% 0.994 ± 0.2% 1.0 ± 0.0012% 0.994 ± 0.2%
0.10 FS 1521.5 ± 0.028% 1997.2 ± 0.0059% 45984.4 ± 11.0% 0.993 ± 0.24% 1.0 ± 0.00082% 0.993 ± 0.24%
0.10 Rand 1543.5 ± 0.051% 2708.2 ± 0.38% 72316.3 ± 9.1% 0.991 ± 0.2% 1.0 ± 0.00078% 0.991 ± 0.2%
0.10 SRPT 1518.8 ± 0.021% 1996.9 ± 0.0039% 50036.6 ± 11.0% 0.995 ± 0.2% 1.0 ± 0.00025% 0.995 ± 0.2%
0.20 FF 1677.7 ± 1.0% 5629.1 ± 8.4% 77986.8 ± 8.3% 0.985 ± 0.39% 1.0 ± 0.01% 0.985 ± 0.39%
0.20 FS 1537.6 ± 0.11% 1999.4 ± 0.0039% 72962.6 ± 5.9% 0.983 ± 0.4% 1.0 ± 0.0019% 0.983 ± 0.4%
0.20 Rand 1600.8 ± 0.18% 3050.2 ± 1.3% 182454.6 ± 11.0% 0.962 ± 0.34% 1.0 ± 0.0025% 0.962 ± 0.34%
0.20 SRPT 1529.5 ± 0.079% 2014.7 ± 0.56% 102306.4 ± 12.0% 0.985 ± 0.32% 1.0 ± 0.0019% 0.985 ± 0.32%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

23

Table F.4 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.30 FF 1887.8 ± 0.78% 10474.4 ± 4.9% 174541.8 ± 16.0% 0.975 ± 0.17% 0.999 ± 0.0073% 0.975 ± 0.17%
0.30 FS 1575.3 ± 0.19% 2630.4 ± 2.8% 134195.3 ± 3.0% 0.97 ± 0.12% 1.0 ± 0.0013% 0.97 ± 0.12%
0.30 Rand 1682.3 ± 0.2% 3937.4 ± 0.35% 381073.0 ± 4.0% 0.857 ± 0.87% 0.999 ± 0.0063% 0.857 ± 0.87%
0.30 SRPT 1551.2 ± 0.099% 2500.5 ± 0.29% 235811.0 ± 5.7% 0.956 ± 0.29% 1.0 ± 0.00062% 0.956 ± 0.29%
0.40 FF 2124.1 ± 2.2% 15235.4 ± 11.0% 247350.9 ± 7.0% 0.939 ± 0.38% 0.998 ± 0.02% 0.939 ± 0.38%
0.40 FS 1643.5 ± 0.12% 3562.8 ± 4.5% 230440.4 ± 6.6% 0.926 ± 0.58% 0.999 ± 0.0025% 0.926 ± 0.58%
0.40 Rand 1762.5 ± 0.23% 5081.8 ± 0.67% 295319.0 ± 1.8% 0.816 ± 0.75% 0.999 ± 0.0092% 0.816 ± 0.75%
0.40 SRPT 1561.9 ± 0.08% 2771.3 ± 0.31% 221163.5 ± 5.0% 0.902 ± 0.41% 1.0 ± 0.0014% 0.902 ± 0.41%
0.50 FF 1902.1 ± 1.1% 6389.1 ± 2.7% 391005.8 ± 7.6% 0.909 ± 0.94% 0.999 ± 0.0067% 0.909 ± 0.94%
0.50 FS 1740.5 ± 1.2% 4533.5 ± 12.0% 344343.1 ± 7.9% 0.9 ± 1.1% 0.999 ± 0.0055% 0.9 ± 1.1%
0.50 Rand 1947.7 ± 1.8% 6365.3 ± 4.5% 443976.4 ± 11.0% 0.818 ± 1.2% 0.998 ± 0.0037% 0.818 ± 1.2%
0.50 SRPT 1582.2 ± 0.16% 2904.8 ± 0.36% 363481.8 ± 7.4% 0.875 ± 0.76% 1.0 ± 0.0012% 0.875 ± 0.76%
0.60 FF 1989.3 ± 1.0% 7602.7 ± 4.6% 335234.2 ± 5.2% 0.917 ± 0.39% 0.999 ± 0.0057% 0.917 ± 0.39%
0.60 FS 1677.7 ± 0.53% 3701.9 ± 1.1% 314020.0 ± 4.8% 0.912 ± 0.31% 0.999 ± 0.0036% 0.912 ± 0.31%
0.60 Rand 2322.4 ± 2.7% 9921.0 ± 8.2% 398738.8 ± 2.5% 0.805 ± 0.48% 0.997 ± 0.027% 0.805 ± 0.48%
0.60 SRPT 1630.0 ± 0.084% 3630.4 ± 0.48% 322416.8 ± 5.0% 0.879 ± 0.47% 1.0 ± 0.0022% 0.879 ± 0.47%
0.70 FF 2434.1 ± 1.8% 12649.6 ± 5.0% 305610.1 ± 2.9% 0.912 ± 0.35% 0.998 ± 0.033% 0.912 ± 0.35%
0.70 FS 1672.2 ± 0.4% 4415.8 ± 1.9% 246486.9 ± 2.9% 0.914 ± 0.3% 0.999 ± 0.0033% 0.914 ± 0.3%
0.70 Rand 3083.8 ± 1.4% 19421.0 ± 4.0% 377667.2 ± 2.1% 0.755 ± 1.1% 0.993 ± 0.048% 0.755 ± 1.1%
0.70 SRPT 1712.6 ± 0.28% 4502.1 ± 1.8% 280418.9 ± 5.9% 0.878 ± 0.46% 0.999 ± 0.008% 0.878 ± 0.46%
0.79 FF 3394.1 ± 2.1% 23179.1 ± 3.5% 265525.7 ± 5.5% 0.9 ± 0.23% 0.995 ± 0.033% 0.9 ± 0.23%
0.79 FS 1724.5 ± 0.31% 6302.9 ± 1.9% 236377.1 ± 3.3% 0.913 ± 0.28% 0.999 ± 0.004% 0.913 ± 0.28%
0.79 Rand 3861.5 ± 1.8% 25389.9 ± 1.9% 317002.4 ± 2.3% 0.731 ± 0.83% 0.988 ± 0.033% 0.731 ± 0.83%
0.79 SRPT 1950.3 ± 1.3% 7574.3 ± 6.7% 271794.0 ± 1.7% 0.848 ± 0.36% 0.999 ± 0.017% 0.848 ± 0.36%
0.89 FF 5550.1 ± 1.9% 44869.3 ± 2.5% 333023.3 ± 11.0% 0.87 ± 0.62% 0.987 ± 0.041% 0.87 ± 0.62%
0.89 FS 2015.9 ± 0.54% 12793.3 ± 1.7% 254036.6 ± 10.0% 0.873 ± 0.9% 0.998 ± 0.013% 0.873 ± 0.9%
0.89 Rand 5718.1 ± 7.5% 38174.0 ± 8.7% 346773.2 ± 12.0% 0.692 ± 0.71% 0.979 ± 0.045% 0.692 ± 0.71%
0.89 SRPT 2645.0 ± 5.0% 19839.5 ± 12.0% 319581.9 ± 11.0% 0.755 ± 0.43% 0.993 ± 0.12% 0.755 ± 0.43%

Table F.5
Scheduler performance summary with 95% confidence intervals for the Private Enterprise benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1576.7 ± 0.34% 3207.9 ± 3.5% 50143.5 ± 5.5% 0.998 ± 0.085% 1.0 ± 0.00094% 0.998 ± 0.085%
0.10 FS 1522.1 ± 0.021% 1997.1 ± 0.0079% 46335.0 ± 4.4% 0.997 ± 0.095% 1.0 ± 0.0006% 0.997 ± 0.095%
0.10 Rand 1550.9 ± 0.053% 2765.2 ± 0.49% 82610.5 ± 7.8% 0.994 ± 0.19% 1.0 ± 0.00074% 0.994 ± 0.19%
0.10 SRPT 1520.3 ± 0.01% 1997.3 ± 0.0079% 48062.1 ± 5.8% 0.997 ± 0.13% 1.0 ± 0.00047% 0.997 ± 0.13%
0.20 FF 1726.6 ± 1.6% 6794.6 ± 11.0% 70833.7 ± 3.0% 0.983 ± 0.29% 0.999 ± 0.01% 0.983 ± 0.29%
0.20 FS 1532.2 ± 0.13% 2048.4 ± 0.76% 66026.7 ± 2.0% 0.983 ± 0.22% 1.0 ± 0.00072% 0.983 ± 0.22%
0.20 Rand 1598.9 ± 0.16% 3199.8 ± 2.0% 166233.2 ± 8.3% 0.946 ± 0.6% 1.0 ± 0.0044% 0.946 ± 0.6%
0.20 SRPT 1529.5 ± 0.11% 2214.8 ± 1.6% 87532.1 ± 7.1% 0.984 ± 0.22% 1.0 ± 0.00048% 0.984 ± 0.22%
0.30 FF 2058.9 ± 3.1% 16033.0 ± 12.0% 149462.6 ± 8.8% 0.98 ± 0.19% 0.999 ± 0.016% 0.98 ± 0.19%
0.30 FS 1549.9 ± 0.13% 2528.8 ± 1.1% 121311.0 ± 7.3% 0.981 ± 0.24% 1.0 ± 0.001% 0.981 ± 0.24%
0.30 Rand 1684.2 ± 0.39% 4149.8 ± 1.9% 285851.7 ± 4.8% 0.899 ± 0.73% 0.999 ± 0.0088% 0.899 ± 0.73%
0.30 SRPT 1543.2 ± 0.056% 2616.2 ± 0.41% 196424.2 ± 9.0% 0.978 ± 0.22% 1.0 ± 0.00089% 0.978 ± 0.22%
0.40 FF 2638.3 ± 4.1% 30026.6 ± 9.2% 205182.9 ± 8.2% 0.942 ± 0.6% 0.997 ± 0.036% 0.942 ± 0.6%
0.40 FS 1599.4 ± 0.25% 3333.2 ± 1.9% 211188.7 ± 4.4% 0.943 ± 0.21% 1.0 ± 0.002% 0.943 ± 0.21%
0.40 Rand 1799.1 ± 0.54% 5653.6 ± 2.3% 280714.7 ± 3.0% 0.84 ± 1.1% 0.999 ± 0.015% 0.84 ± 1.1%
0.40 SRPT 1564.1 ± 0.085% 2802.8 ± 0.32% 210192.4 ± 7.6% 0.937 ± 0.46% 1.0 ± 0.0017% 0.937 ± 0.46%
0.50 FF 2824.6 ± 5.9% 34301.5 ± 14.0% 365468.3 ± 13.0% 0.907 ± 1.0% 0.994 ± 0.11% 0.907 ± 1.0%
0.50 FS 1682.6 ± 0.72% 5048.5 ± 3.6% 311288.1 ± 9.1% 0.902 ± 1.2% 0.999 ± 0.0061% 0.902 ± 1.2%
0.50 Rand 1993.9 ± 1.9% 7870.4 ± 4.9% 381296.9 ± 10.0% 0.811 ± 1.1% 0.998 ± 0.019% 0.811 ± 1.1%
0.50 SRPT 1582.9 ± 0.26% 2938.1 ± 0.38% 332134.3 ± 13.0% 0.903 ± 0.65% 1.0 ± 0.0026% 0.903 ± 0.65%
0.60 FF 2230.4 ± 1.3% 11218.7 ± 5.3% 339021.9 ± 2.3% 0.915 ± 0.44% 0.997 ± 0.065% 0.915 ± 0.44%
0.60 FS 1705.0 ± 0.53% 5843.2 ± 3.2% 326252.1 ± 3.6% 0.907 ± 0.43% 0.999 ± 0.0044% 0.907 ± 0.43%
0.60 Rand 2282.4 ± 1.6% 12522.1 ± 6.0% 412445.3 ± 4.4% 0.782 ± 1.4% 0.997 ± 0.029% 0.782 ± 1.4%
0.60 SRPT 1624.0 ± 0.21% 3425.1 ± 1.3% 375244.9 ± 5.9% 0.898 ± 0.38% 1.0 ± 0.0028% 0.898 ± 0.38%
0.70 FF 2449.3 ± 0.71% 13110.2 ± 2.3% 297091.8 ± 4.2% 0.921 ± 0.26% 0.998 ± 0.02% 0.921 ± 0.26%
0.70 FS 1696.4 ± 0.49% 5751.0 ± 4.4% 283512.5 ± 4.4% 0.907 ± 0.17% 0.999 ± 0.003% 0.907 ± 0.17%
0.70 Rand 2636.5 ± 0.7% 18278.2 ± 2.0% 363011.5 ± 2.3% 0.74 ± 1.0% 0.995 ± 0.029% 0.74 ± 1.0%
0.70 SRPT 1691.0 ± 0.23% 4085.2 ± 1.5% 315470.7 ± 7.2% 0.892 ± 0.36% 1.0 ± 0.0026% 0.892 ± 0.36%
0.79 FF 3400.0 ± 0.81% 24127.3 ± 1.5% 275964.6 ± 3.9% 0.897 ± 0.37% 0.994 ± 0.03% 0.897 ± 0.37%
0.79 FS 1732.4 ± 0.24% 6508.5 ± 1.6% 258779.8 ± 3.2% 0.893 ± 0.45% 0.999 ± 0.0034% 0.893 ± 0.45%
0.79 Rand 3264.4 ± 1.7% 27586.4 ± 3.0% 325223.7 ± 2.3% 0.675 ± 0.73% 0.989 ± 0.04% 0.675 ± 0.73%
0.79 SRPT 1841.9 ± 0.58% 5834.0 ± 2.5% 292946.1 ± 3.7% 0.853 ± 0.25% 0.999 ± 0.011% 0.853 ± 0.25%
0.90 FF 5851.8 ± 1.9% 48861.6 ± 2.7% 274329.9 ± 2.0% 0.866 ± 0.64% 0.983 ± 0.08% 0.866 ± 0.64%
0.90 FS 1940.3 ± 0.35% 11084.7 ± 2.1% 268340.1 ± 3.0% 0.842 ± 0.52% 0.998 ± 0.0064% 0.842 ± 0.52%
0.90 Rand 4124.7 ± 1.4% 36647.1 ± 2.2% 294642.1 ± 0.58% 0.625 ± 1.5% 0.983 ± 0.055% 0.625 ± 1.5%
0.90 SRPT 2492.0 ± 5.5% 16474.5 ± 15.0% 267699.8 ± 2.0% 0.711 ± 0.41% 0.994 ± 0.2% 0.711 ± 0.41%

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

24

Table F.6
Scheduler performance summary with 95% confidence intervals for the Commercial Cloud benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1588.2 ± 0.46% 3604.1 ± 2.4% 49490.3 ± 6.8% 0.996 ± 0.052% 1.0 ± 0.0019% 0.996 ± 0.052%
0.10 FS 1520.1 ± 0.083% 1997.1 ± 0.0039% 42361.1 ± 4.6% 0.994 ± 0.16% 1.0 ± 0.00059% 0.994 ± 0.16%
0.10 Rand 1551.4 ± 0.12% 2816.9 ± 0.47% 75051.0 ± 13.0% 0.99 ± 0.2% 1.0 ± 0.0023% 0.99 ± 0.2%
0.10 SRPT 1519.3 ± 0.077% 1997.7 ± 0.0059% 42911.8 ± 5.8% 0.996 ± 0.08% 1.0 ± 0.00037% 0.996 ± 0.08%
0.20 FF 1747.8 ± 1.2% 7437.1 ± 6.9% 67090.9 ± 3.3% 0.99 ± 0.29% 0.999 ± 0.018% 0.99 ± 0.29%
0.20 FS 1524.9 ± 0.14% 1998.8 ± 0.0059% 59363.5 ± 6.5% 0.991 ± 0.3% 1.0 ± 0.0013% 0.991 ± 0.3%
0.20 Rand 1602.1 ± 0.24% 3372.3 ± 1.2% 171058.6 ± 6.9% 0.97 ± 0.64% 1.0 ± 0.0033% 0.97 ± 0.64%
0.20 SRPT 1525.8 ± 0.13% 2276.5 ± 0.57% 71962.2 ± 7.8% 0.991 ± 0.26% 1.0 ± 0.0013% 0.991 ± 0.26%
0.30 FF 2274.3 ± 2.6% 21086.7 ± 9.0% 116200.4 ± 8.8% 0.987 ± 0.06% 0.999 ± 0.012% 0.987 ± 0.06%
0.30 FS 1538.4 ± 0.061% 2149.4 ± 0.9% 85571.7 ± 5.5% 0.99 ± 0.066% 1.0 ± 0.00071% 0.99 ± 0.066%
0.30 Rand 1707.2 ± 0.29% 4544.2 ± 1.7% 249283.9 ± 9.6% 0.933 ± 0.58% 1.0 ± 0.003% 0.933 ± 0.58%
0.30 SRPT 1540.7 ± 0.023% 2620.5 ± 0.31% 119981.5 ± 12.0% 0.989 ± 0.092% 1.0 ± 0.00056% 0.989 ± 0.092%
0.40 FF 3203.2 ± 3.6% 39373.6 ± 7.1% 153040.1 ± 4.9% 0.964 ± 0.31% 0.994 ± 0.11% 0.964 ± 0.31%
0.40 FS 1557.2 ± 0.17% 2559.2 ± 0.57% 129399.8 ± 9.6% 0.968 ± 0.36% 1.0 ± 0.00083% 0.968 ± 0.36%
0.40 Rand 1889.3 ± 0.56% 6600.9 ± 3.0% 259317.4 ± 3.9% 0.87 ± 0.65% 0.999 ± 0.012% 0.87 ± 0.65%
0.40 SRPT 1564.1 ± 0.13% 2830.9 ± 0.38% 190613.2 ± 10.0% 0.97 ± 0.25% 1.0 ± 0.00072% 0.97 ± 0.25%
0.50 FF 4495.2 ± 3.4% 60948.4 ± 4.3% 255736.7 ± 14.0% 0.939 ± 0.64% 0.989 ± 0.18% 0.939 ± 0.64%
0.50 FS 1584.6 ± 0.13% 2963.7 ± 0.38% 196875.6 ± 7.7% 0.947 ± 0.84% 1.0 ± 0.0039% 0.947 ± 0.84%
0.50 Rand 2324.1 ± 3.3% 12139.1 ± 11.0% 353111.3 ± 13.0% 0.797 ± 0.74% 0.996 ± 0.027% 0.797 ± 0.74%
0.50 SRPT 1585.3 ± 0.082% 2962.4 ± 0.21% 254463.8 ± 8.2% 0.942 ± 0.56% 1.0 ± 0.0022% 0.942 ± 0.56%
0.60 FF 4837.1 ± 5.1% 68328.0 ± 3.3% 387525.7 ± 2.3% 0.924 ± 0.23% 0.978 ± 0.2% 0.924 ± 0.23%
0.60 FS 1639.9 ± 0.14% 3835.1 ± 0.83% 268943.4 ± 3.6% 0.941 ± 0.14% 1.0 ± 0.0018% 0.941 ± 0.14%
0.60 Rand 3236.8 ± 0.65% 22198.9 ± 0.66% 439374.7 ± 1.1% 0.744 ± 0.42% 0.993 ± 0.015% 0.744 ± 0.42%
0.60 SRPT 1628.1 ± 0.15% 3565.0 ± 0.8% 308435.8 ± 4.8% 0.922 ± 0.26% 1.0 ± 0.0026% 0.922 ± 0.26%
0.70 FF 3173.6 ± 0.7% 22472.4 ± 2.9% 327840.2 ± 2.7% 0.905 ± 0.31% 0.992 ± 0.044% 0.905 ± 0.31%
0.70 FS 1686.9 ± 0.23% 4915.5 ± 1.0% 254484.7 ± 1.8% 0.921 ± 0.44% 0.999 ± 0.0024% 0.921 ± 0.44%
0.70 Rand 3760.3 ± 0.94% 31788.5 ± 2.2% 365861.9 ± 2.2% 0.675 ± 0.25% 0.989 ± 0.027% 0.675 ± 0.25%
0.70 SRPT 1715.2 ± 0.24% 4404.1 ± 1.2% 264969.5 ± 5.5% 0.903 ± 0.33% 1.0 ± 0.004% 0.903 ± 0.33%
0.79 FF 4144.2 ± 2.0% 30541.3 ± 4.0% 301349.2 ± 2.6% 0.902 ± 0.18% 0.993 ± 0.025% 0.902 ± 0.18%
0.79 FS 1743.5 ± 0.24% 6572.0 ± 1.6% 259058.4 ± 2.9% 0.905 ± 0.18% 0.999 ± 0.0026% 0.905 ± 0.18%
0.79 Rand 4740.4 ± 0.98% 46094.7 ± 2.0% 344636.1 ± 0.65% 0.6 ± 0.65% 0.98 ± 0.032% 0.6 ± 0.65%
0.79 SRPT 1889.5 ± 0.74% 6169.9 ± 3.9% 292500.7 ± 4.5% 0.868 ± 0.038% 0.999 ± 0.0052% 0.868 ± 0.038%
0.89 FF 6856.2 ± 0.89% 54158.7 ± 2.0% 272757.7 ± 1.4% 0.853 ± 0.25% 0.976 ± 0.14% 0.853 ± 0.25%
0.89 FS 1940.3 ± 0.16% 10891.2 ± 0.75% 253250.9 ± 1.6% 0.844 ± 0.37% 0.998 ± 0.0061% 0.844 ± 0.37%
0.89 Rand 5320.7 ± 1.0% 55646.5 ± 1.6% 300652.9 ± 0.86% 0.541 ± 0.4% 0.972 ± 0.051% 0.541 ± 0.4%
0.89 SRPT 2234.9 ± 1.5% 10623.8 ± 4.9% 267587.5 ± 2.8% 0.719 ± 0.62% 0.996 ± 0.025% 0.719 ± 0.62%

Table F.7
Scheduler performance summary with 95% confidence intervals for the Social Media Cloud benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1536.7 ± 0.074% 2766.2 ± 0.3% 7153.9 ± 2.0% 1.0 ± 0.0064% 1.0 ± 0.00041% 1.0 ± 0.0064%
0.10 FS 1513.9 ± 0.062% 2053.4 ± 0.84% 6892.3 ± 3.1% 1.0 ± 0.0062% 1.0 ± 0.00024% 1.0 ± 0.0062%
0.10 Rand 1536.5 ± 0.054% 2762.4 ± 0.35% 13551.4 ± 11.0% 1.0 ± 0.0079% 1.0 ± 0.00056% 1.0 ± 0.0079%
0.10 SRPT 1515.2 ± 0.062% 2189.1 ± 0.38% 6820.5 ± 3.6% 1.0 ± 0.0063% 1.0 ± 0.00032% 1.0 ± 0.0063%
0.20 FF 1591.6 ± 0.11% 3410.3 ± 1.2% 12773.2 ± 12.0% 1.0 ± 0.0045% 1.0 ± 0.00091% 1.0 ± 0.0045%
0.20 FS 1523.7 ± 0.033% 2560.6 ± 0.61% 11206.1 ± 11.0% 1.0 ± 0.0056% 1.0 ± 0.00047% 1.0 ± 0.0056%
0.20 Rand 1581.4 ± 0.097% 3237.3 ± 1.2% 29019.5 ± 19.0% 1.0 ± 0.0099% 1.0 ± 0.0015% 1.0 ± 0.0099%
0.20 SRPT 1532.6 ± 0.054% 2720.7 ± 0.49% 11620.8 ± 11.0% 1.0 ± 0.0052% 1.0 ± 0.0005% 1.0 ± 0.0052%
0.30 FF 1707.8 ± 0.42% 4849.3 ± 2.3% 24735.7 ± 10.0% 1.0 ± 0.011% 1.0 ± 0.0032% 1.0 ± 0.011%
0.30 FS 1539.5 ± 0.056% 2859.5 ± 0.27% 15729.0 ± 8.7% 1.0 ± 0.0089% 1.0 ± 0.0006% 1.0 ± 0.0089%
0.30 Rand 1660.7 ± 0.13% 4184.2 ± 1.1% 47524.1 ± 19.0% 0.999 ± 0.025% 1.0 ± 0.0033% 0.999 ± 0.025%
0.30 SRPT 1565.8 ± 0.095% 2972.7 ± 0.14% 18417.1 ± 12.0% 1.0 ± 0.0073% 1.0 ± 0.00098% 1.0 ± 0.0073%
0.40 FF 1924.6 ± 0.8% 7639.7 ± 3.0% 39600.9 ± 9.7% 0.998 ± 0.021% 0.999 ± 0.0098% 0.998 ± 0.021%
0.40 FS 1563.9 ± 0.11% 3266.6 ± 1.1% 17450.8 ± 3.5% 0.999 ± 0.019% 1.0 ± 0.0023% 0.999 ± 0.019%
0.40 Rand 1808.3 ± 0.31% 5802.5 ± 0.92% 92643.3 ± 23.0% 0.996 ± 0.042% 0.999 ± 0.0058% 0.996 ± 0.042%
0.40 SRPT 1622.6 ± 0.19% 3731.7 ± 0.93% 23635.4 ± 7.2% 0.999 ± 0.01% 1.0 ± 0.0038% 0.999 ± 0.01%
0.50 FF 2646.7 ± 2.9% 20076.0 ± 7.9% 117682.7 ± 9.7% 0.996 ± 0.066% 0.997 ± 0.052% 0.996 ± 0.066%
0.50 FS 1624.4 ± 0.21% 4201.7 ± 1.4% 31567.8 ± 3.4% 0.997 ± 0.058% 1.0 ± 0.0047% 0.997 ± 0.058%
0.50 Rand 2218.8 ± 0.77% 10570.1 ± 3.4% 207351.1 ± 11.0% 0.987 ± 0.15% 0.998 ± 0.019% 0.987 ± 0.15%
0.50 SRPT 1737.3 ± 0.53% 4829.9 ± 1.8% 49492.8 ± 6.5% 0.997 ± 0.045% 0.999 ± 0.013% 0.997 ± 0.045%
0.60 FF 4495.9 ± 4.4% 55356.7 ± 7.6% 237610.0 ± 7.3% 0.988 ± 0.16% 0.989 ± 0.053% 0.988 ± 0.16%
0.60 FS 1755.8 ± 0.41% 6110.1 ± 1.8% 47599.2 ± 5.6% 0.992 ± 0.15% 0.999 ± 0.024% 0.992 ± 0.15%
0.60 Rand 3262.0 ± 1.6% 24348.0 ± 2.2% 269243.0 ± 2.0% 0.951 ± 0.31% 0.991 ± 0.049% 0.951 ± 0.31%
0.60 SRPT 2034.5 ± 2.0% 8447.1 ± 8.2% 193698.4 ± 8.9% 0.992 ± 0.12% 0.998 ± 0.071% 0.992 ± 0.12%
0.69 FF 8175.5 ± 2.7% 121246.2 ± 3.5% 468538.0 ± 5.4% 0.964 ± 0.22% 0.934 ± 0.82% 0.964 ± 0.22%
0.69 FS 2384.6 ± 1.7% 14253.5 ± 3.9% 138806.7 ± 6.4% 0.986 ± 0.14% 0.998 ± 0.026% 0.986 ± 0.14%
0.69 Rand 6394.4 ± 1.4% 72096.8 ± 3.3% 507914.9 ± 2.5% 0.901 ± 0.29% 0.98 ± 0.049% 0.901 ± 0.29%
0.69 SRPT 4937.4 ± 9.9% 64798.0 ± 18.0% 500125.6 ± 2.8% 0.939 ± 0.81% 0.981 ± 0.55% 0.939 ± 0.81%
0.80 FF 7182.3 ± 1.7% 77566.2 ± 3.8% 443785.0 ± 2.9% 0.938 ± 0.13% 0.951 ± 0.19% 0.938 ± 0.13%
0.80 FS 4026.1 ± 2.1% 32187.7 ± 2.7% 243834.5 ± 3.5% 0.947 ± 0.19% 0.992 ± 0.034% 0.947 ± 0.19%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

25

Table F.7 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.80 Rand 8489.0 ± 2.2% 89488.4 ± 1.5% 446095.0 ± 1.4% 0.846 ± 0.23% 0.966 ± 0.06% 0.846 ± 0.23%
0.80 SRPT 11412.4 ± 4.1% 154590.0 ± 3.9% 443708.3 ± 1.7% 0.748 ± 0.42% 0.854 ± 0.88% 0.748 ± 0.42%
0.90 FF 8731.6 ± 1.5% 76236.3 ± 1.8% 380339.7 ± 2.7% 0.946 ± 0.13% 0.97 ± 0.2% 0.946 ± 0.13%
0.90 FS 4809.9 ± 1.4% 40007.0 ± 2.0% 228118.7 ± 2.1% 0.931 ± 0.14% 0.989 ± 0.038% 0.931 ± 0.14%
0.90 Rand 10800.9 ± 0.96% 110549.1 ± 0.69% 407971.9 ± 1.1% 0.788 ± 0.41% 0.949 ± 0.15% 0.788 ± 0.41%
0.90 SRPT 18401.3 ± 2.4% 204251.6 ± 2.0% 416090.4 ± 0.56% 0.61 ± 0.78% 0.751 ± 0.98% 0.61 ± 0.78%

Appendix F.3.2. Skewed Nodes Distribution Benchmark

Table F.8
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_uniform and rack_sensitivity_uniform benchmarks.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1554.5 ± 0.15% 2977.0 ± 0.79% 38288.3 ± 6.7% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11%
0.1 FS 1518.8 ± 0.12% 1997.5 ± 0.0039% 39693.2 ± 4.6% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11%
0.1 Rand 1544.1 ± 0.11% 2750.1 ± 0.34% 60170.8 ± 9.4% 0.991 ± 0.15% 1.0 ± 0.024% 0.991 ± 0.15%
0.1 SRPT 1518.3 ± 0.12% 1998.0 ± 0.0039% 41190.0 ± 5.2% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11%
0.2 FF 1620.8 ± 0.34% 4398.3 ± 4.0% 43732.0 ± 4.4% 0.98 ± 0.3% 0.999 ± 0.054% 0.98 ± 0.3%
0.2 FS 1524.3 ± 0.1% 1999.6 ± 0.016% 42196.8 ± 4.5% 0.982 ± 0.32% 0.999 ± 0.055% 0.982 ± 0.32%
0.2 Rand 1579.3 ± 0.18% 3049.8 ± 1.1% 79304.0 ± 9.3% 0.974 ± 0.25% 0.999 ± 0.057% 0.974 ± 0.25%
0.2 SRPT 1524.9 ± 0.087% 2234.7 ± 1.0% 44396.8 ± 4.8% 0.983 ± 0.28% 0.999 ± 0.055% 0.983 ± 0.28%
0.3 FF 1744.2 ± 0.55% 6564.0 ± 2.3% 80217.5 ± 5.9% 0.988 ± 0.18% 0.999 ± 0.069% 0.988 ± 0.18%
0.3 FS 1532.9 ± 0.1% 2255.9 ± 0.46% 71447.0 ± 7.3% 0.989 ± 0.16% 0.999 ± 0.064% 0.989 ± 0.16%
0.3 Rand 1643.6 ± 0.22% 3856.5 ± 0.36% 180283.0 ± 6.6% 0.973 ± 0.27% 0.999 ± 0.066% 0.973 ± 0.27%
0.3 SRPT 1537.1 ± 0.071% 2612.7 ± 0.59% 84911.1 ± 7.0% 0.99 ± 0.15% 0.999 ± 0.064% 0.99 ± 0.15%
0.4 FF 1917.3 ± 0.82% 9481.8 ± 2.8% 89676.1 ± 6.4% 0.981 ± 0.29% 0.998 ± 0.057% 0.981 ± 0.29%
0.4 FS 1544.5 ± 0.079% 2602.7 ± 0.7% 85476.6 ± 5.7% 0.98 ± 0.3% 0.999 ± 0.049% 0.98 ± 0.3%
0.4 Rand 1776.3 ± 0.22% 5093.5 ± 0.91% 239854.0 ± 7.3% 0.946 ± 0.38% 0.999 ± 0.05% 0.946 ± 0.38%
0.4 SRPT 1554.7 ± 0.058% 2819.0 ± 0.48% 109885.3 ± 8.2% 0.98 ± 0.25% 0.999 ± 0.05% 0.98 ± 0.25%
0.5 FF 2254.6 ± 0.82% 14792.9 ± 1.9% 100669.6 ± 4.8% 0.978 ± 0.24% 0.998 ± 0.046% 0.978 ± 0.24%
0.5 FS 1563.8 ± 0.16% 2927.5 ± 0.58% 101281.5 ± 7.7% 0.981 ± 0.23% 0.999 ± 0.042% 0.981 ± 0.23%
0.5 Rand 2259.1 ± 1.4% 9368.2 ± 3.4% 403534.7 ± 12.0% 0.883 ± 0.74% 0.997 ± 0.041% 0.883 ± 0.74%
0.5 SRPT 1580.4 ± 0.069% 2948.5 ± 0.13% 148065.0 ± 4.9% 0.977 ± 0.25% 0.999 ± 0.04% 0.977 ± 0.25%
0.6 FF 2696.5 ± 1.4% 19574.0 ± 3.3% 242541.4 ± 13.0% 0.971 ± 0.36% 0.997 ± 0.051% 0.971 ± 0.36%
0.6 FS 1595.6 ± 0.15% 3652.1 ± 0.98% 161242.9 ± 14.0% 0.973 ± 0.24% 0.999 ± 0.051% 0.973 ± 0.24%
0.6 Rand 3309.7 ± 1.1% 17326.4 ± 1.6% 401082.8 ± 4.4% 0.82 ± 0.87% 0.993 ± 0.066% 0.82 ± 0.87%
0.6 SRPT 1620.9 ± 0.077% 3373.6 ± 0.78% 294496.9 ± 6.8% 0.962 ± 0.35% 0.999 ± 0.051% 0.962 ± 0.35%
0.7 FF 3436.8 ± 1.0% 27933.1 ± 2.3% 297748.1 ± 3.1% 0.935 ± 0.51% 0.994 ± 0.077% 0.935 ± 0.51%
0.7 FS 1660.9 ± 0.21% 4953.9 ± 1.2% 255268.4 ± 4.4% 0.942 ± 0.36% 0.999 ± 0.078% 0.942 ± 0.36%
0.7 Rand 4393.5 ± 1.1% 24778.6 ± 1.8% 354839.4 ± 2.2% 0.738 ± 1.1% 0.986 ± 0.082% 0.738 ± 1.1%
0.7 SRPT 1668.4 ± 0.15% 3827.3 ± 0.71% 320957.0 ± 4.4% 0.914 ± 0.47% 0.998 ± 0.077% 0.914 ± 0.47%
0.8 FF 4361.4 ± 2.1% 34817.0 ± 2.7% 287276.9 ± 3.8% 0.907 ± 0.59% 0.99 ± 0.15% 0.907 ± 0.59%
0.8 FS 1758.1 ± 0.5% 7135.0 ± 1.9% 283104.7 ± 1.3% 0.899 ± 0.8% 0.998 ± 0.1% 0.899 ± 0.8%
0.8 Rand 5762.2 ± 1.5% 32239.6 ± 1.4% 329015.7 ± 2.0% 0.693 ± 1.1% 0.977 ± 0.15% 0.693 ± 1.1%
0.8 SRPT 1758.1 ± 0.41% 4842.1 ± 2.4% 309165.9 ± 3.6% 0.858 ± 0.63% 0.998 ± 0.11% 0.858 ± 0.63%
0.9 FF 5520.3 ± 1.7% 43104.1 ± 2.4% 278164.1 ± 2.2% 0.846 ± 0.61% 0.983 ± 0.061% 0.846 ± 0.61%
0.9 FS 1890.9 ± 0.47% 9974.2 ± 1.9% 287700.1 ± 3.1% 0.823 ± 0.74% 0.998 ± 0.038% 0.823 ± 0.74%
0.9 Rand 7095.9 ± 1.3% 39006.4 ± 1.4% 306075.6 ± 1.6% 0.627 ± 0.93% 0.968 ± 0.041% 0.627 ± 0.93%
0.9 SRPT 1890.8 ± 0.89% 6584.6 ± 4.1% 287161.6 ± 2.9% 0.771 ± 0.54% 0.998 ± 0.036% 0.771 ± 0.54%

Table F.9
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.05 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1676.3 ± 1.3% 4965.6 ± 5.9% 115613.1 ± 12.0% 0.994 ± 0.17% 0.999 ± 0.042% 0.994 ± 0.17%
0.10 FS 1545.9 ± 0.21% 2137.2 ± 1.5% 111455.6 ± 11.0% 0.993 ± 0.15% 0.999 ± 0.04% 0.993 ± 0.15%
0.10 Rand 1586.2 ± 0.22% 3071.9 ± 1.5% 204371.5 ± 6.6% 0.986 ± 0.18% 0.999 ± 0.04% 0.986 ± 0.18%
0.10 SRPT 1529.5 ± 0.14% 1998.7 ± 0.0078% 144042.5 ± 11.0% 0.993 ± 0.16% 0.999 ± 0.041% 0.993 ± 0.16%
0.20 FF 1769.9 ± 2.2% 4943.9 ± 12.0% 281567.2 ± 4.5% 0.922 ± 0.66% 0.997 ± 0.086% 0.922 ± 0.66%
0.20 FS 1653.3 ± 0.56% 3724.2 ± 11.0% 264636.5 ± 5.0% 0.896 ± 0.51% 0.998 ± 0.092% 0.896 ± 0.51%
0.20 Rand 1691.1 ± 0.83% 4168.9 ± 5.4% 185373.4 ± 3.9% 0.901 ± 0.24% 0.998 ± 0.091% 0.901 ± 0.24%
0.20 SRPT 1547.1 ± 0.16% 2306.6 ± 1.5% 165611.6 ± 5.4% 0.933 ± 0.29% 0.999 ± 0.093% 0.933 ± 0.29%
0.30 FF 1697.5 ± 0.24% 4419.9 ± 2.0% 289568.9 ± 7.6% 0.949 ± 0.49% 0.999 ± 0.037% 0.949 ± 0.49%
0.30 FS 1612.6 ± 0.46% 2501.7 ± 1.3% 297525.1 ± 2.3% 0.927 ± 0.69% 0.999 ± 0.035% 0.927 ± 0.69%
0.30 Rand 1686.6 ± 0.47% 3854.9 ± 0.88% 210069.0 ± 5.6% 0.911 ± 0.71% 0.999 ± 0.036% 0.911 ± 0.71%
0.30 SRPT 1551.1 ± 0.14% 2604.4 ± 0.24% 228406.2 ± 12.0% 0.943 ± 0.35% 0.999 ± 0.038% 0.943 ± 0.35%
0.40 FF 1789.6 ± 0.58% 6066.7 ± 3.7% 257805.2 ± 5.8% 0.955 ± 0.24% 0.998 ± 0.096% 0.955 ± 0.24%
0.40 FS 1584.6 ± 0.29% 2728.7 ± 0.95% 201816.6 ± 2.3% 0.938 ± 0.16% 0.999 ± 0.088% 0.938 ± 0.16%
0.40 Rand 1783.5 ± 0.32% 4928.8 ± 0.76% 275464.8 ± 7.1% 0.905 ± 0.21% 0.998 ± 0.092% 0.905 ± 0.21%
0.40 SRPT 1561.7 ± 0.11% 2830.3 ± 0.32% 266258.6 ± 11.0% 0.945 ± 0.21% 0.999 ± 0.09% 0.945 ± 0.21%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

26

Table F.9 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.50 FF 2040.0 ± 1.8% 9688.9 ± 8.6% 287779.7 ± 19.0% 0.953 ± 0.52% 0.997 ± 0.15% 0.953 ± 0.52%
0.50 FS 1589.9 ± 0.25% 2981.8 ± 0.49% 177708.6 ± 6.5% 0.95 ± 0.48% 0.998 ± 0.13% 0.95 ± 0.48%
0.50 Rand 2120.0 ± 1.7% 7781.7 ± 3.5% 314269.3 ± 12.0% 0.866 ± 0.72% 0.996 ± 0.14% 0.866 ± 0.72%
0.50 SRPT 1589.3 ± 0.16% 2963.8 ± 0.28% 306084.3 ± 13.0% 0.94 ± 0.52% 0.998 ± 0.14% 0.94 ± 0.52%
0.60 FF 2468.3 ± 1.2% 14704.2 ± 3.3% 311801.5 ± 8.9% 0.956 ± 0.3% 0.998 ± 0.042% 0.956 ± 0.3%
0.60 FS 1620.5 ± 0.097% 3756.5 ± 0.77% 197184.5 ± 4.0% 0.954 ± 0.23% 0.999 ± 0.038% 0.954 ± 0.23%
0.60 Rand 3082.2 ± 1.8% 15591.2 ± 3.3% 430919.2 ± 2.4% 0.815 ± 0.9% 0.995 ± 0.056% 0.815 ± 0.9%
0.60 SRPT 1633.7 ± 0.19% 3493.7 ± 1.2% 337388.2 ± 4.1% 0.94 ± 0.21% 0.999 ± 0.038% 0.94 ± 0.21%
0.70 FF 3267.8 ± 2.8% 23735.1 ± 7.2% 301004.1 ± 4.5% 0.939 ± 0.27% 0.995 ± 0.062% 0.939 ± 0.27%
0.70 FS 1659.3 ± 0.14% 4784.4 ± 0.97% 251399.3 ± 4.4% 0.937 ± 0.32% 0.999 ± 0.052% 0.937 ± 0.32%
0.70 Rand 4312.8 ± 1.8% 23854.6 ± 2.8% 362330.2 ± 2.8% 0.751 ± 1.2% 0.988 ± 0.088% 0.751 ± 1.2%
0.70 SRPT 1695.4 ± 0.39% 4072.7 ± 2.1% 320406.5 ± 3.1% 0.918 ± 0.35% 0.999 ± 0.054% 0.918 ± 0.35%
0.79 FF 4478.6 ± 1.1% 36615.6 ± 3.5% 307393.6 ± 1.8% 0.905 ± 0.4% 0.989 ± 0.085% 0.905 ± 0.4%
0.79 FS 1763.6 ± 0.15% 7054.1 ± 1.4% 269808.6 ± 5.0% 0.896 ± 0.29% 0.998 ± 0.067% 0.896 ± 0.29%
0.79 Rand 5939.0 ± 1.5% 33275.3 ± 2.1% 332125.7 ± 1.8% 0.679 ± 1.2% 0.977 ± 0.087% 0.679 ± 1.2%
0.79 SRPT 1792.6 ± 0.76% 5219.3 ± 3.7% 303203.6 ± 3.1% 0.842 ± 0.32% 0.998 ± 0.071% 0.842 ± 0.32%
0.90 FF 6062.3 ± 2.5% 48771.8 ± 3.1% 278389.8 ± 2.2% 0.852 ± 0.38% 0.979 ± 0.075% 0.852 ± 0.38%
0.90 FS 1924.4 ± 0.59% 10517.0 ± 2.1% 284887.0 ± 4.4% 0.819 ± 0.73% 0.997 ± 0.1% 0.819 ± 0.73%
0.90 Rand 7280.9 ± 2.0% 40622.7 ± 2.7% 304640.3 ± 2.2% 0.621 ± 0.53% 0.965 ± 0.071% 0.621 ± 0.53%
0.90 SRPT 1905.5 ± 0.72% 6722.4 ± 2.8% 288426.4 ± 2.8% 0.751 ± 0.27% 0.997 ± 0.095% 0.751 ± 0.27%

Table F.10
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.1 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1589.7 ± 0.2% 3580.9 ± 0.61% 72990.8 ± 4.8% 0.995 ± 0.13% 0.999 ± 0.044% 0.995 ± 0.13%
0.10 FS 1526.7 ± 0.14% 1998.8 ± 0.016% 70198.0 ± 4.2% 0.995 ± 0.14% 0.999 ± 0.045% 0.995 ± 0.14%
0.10 Rand 1554.9 ± 0.18% 2849.2 ± 0.33% 91598.0 ± 5.9% 0.995 ± 0.14% 0.999 ± 0.045% 0.995 ± 0.14%
0.10 SRPT 1520.9 ± 0.11% 1998.2 ± 0.0098% 81555.4 ± 5.0% 0.995 ± 0.13% 0.999 ± 0.045% 0.995 ± 0.13%
0.20 FF 1904.3 ± 1.3% 11165.2 ± 7.4% 170783.1 ± 17.0% 0.966 ± 0.67% 0.998 ± 0.044% 0.966 ± 0.67%
0.20 FS 1575.6 ± 0.12% 2708.5 ± 4.0% 172624.9 ± 5.3% 0.957 ± 0.77% 0.999 ± 0.045% 0.957 ± 0.77%
0.20 Rand 1641.1 ± 0.21% 3799.1 ± 0.95% 258243.8 ± 8.6% 0.901 ± 0.8% 0.999 ± 0.047% 0.901 ± 0.8%
0.20 SRPT 1542.8 ± 0.11% 2384.0 ± 1.5% 237546.1 ± 11.0% 0.951 ± 0.71% 0.999 ± 0.046% 0.951 ± 0.71%
0.30 FF 2110.4 ± 5.3% 13637.6 ± 22.0% 364074.5 ± 7.9% 0.922 ± 0.62% 0.997 ± 0.057% 0.922 ± 0.62%
0.30 FS 1695.1 ± 0.62% 6015.8 ± 11.0% 348982.1 ± 3.3% 0.908 ± 0.47% 0.999 ± 0.031% 0.908 ± 0.47%
0.30 Rand 1734.6 ± 1.1% 5030.5 ± 5.8% 329509.4 ± 5.2% 0.871 ± 0.9% 0.999 ± 0.036% 0.871 ± 0.9%
0.30 SRPT 1551.9 ± 0.15% 2671.0 ± 0.84% 347195.5 ± 7.9% 0.911 ± 0.58% 0.999 ± 0.031% 0.911 ± 0.58%
0.40 FF 1757.4 ± 0.3% 5007.6 ± 1.5% 232866.4 ± 6.1% 0.933 ± 0.32% 0.998 ± 0.086% 0.933 ± 0.32%
0.40 FS 1640.0 ± 0.54% 2879.0 ± 1.3% 290705.3 ± 4.7% 0.903 ± 0.38% 0.998 ± 0.086% 0.903 ± 0.38%
0.40 Rand 1738.4 ± 0.63% 4569.2 ± 1.4% 253293.4 ± 7.2% 0.869 ± 0.54% 0.998 ± 0.093% 0.869 ± 0.54%
0.40 SRPT 1564.4 ± 0.083% 2821.2 ± 0.2% 236239.4 ± 6.3% 0.909 ± 0.35% 0.999 ± 0.087% 0.909 ± 0.35%
0.50 FF 1890.3 ± 0.82% 6780.9 ± 4.0% 309771.9 ± 13.0% 0.936 ± 0.71% 0.999 ± 0.036% 0.936 ± 0.71%
0.50 FS 1624.6 ± 0.76% 3202.1 ± 3.5% 263314.3 ± 5.5% 0.924 ± 0.54% 0.999 ± 0.03% 0.924 ± 0.54%
0.50 Rand 1921.4 ± 0.49% 6121.4 ± 1.8% 344062.4 ± 11.0% 0.865 ± 0.87% 0.998 ± 0.036% 0.865 ± 0.87%
0.50 SRPT 1590.1 ± 0.1% 3024.8 ± 0.66% 345835.9 ± 12.0% 0.912 ± 0.45% 0.999 ± 0.031% 0.912 ± 0.45%
0.60 FF 2228.0 ± 1.3% 11127.2 ± 4.4% 325509.6 ± 4.4% 0.941 ± 0.43% 0.998 ± 0.063% 0.941 ± 0.43%
0.60 FS 1619.8 ± 0.32% 3642.9 ± 1.6% 278038.2 ± 4.2% 0.935 ± 0.29% 0.999 ± 0.041% 0.935 ± 0.29%
0.60 Rand 2611.0 ± 3.2% 11568.8 ± 5.7% 414642.6 ± 4.4% 0.839 ± 0.76% 0.996 ± 0.064% 0.839 ± 0.76%
0.60 SRPT 1634.8 ± 0.17% 3676.2 ± 1.4% 310853.9 ± 6.2% 0.915 ± 0.3% 0.999 ± 0.044% 0.915 ± 0.3%
0.70 FF 2875.4 ± 1.1% 18523.2 ± 3.0% 278140.2 ± 6.7% 0.932 ± 0.48% 0.996 ± 0.055% 0.932 ± 0.48%
0.70 FS 1653.5 ± 0.21% 4697.6 ± 0.6% 230876.0 ± 2.8% 0.935 ± 0.28% 0.999 ± 0.042% 0.935 ± 0.28%
0.70 Rand 4114.6 ± 1.3% 22245.1 ± 2.0% 368369.0 ± 2.3% 0.784 ± 0.92% 0.99 ± 0.13% 0.784 ± 0.92%
0.70 SRPT 1719.6 ± 0.24% 4455.5 ± 1.8% 254458.0 ± 2.9% 0.904 ± 0.36% 0.999 ± 0.044% 0.904 ± 0.36%
0.80 FF 4161.5 ± 3.0% 32209.9 ± 5.0% 290395.7 ± 3.7% 0.908 ± 0.36% 0.989 ± 0.055% 0.908 ± 0.36%
0.80 FS 1754.4 ± 0.31% 7051.4 ± 1.7% 270181.8 ± 3.0% 0.9 ± 0.21% 0.998 ± 0.081% 0.9 ± 0.21%
0.80 Rand 5293.0 ± 2.7% 29396.4 ± 3.3% 306156.3 ± 1.7% 0.719 ± 1.1% 0.978 ± 0.095% 0.719 ± 1.1%
0.80 SRPT 1862.6 ± 0.57% 6197.4 ± 2.1% 296322.5 ± 3.7% 0.858 ± 0.27% 0.997 ± 0.088% 0.858 ± 0.27%
0.89 FF 6157.7 ± 1.4% 49317.2 ± 1.9% 281000.4 ± 3.5% 0.862 ± 0.28% 0.979 ± 0.12% 0.862 ± 0.28%
0.89 FS 1936.4 ± 0.45% 11082.2 ± 2.2% 272673.6 ± 2.7% 0.831 ± 0.44% 0.997 ± 0.071% 0.831 ± 0.44%
0.89 Rand 7365.4 ± 0.86% 41371.3 ± 1.0% 297468.5 ± 1.7% 0.639 ± 0.88% 0.964 ± 0.12% 0.639 ± 0.88%
0.89 SRPT 2185.8 ± 3.7% 11390.2 ± 12.0% 265498.8 ± 1.9% 0.726 ± 0.49% 0.996 ± 0.086% 0.726 ± 0.49%

Table F.11
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.2 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1555.2 ± 0.21% 2960.3 ± 0.45% 63958.8 ± 7.2% 0.995 ± 0.078% 1.0 ± 0.026% 0.995 ± 0.078%
0.10 FS 1518.9 ± 0.18% 1997.5 ± 0.0059% 53307.4 ± 6.3% 0.995 ± 0.11% 1.0 ± 0.025% 0.995 ± 0.11%
0.10 Rand 1544.8 ± 0.22% 2746.4 ± 0.76% 80003.7 ± 8.1% 0.993 ± 0.11% 1.0 ± 0.025% 0.993 ± 0.11%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

27

Table F.11 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 SRPT 1515.5 ± 0.18% 1997.1 ± 0.0039% 55035.6 ± 6.0% 0.996 ± 0.068% 1.0 ± 0.025% 0.996 ± 0.068%
0.20 FF 1653.6 ± 0.43% 4948.5 ± 3.1% 100796.4 ± 7.0% 0.98 ± 0.39% 0.999 ± 0.063% 0.98 ± 0.39%
0.20 FS 1538.1 ± 0.21% 2078.9 ± 1.6% 86478.5 ± 8.6% 0.978 ± 0.44% 0.999 ± 0.059% 0.978 ± 0.44%
0.20 Rand 1604.6 ± 0.33% 3121.7 ± 1.8% 210697.6 ± 5.6% 0.937 ± 0.7% 0.999 ± 0.06% 0.937 ± 0.7%
0.20 SRPT 1529.4 ± 0.1% 2199.9 ± 0.86% 107139.2 ± 10.0% 0.979 ± 0.48% 0.999 ± 0.058% 0.979 ± 0.48%
0.30 FF 1879.0 ± 1.4% 9864.3 ± 5.0% 219455.7 ± 9.2% 0.968 ± 0.39% 0.998 ± 0.059% 0.968 ± 0.39%
0.30 FS 1587.8 ± 0.47% 2934.7 ± 2.7% 165814.7 ± 9.3% 0.965 ± 0.38% 0.999 ± 0.06% 0.965 ± 0.38%
0.30 Rand 1688.9 ± 0.27% 4259.1 ± 1.6% 388493.8 ± 6.6% 0.811 ± 1.2% 0.998 ± 0.063% 0.811 ± 1.2%
0.30 SRPT 1555.3 ± 0.14% 2580.5 ± 0.5% 318733.6 ± 8.1% 0.947 ± 0.66% 0.999 ± 0.061% 0.947 ± 0.66%
0.40 FF 2047.8 ± 1.9% 12996.0 ± 8.4% 253351.7 ± 3.1% 0.901 ± 0.99% 0.997 ± 0.077% 0.901 ± 0.99%
0.40 FS 1656.3 ± 0.3% 4469.8 ± 0.9% 237826.1 ± 6.6% 0.901 ± 0.88% 0.999 ± 0.058% 0.901 ± 0.88%
0.40 Rand 1750.5 ± 0.46% 5216.2 ± 1.9% 272425.1 ± 5.7% 0.774 ± 0.66% 0.997 ± 0.059% 0.774 ± 0.66%
0.40 SRPT 1565.6 ± 0.083% 2783.8 ± 0.28% 235162.6 ± 6.6% 0.88 ± 0.78% 0.999 ± 0.058% 0.88 ± 0.78%
0.50 FF 1893.6 ± 1.5% 6355.4 ± 4.8% 440695.9 ± 8.9% 0.887 ± 0.41% 0.998 ± 0.073% 0.887 ± 0.41%
0.50 FS 1752.4 ± 1.1% 5396.1 ± 12.0% 331678.2 ± 8.6% 0.888 ± 1.2% 0.999 ± 0.052% 0.888 ± 1.2%
0.50 Rand 1941.6 ± 1.1% 6437.1 ± 3.0% 458290.7 ± 9.6% 0.795 ± 0.49% 0.998 ± 0.056% 0.795 ± 0.49%
0.50 SRPT 1588.2 ± 0.059% 2940.4 ± 0.42% 415335.3 ± 7.7% 0.856 ± 0.52% 0.999 ± 0.056% 0.856 ± 0.52%
0.61 FF 1981.7 ± 0.88% 7326.2 ± 3.0% 372958.5 ± 3.3% 0.901 ± 0.21% 0.998 ± 0.043% 0.901 ± 0.21%
0.61 FS 1692.9 ± 0.47% 3992.5 ± 2.3% 297476.6 ± 4.3% 0.898 ± 0.22% 0.999 ± 0.037% 0.898 ± 0.22%
0.61 Rand 2203.6 ± 1.2% 8062.8 ± 2.4% 407016.8 ± 2.1% 0.801 ± 0.43% 0.997 ± 0.043% 0.801 ± 0.43%
0.61 SRPT 1638.4 ± 0.15% 3706.4 ± 0.78% 327127.1 ± 6.4% 0.863 ± 0.25% 0.999 ± 0.039% 0.863 ± 0.25%
0.70 FF 2412.4 ± 0.75% 12132.2 ± 2.0% 307320.4 ± 1.3% 0.897 ± 0.33% 0.997 ± 0.054% 0.897 ± 0.33%
0.70 FS 1671.6 ± 0.3% 4565.0 ± 1.8% 292849.3 ± 3.5% 0.906 ± 0.18% 0.999 ± 0.051% 0.906 ± 0.18%
0.70 Rand 3156.7 ± 0.98% 15098.8 ± 1.5% 369120.8 ± 2.5% 0.782 ± 0.31% 0.993 ± 0.057% 0.782 ± 0.31%
0.70 SRPT 1756.4 ± 0.26% 5157.5 ± 1.5% 326751.6 ± 4.6% 0.862 ± 0.16% 0.999 ± 0.053% 0.862 ± 0.16%
0.80 FF 3541.7 ± 0.85% 24415.3 ± 1.9% 304075.1 ± 3.6% 0.892 ± 0.17% 0.993 ± 0.075% 0.892 ± 0.17%
0.80 FS 1731.9 ± 0.23% 6430.1 ± 1.5% 234881.5 ± 4.1% 0.901 ± 0.21% 0.999 ± 0.061% 0.901 ± 0.21%
0.80 Rand 5311.2 ± 3.2% 30099.0 ± 3.7% 329220.0 ± 1.8% 0.728 ± 1.2% 0.98 ± 0.12% 0.728 ± 1.2%
0.80 SRPT 2006.7 ± 0.79% 8444.4 ± 3.0% 291953.9 ± 5.8% 0.833 ± 0.37% 0.998 ± 0.059% 0.833 ± 0.37%
0.90 FF 6282.4 ± 3.1% 51863.0 ± 4.5% 361626.4 ± 12.0% 0.876 ± 0.5% 0.982 ± 0.17% 0.876 ± 0.5%
0.90 FS 2051.1 ± 0.77% 13365.0 ± 2.2% 340927.7 ± 9.7% 0.869 ± 1.1% 0.997 ± 0.092% 0.869 ± 1.1%
0.90 Rand 9434.3 ± 8.7% 55751.7 ± 9.7% 394053.6 ± 12.0% 0.677 ± 0.61% 0.962 ± 0.14% 0.677 ± 0.61%
0.90 SRPT 2864.2 ± 4.1% 23077.6 ± 10.0% 394099.5 ± 12.0% 0.731 ± 1.4% 0.987 ± 0.23% 0.731 ± 1.4%

Table F.12
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.4 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1550.7 ± 0.14% 2940.7 ± 0.61% 41390.8 ± 6.7% 0.997 ± 0.072% 1.0 ± 0.018% 0.997 ± 0.072%
0.10 FS 1516.9 ± 0.13% 1997.5 ± 0.0078% 40765.3 ± 4.2% 0.997 ± 0.07% 1.0 ± 0.018% 0.997 ± 0.07%
0.10 Rand 1542.2 ± 0.16% 2746.4 ± 0.23% 62404.4 ± 12.0% 0.997 ± 0.082% 1.0 ± 0.017% 0.997 ± 0.082%
0.10 SRPT 1516.3 ± 0.13% 1997.9 ± 0.0098% 41765.3 ± 4.4% 0.997 ± 0.07% 1.0 ± 0.018% 0.997 ± 0.07%
0.20 FF 1626.3 ± 0.32% 4422.1 ± 2.7% 55331.8 ± 5.9% 0.98 ± 0.11% 0.999 ± 0.044% 0.98 ± 0.11%
0.20 FS 1527.7 ± 0.11% 2008.0 ± 0.33% 46606.0 ± 7.2% 0.981 ± 0.11% 0.999 ± 0.045% 0.981 ± 0.11%
0.20 Rand 1582.2 ± 0.082% 2999.5 ± 0.33% 98692.2 ± 7.2% 0.961 ± 0.22% 0.999 ± 0.044% 0.961 ± 0.22%
0.20 SRPT 1528.6 ± 0.12% 2280.1 ± 0.98% 53343.4 ± 7.0% 0.983 ± 0.22% 0.999 ± 0.045% 0.983 ± 0.22%
0.30 FF 1748.0 ± 0.97% 6884.9 ± 6.0% 70468.9 ± 9.3% 0.99 ± 0.19% 0.999 ± 0.084% 0.99 ± 0.19%
0.30 FS 1534.4 ± 0.1% 2385.5 ± 0.78% 68968.2 ± 8.7% 0.991 ± 0.2% 0.999 ± 0.084% 0.991 ± 0.2%
0.30 Rand 1662.0 ± 0.58% 3976.1 ± 1.9% 232725.1 ± 11.0% 0.972 ± 0.47% 0.999 ± 0.085% 0.972 ± 0.47%
0.30 SRPT 1538.9 ± 0.064% 2658.7 ± 0.41% 85328.2 ± 9.3% 0.991 ± 0.18% 0.999 ± 0.084% 0.991 ± 0.18%
0.40 FF 1940.0 ± 0.89% 9772.0 ± 3.0% 88904.4 ± 3.9% 0.981 ± 0.23% 0.998 ± 0.086% 0.981 ± 0.23%
0.40 FS 1552.0 ± 0.17% 2718.8 ± 0.66% 81504.4 ± 5.4% 0.983 ± 0.25% 0.999 ± 0.082% 0.983 ± 0.25%
0.40 Rand 1836.8 ± 0.6% 5756.4 ± 1.2% 274773.4 ± 3.7% 0.908 ± 0.39% 0.998 ± 0.085% 0.908 ± 0.39%
0.40 SRPT 1561.4 ± 0.11% 2844.9 ± 0.29% 111871.6 ± 4.0% 0.981 ± 0.24% 0.999 ± 0.082% 0.981 ± 0.24%
0.51 FF 2329.1 ± 1.4% 16228.3 ± 6.2% 218249.3 ± 18.0% 0.97 ± 0.62% 0.997 ± 0.1% 0.97 ± 0.62%
0.51 FS 1576.2 ± 0.19% 3237.0 ± 1.5% 120960.8 ± 6.1% 0.972 ± 0.6% 0.999 ± 0.078% 0.972 ± 0.6%
0.51 Rand 2429.3 ± 3.3% 11991.0 ± 7.5% 422835.2 ± 8.8% 0.826 ± 0.52% 0.995 ± 0.089% 0.826 ± 0.52%
0.51 SRPT 1592.1 ± 0.16% 2987.7 ± 0.52% 263110.8 ± 12.0% 0.967 ± 0.66% 0.999 ± 0.078% 0.967 ± 0.66%
0.60 FF 2939.0 ± 2.1% 23736.5 ± 4.0% 343896.8 ± 6.1% 0.948 ± 0.36% 0.996 ± 0.045% 0.948 ± 0.36%
0.60 FS 1633.6 ± 0.4% 4389.9 ± 2.1% 258643.0 ± 5.9% 0.959 ± 0.32% 0.999 ± 0.043% 0.959 ± 0.32%
0.60 Rand 3201.2 ± 2.1% 19085.7 ± 4.6% 436718.7 ± 1.5% 0.766 ± 1.7% 0.993 ± 0.055% 0.766 ± 1.7%
0.60 SRPT 1632.6 ± 0.094% 3514.9 ± 1.3% 323235.8 ± 4.6% 0.934 ± 0.47% 0.999 ± 0.044% 0.934 ± 0.47%
0.71 FF 3837.7 ± 1.9% 34431.1 ± 4.0% 322903.8 ± 2.5% 0.911 ± 0.37% 0.992 ± 0.084% 0.911 ± 0.37%
0.71 FS 1730.6 ± 0.38% 6601.9 ± 1.2% 274442.8 ± 2.9% 0.922 ± 0.39% 0.999 ± 0.05% 0.922 ± 0.39%
0.71 Rand 3911.6 ± 1.4% 24538.5 ± 3.2% 381889.7 ± 2.0% 0.731 ± 1.2% 0.989 ± 0.076% 0.731 ± 1.2%
0.71 SRPT 1706.2 ± 0.21% 4321.1 ± 1.7% 365187.1 ± 2.6% 0.886 ± 0.35% 0.999 ± 0.054% 0.886 ± 0.35%
0.80 FF 4505.2 ± 3.5% 40048.5 ± 6.2% 297883.9 ± 2.8% 0.854 ± 0.38% 0.985 ± 0.18% 0.854 ± 0.38%
0.80 FS 1843.6 ± 0.83% 9336.0 ± 3.2% 284147.5 ± 4.5% 0.856 ± 0.62% 0.997 ± 0.095% 0.856 ± 0.62%
0.80 Rand 4761.7 ± 2.7% 28060.7 ± 2.3% 315479.6 ± 2.5% 0.694 ± 0.71% 0.982 ± 0.12% 0.694 ± 0.71%
0.80 SRPT 1807.6 ± 0.51% 5691.1 ± 2.9% 275652.6 ± 5.5% 0.819 ± 0.61% 0.998 ± 0.1% 0.819 ± 0.61%
0.89 FF 5277.0 ± 2.7% 49286.4 ± 4.5% 301906.9 ± 1.8% 0.814 ± 0.44% 0.97 ± 0.43% 0.814 ± 0.44%
0.89 FS 2042.1 ± 0.48% 14036.0 ± 2.1% 273754.2 ± 3.0% 0.79 ± 0.55% 0.996 ± 0.11% 0.79 ± 0.55%
0.89 Rand 7441.6 ± 3.5% 41471.0 ± 2.8% 294162.8 ± 1.2% 0.633 ± 1.2% 0.964 ± 0.2% 0.633 ± 1.2%
0.89 SRPT 2271.4 ± 3.0% 14379.1 ± 11.0% 294316.1 ± 2.1% 0.746 ± 0.67% 0.992 ± 0.29% 0.746 ± 0.67%

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

28

Appendix F.3.3. Rack Distribution Benchmark

Table F.13
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.2 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1547.1 ± 0.2% 2905.6 ± 0.53% 36420.2 ± 3.8% 0.993 ± 0.23% 0.999 ± 0.047% 0.993 ± 0.23%
0.1 FS 1514.8 ± 0.14% 1997.1 ± 0.0059% 35026.4 ± 2.6% 0.994 ± 0.23% 0.999 ± 0.046% 0.994 ± 0.23%
0.1 Rand 1538.9 ± 0.15% 2708.2 ± 0.35% 53118.6 ± 2.9% 0.991 ± 0.21% 0.999 ± 0.046% 0.991 ± 0.21%
0.1 SRPT 1514.5 ± 0.14% 1997.6 ± 0.0078% 35426.4 ± 2.6% 0.994 ± 0.22% 0.999 ± 0.046% 0.994 ± 0.22%
0.2 FF 1613.3 ± 0.16% 4210.8 ± 1.1% 43491.3 ± 3.3% 0.985 ± 0.34% 0.999 ± 0.032% 0.985 ± 0.34%
0.2 FS 1522.9 ± 0.14% 1998.9 ± 0.012% 38988.6 ± 1.6% 0.986 ± 0.37% 1.0 ± 0.029% 0.986 ± 0.37%
0.2 Rand 1575.6 ± 0.2% 3009.0 ± 0.77% 70182.4 ± 2.6% 0.978 ± 0.45% 0.999 ± 0.029% 0.978 ± 0.45%
0.2 SRPT 1524.5 ± 0.14% 2252.2 ± 1.0% 41095.6 ± 1.6% 0.987 ± 0.31% 1.0 ± 0.028% 0.987 ± 0.31%
0.3 FF 1751.4 ± 0.79% 6744.9 ± 3.8% 67480.0 ± 9.5% 0.989 ± 0.17% 0.999 ± 0.042% 0.989 ± 0.17%
0.3 FS 1534.7 ± 0.13% 2247.8 ± 0.56% 63424.2 ± 7.2% 0.99 ± 0.17% 0.999 ± 0.042% 0.99 ± 0.17%
0.3 Rand 1649.2 ± 0.34% 3891.9 ± 0.76% 148433.8 ± 8.6% 0.977 ± 0.19% 0.999 ± 0.041% 0.977 ± 0.19%
0.3 SRPT 1539.5 ± 0.12% 2626.4 ± 0.49% 83252.7 ± 9.4% 0.989 ± 0.2% 0.999 ± 0.041% 0.989 ± 0.2%
0.4 FF 1924.1 ± 1.5% 9755.3 ± 7.2% 88414.1 ± 9.8% 0.977 ± 0.23% 0.998 ± 0.086% 0.977 ± 0.23%
0.4 FS 1541.5 ± 0.092% 2542.4 ± 0.5% 74926.1 ± 11.0% 0.98 ± 0.19% 0.999 ± 0.085% 0.98 ± 0.19%
0.4 Rand 1795.0 ± 0.49% 5339.0 ± 1.4% 216058.0 ± 7.5% 0.941 ± 0.46% 0.998 ± 0.089% 0.941 ± 0.46%
0.4 SRPT 1552.2 ± 0.035% 2802.5 ± 0.34% 99179.4 ± 14.0% 0.979 ± 0.2% 0.999 ± 0.085% 0.979 ± 0.2%
0.5 FF 2239.7 ± 2.0% 14440.3 ± 7.6% 120877.0 ± 5.2% 0.979 ± 0.27% 0.998 ± 0.048% 0.979 ± 0.27%
0.5 FS 1564.2 ± 0.13% 2914.5 ± 0.6% 97264.9 ± 6.6% 0.98 ± 0.21% 0.999 ± 0.05% 0.98 ± 0.21%
0.5 Rand 2330.3 ± 1.7% 9746.8 ± 4.0% 408828.1 ± 10.0% 0.892 ± 1.0% 0.997 ± 0.055% 0.892 ± 1.0%
0.5 SRPT 1580.9 ± 0.082% 2940.4 ± 0.36% 153416.6 ± 10.0% 0.978 ± 0.3% 0.999 ± 0.051% 0.978 ± 0.3%
0.6 FF 2842.5 ± 2.5% 22991.2 ± 7.0% 308474.4 ± 6.6% 0.967 ± 0.28% 0.996 ± 0.067% 0.967 ± 0.28%
0.6 FS 1595.6 ± 0.19% 3658.7 ± 0.66% 137386.1 ± 5.7% 0.972 ± 0.28% 0.999 ± 0.048% 0.972 ± 0.28%
0.6 Rand 3265.3 ± 0.75% 16613.3 ± 1.2% 420951.4 ± 3.7% 0.825 ± 0.81% 0.994 ± 0.065% 0.825 ± 0.81%
0.6 SRPT 1619.1 ± 0.097% 3390.5 ± 1.8% 336922.0 ± 5.1% 0.961 ± 0.37% 0.999 ± 0.049% 0.961 ± 0.37%
0.7 FF 3465.2 ± 0.49% 27554.1 ± 1.9% 287240.4 ± 6.0% 0.95 ± 0.29% 0.994 ± 0.066% 0.95 ± 0.29%
0.7 FS 1648.7 ± 0.15% 4775.0 ± 1.0% 210756.3 ± 2.1% 0.95 ± 0.28% 0.999 ± 0.063% 0.95 ± 0.28%
0.7 Rand 4658.5 ± 2.2% 25482.9 ± 2.8% 345529.5 ± 3.4% 0.755 ± 0.84% 0.985 ± 0.055% 0.755 ± 0.84%
0.7 SRPT 1678.0 ± 0.25% 3916.3 ± 1.2% 307069.7 ± 3.6% 0.927 ± 0.29% 0.999 ± 0.063% 0.927 ± 0.29%
0.8 FF 4604.8 ± 1.5% 37588.2 ± 2.3% 287174.0 ± 1.8% 0.904 ± 0.52% 0.988 ± 0.11% 0.904 ± 0.52%
0.8 FS 1759.3 ± 0.18% 7189.5 ± 1.6% 278549.2 ± 2.2% 0.886 ± 0.5% 0.998 ± 0.071% 0.886 ± 0.5%
0.8 Rand 5891.2 ± 0.77% 32310.3 ± 1.1% 323761.6 ± 2.1% 0.694 ± 1.3% 0.977 ± 0.11% 0.694 ± 1.3%
0.8 SRPT 1757.8 ± 0.7% 4908.0 ± 3.1% 307367.1 ± 4.4% 0.853 ± 0.39% 0.998 ± 0.073% 0.853 ± 0.39%
0.9 FF 6385.1 ± 2.0% 52863.8 ± 3.2% 320436.3 ± 9.5% 0.871 ± 0.69% 0.98 ± 0.041% 0.871 ± 0.69%
0.9 FS 1956.4 ± 1.1% 11288.2 ± 3.1% 313425.0 ± 11.0% 0.845 ± 0.79% 0.998 ± 0.034% 0.845 ± 0.79%
0.9 Rand 8399.6 ± 6.6% 46907.3 ± 7.9% 336830.9 ± 12.0% 0.65 ± 0.81% 0.964 ± 0.082% 0.65 ± 0.81%
0.9 SRPT 1963.3 ± 1.2% 7596.5 ± 5.1% 320009.5 ± 13.0% 0.786 ± 0.3% 0.998 ± 0.042% 0.786 ± 0.3%

Table F.14
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.4 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1553.9 ± 0.15% 3023.9 ± 1.1% 38020.6 ± 5.6% 0.997 ± 0.15% 1.0 ± 0.029% 0.997 ± 0.15%
0.1 FS 1515.8 ± 0.057% 1997.5 ± 0.0039% 37020.6 ± 5.8% 0.997 ± 0.15% 1.0 ± 0.026% 0.997 ± 0.15%
0.1 Rand 1541.3 ± 0.058% 2739.1 ± 0.31% 61994.1 ± 11.0% 0.996 ± 0.16% 1.0 ± 0.026% 0.996 ± 0.16%
0.1 SRPT 1515.5 ± 0.052% 1998.0 ± 0.0078% 37373.3 ± 6.5% 0.997 ± 0.15% 1.0 ± 0.026% 0.997 ± 0.15%
0.2 FF 1643.8 ± 0.34% 4775.7 ± 2.4% 52879.5 ± 3.8% 0.986 ± 0.2% 0.999 ± 0.04% 0.986 ± 0.2%
0.2 FS 1525.7 ± 0.11% 1999.3 ± 0.0059% 48949.2 ± 3.9% 0.987 ± 0.18% 0.999 ± 0.043% 0.987 ± 0.18%
0.2 Rand 1587.8 ± 0.18% 3035.9 ± 0.46% 126408.0 ± 8.0% 0.976 ± 0.14% 0.999 ± 0.044% 0.976 ± 0.14%
0.2 SRPT 1526.4 ± 0.12% 2225.3 ± 1.5% 51165.4 ± 4.0% 0.988 ± 0.17% 0.999 ± 0.044% 0.988 ± 0.17%
0.3 FF 1787.0 ± 0.46% 7619.8 ± 3.9% 66882.6 ± 8.2% 0.988 ± 0.16% 0.999 ± 0.016% 0.988 ± 0.16%
0.3 FS 1532.2 ± 0.15% 2231.4 ± 0.81% 57004.1 ± 7.0% 0.989 ± 0.21% 1.0 ± 0.015% 0.989 ± 0.21%
0.3 Rand 1671.2 ± 0.57% 4113.2 ± 2.9% 256001.0 ± 7.5% 0.956 ± 0.31% 0.999 ± 0.015% 0.956 ± 0.31%
0.3 SRPT 1536.4 ± 0.17% 2610.9 ± 0.51% 65648.0 ± 10.0% 0.989 ± 0.16% 1.0 ± 0.016% 0.989 ± 0.16%
0.4 FF 1997.7 ± 0.57% 11546.2 ± 2.4% 78798.6 ± 6.6% 0.973 ± 0.27% 0.998 ± 0.054% 0.973 ± 0.27%
0.4 FS 1542.8 ± 0.11% 2588.6 ± 0.51% 66608.7 ± 3.7% 0.976 ± 0.23% 0.999 ± 0.065% 0.976 ± 0.23%
0.4 Rand 1805.3 ± 0.55% 6476.5 ± 3.3% 287594.6 ± 1.8% 0.882 ± 0.51% 0.998 ± 0.074% 0.882 ± 0.51%
0.4 SRPT 1553.2 ± 0.061% 2820.2 ± 0.21% 85975.8 ± 3.3% 0.977 ± 0.22% 0.999 ± 0.066% 0.977 ± 0.22%
0.5 FF 2476.5 ± 1.5% 20978.2 ± 5.7% 115951.9 ± 3.9% 0.976 ± 0.45% 0.997 ± 0.053% 0.976 ± 0.45%
0.5 FS 1562.6 ± 0.05% 2906.2 ± 0.44% 104707.6 ± 4.4% 0.978 ± 0.38% 0.999 ± 0.046% 0.978 ± 0.38%
0.5 Rand 2104.8 ± 2.3% 11901.7 ± 9.0% 411058.5 ± 11.0% 0.822 ± 0.74% 0.996 ± 0.041% 0.822 ± 0.74%
0.5 SRPT 1578.2 ± 0.12% 2936.4 ± 0.35% 128711.3 ± 3.1% 0.976 ± 0.36% 0.999 ± 0.044% 0.976 ± 0.36%
0.6 FF 2880.0 ± 1.5% 24414.7 ± 5.0% 242585.7 ± 3.1% 0.971 ± 0.31% 0.997 ± 0.044% 0.971 ± 0.31%
0.6 FS 1592.5 ± 0.094% 3616.1 ± 0.56% 131921.2 ± 7.3% 0.972 ± 0.22% 0.999 ± 0.031% 0.972 ± 0.22%
0.6 Rand 2420.9 ± 0.64% 17877.9 ± 2.6% 417817.1 ± 1.5% 0.778 ± 1.0% 0.995 ± 0.043% 0.778 ± 1.0%
0.6 SRPT 1619.6 ± 0.11% 3401.4 ± 1.4% 235066.7 ± 3.8% 0.966 ± 0.35% 0.999 ± 0.033% 0.966 ± 0.35%
0.7 FF 3534.3 ± 1.3% 33314.7 ± 4.1% 311692.8 ± 3.6% 0.935 ± 0.27% 0.994 ± 0.052% 0.935 ± 0.27%
0.7 FS 1642.8 ± 0.05% 4665.5 ± 1.2% 245550.4 ± 4.2% 0.937 ± 0.3% 0.999 ± 0.057% 0.937 ± 0.3%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

29

Table F.14 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.7 Rand 2652.7 ± 1.1% 21768.7 ± 1.6% 375157.8 ± 2.3% 0.71 ± 0.89% 0.993 ± 0.071% 0.71 ± 0.89%
0.7 SRPT 1660.0 ± 0.2% 3780.8 ± 1.1% 327831.0 ± 2.0% 0.915 ± 0.3% 0.999 ± 0.059% 0.915 ± 0.3%
0.8 FF 4311.5 ± 0.84% 39028.2 ± 2.3% 294072.3 ± 2.3% 0.911 ± 0.39% 0.99 ± 0.056% 0.911 ± 0.39%
0.8 FS 1731.1 ± 0.25% 6579.1 ± 1.4% 238819.8 ± 2.4% 0.904 ± 0.33% 0.999 ± 0.047% 0.904 ± 0.33%
0.8 Rand 2906.5 ± 0.56% 24944.4 ± 1.5% 320552.6 ± 1.3% 0.665 ± 1.4% 0.99 ± 0.063% 0.665 ± 1.4%
0.8 SRPT 1747.3 ± 0.58% 4642.0 ± 2.8% 280469.5 ± 6.0% 0.865 ± 0.3% 0.999 ± 0.05% 0.865 ± 0.3%
0.9 FF 5497.1 ± 2.4% 46230.6 ± 2.7% 280463.7 ± 3.8% 0.851 ± 0.43% 0.983 ± 0.086% 0.851 ± 0.43%
0.9 FS 1872.4 ± 0.26% 9593.3 ± 1.6% 290850.1 ± 1.7% 0.827 ± 0.43% 0.997 ± 0.094% 0.827 ± 0.43%
0.9 Rand 3347.1 ± 1.2% 29914.9 ± 0.63% 306219.5 ± 1.8% 0.608 ± 1.4% 0.987 ± 0.095% 0.608 ± 1.4%
0.9 SRPT 1861.4 ± 0.99% 5931.5 ± 4.3% 286319.1 ± 1.6% 0.781 ± 0.33% 0.997 ± 0.095% 0.781 ± 0.33%

Table F.15
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.6 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1557.4 ± 0.18% 2992.3 ± 1.3% 41866.0 ± 3.4% 0.995 ± 0.1% 0.999 ± 0.045% 0.995 ± 0.1%
0.1 FS 1519.1 ± 0.041% 1997.0 ± 0.012% 41866.0 ± 2.5% 0.995 ± 0.1% 0.999 ± 0.044% 0.995 ± 0.1%
0.1 Rand 1544.3 ± 0.069% 2738.7 ± 0.46% 63511.4 ± 5.0% 0.992 ± 0.23% 0.999 ± 0.044% 0.992 ± 0.23%
0.1 SRPT 1518.9 ± 0.044% 1997.6 ± 0.0098% 42866.0 ± 3.2% 0.995 ± 0.1% 0.999 ± 0.044% 0.995 ± 0.1%
0.2 FF 1639.1 ± 0.39% 4710.0 ± 2.0% 48916.2 ± 3.7% 0.989 ± 0.26% 0.999 ± 0.039% 0.989 ± 0.26%
0.2 FS 1522.8 ± 0.17% 1998.9 ± 0.0039% 47869.5 ± 2.2% 0.989 ± 0.27% 0.999 ± 0.043% 0.989 ± 0.27%
0.2 Rand 1582.2 ± 0.16% 3046.6 ± 0.46% 105951.9 ± 8.2% 0.981 ± 0.28% 0.999 ± 0.043% 0.981 ± 0.28%
0.2 SRPT 1525.6 ± 0.18% 2338.1 ± 0.83% 46897.0 ± 4.4% 0.99 ± 0.23% 0.999 ± 0.043% 0.99 ± 0.23%
0.3 FF 1786.7 ± 0.96% 7425.5 ± 4.7% 64656.1 ± 7.6% 0.986 ± 0.29% 0.999 ± 0.047% 0.986 ± 0.29%
0.3 FS 1531.2 ± 0.19% 2225.5 ± 1.8% 57743.4 ± 4.0% 0.987 ± 0.32% 0.999 ± 0.046% 0.987 ± 0.32%
0.3 Rand 1663.9 ± 0.3% 4087.7 ± 1.3% 233890.5 ± 4.2% 0.967 ± 0.37% 0.999 ± 0.046% 0.967 ± 0.37%
0.3 SRPT 1538.9 ± 0.17% 2680.8 ± 0.29% 64343.4 ± 5.0% 0.988 ± 0.32% 0.999 ± 0.046% 0.988 ± 0.32%
0.4 FF 2070.3 ± 1.5% 11972.7 ± 4.4% 89212.8 ± 6.2% 0.98 ± 0.34% 0.997 ± 0.09% 0.98 ± 0.34%
0.4 FS 1543.2 ± 0.094% 2555.3 ± 1.1% 84834.8 ± 6.3% 0.981 ± 0.34% 0.999 ± 0.085% 0.981 ± 0.34%
0.4 Rand 1804.3 ± 0.48% 6112.3 ± 1.9% 210247.2 ± 7.1% 0.917 ± 0.59% 0.998 ± 0.088% 0.917 ± 0.59%
0.4 SRPT 1558.0 ± 0.083% 2842.9 ± 0.21% 108634.8 ± 9.3% 0.981 ± 0.28% 0.999 ± 0.085% 0.981 ± 0.28%
0.5 FF 2462.2 ± 0.96% 18251.1 ± 3.1% 121295.6 ± 5.9% 0.98 ± 0.15% 0.997 ± 0.062% 0.98 ± 0.15%
0.5 FS 1560.7 ± 0.05% 2885.8 ± 0.48% 89431.3 ± 4.1% 0.98 ± 0.18% 0.999 ± 0.048% 0.98 ± 0.18%
0.5 Rand 2236.8 ± 1.9% 13576.8 ± 6.8% 390033.5 ± 9.3% 0.843 ± 0.62% 0.997 ± 0.048% 0.843 ± 0.62%
0.5 SRPT 1585.1 ± 0.042% 2970.9 ± 0.11% 136545.8 ± 11.0% 0.98 ± 0.17% 0.999 ± 0.05% 0.98 ± 0.17%
0.6 FF 2956.1 ± 1.6% 24090.4 ± 4.4% 242220.9 ± 13.0% 0.975 ± 0.13% 0.996 ± 0.065% 0.975 ± 0.13%
0.6 FS 1586.0 ± 0.16% 3517.5 ± 0.65% 138093.6 ± 7.7% 0.979 ± 0.1% 0.999 ± 0.063% 0.979 ± 0.1%
0.6 Rand 2728.2 ± 0.78% 22105.7 ± 1.7% 432399.7 ± 2.9% 0.771 ± 0.97% 0.994 ± 0.081% 0.771 ± 0.97%
0.6 SRPT 1624.4 ± 0.043% 3519.2 ± 0.73% 284839.9 ± 4.3% 0.97 ± 0.16% 0.999 ± 0.064% 0.97 ± 0.16%
0.7 FF 3858.3 ± 1.5% 35582.9 ± 3.2% 272734.1 ± 8.6% 0.951 ± 0.16% 0.993 ± 0.051% 0.951 ± 0.16%
0.7 FS 1630.8 ± 0.12% 4456.6 ± 1.0% 225655.3 ± 3.9% 0.953 ± 0.13% 0.999 ± 0.058% 0.953 ± 0.13%
0.7 Rand 3035.8 ± 0.58% 26654.0 ± 1.4% 356900.5 ± 1.4% 0.708 ± 0.38% 0.991 ± 0.072% 0.708 ± 0.38%
0.7 SRPT 1680.3 ± 0.17% 3938.0 ± 0.64% 291331.3 ± 5.2% 0.931 ± 0.27% 0.999 ± 0.058% 0.931 ± 0.27%
0.8 FF 4501.2 ± 1.5% 38457.9 ± 2.2% 277274.4 ± 2.6% 0.915 ± 0.42% 0.988 ± 0.16% 0.915 ± 0.42%
0.8 FS 1713.2 ± 0.17% 6223.9 ± 1.2% 259604.2 ± 3.1% 0.908 ± 0.33% 0.998 ± 0.095% 0.908 ± 0.33%
0.8 Rand 3484.0 ± 2.5% 32752.7 ± 3.8% 321488.9 ± 4.3% 0.644 ± 1.1% 0.986 ± 0.087% 0.644 ± 1.1%
0.8 SRPT 1752.6 ± 0.43% 4662.8 ± 1.9% 279493.1 ± 6.2% 0.869 ± 0.31% 0.998 ± 0.098% 0.869 ± 0.31%
0.9 FF 5773.6 ± 0.51% 46545.8 ± 0.72% 263361.6 ± 3.2% 0.867 ± 0.22% 0.978 ± 0.14% 0.867 ± 0.22%
0.9 FS 1872.7 ± 0.3% 9645.7 ± 1.2% 274889.1 ± 1.4% 0.844 ± 0.17% 0.997 ± 0.07% 0.844 ± 0.17%
0.9 Rand 3943.0 ± 1.1% 39082.1 ± 1.2% 293317.7 ± 1.1% 0.595 ± 0.58% 0.981 ± 0.062% 0.595 ± 0.58%
0.9 SRPT 1900.9 ± 0.69% 6304.4 ± 3.1% 264047.5 ± 2.1% 0.793 ± 0.19% 0.997 ± 0.066% 0.793 ± 0.19%

Table F.16
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.8 benchmark.

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1564.4 ± 0.17% 3075.8 ± 0.78% 38130.3 ± 3.3% 0.998 ± 0.055% 1.0 ± 0.032% 0.998 ± 0.055%
0.1 FS 1523.4 ± 0.13% 1997.4 ± 0.002% 34026.7 ± 2.1% 0.998 ± 0.055% 1.0 ± 0.031% 0.998 ± 0.055%
0.1 Rand 1549.9 ± 0.14% 2779.9 ± 0.22% 60347.0 ± 7.3% 0.996 ± 0.08% 1.0 ± 0.032% 0.996 ± 0.08%
0.1 SRPT 1523.7 ± 0.13% 1998.4 ± 0.0039% 34147.9 ± 2.8% 0.998 ± 0.055% 1.0 ± 0.032% 0.998 ± 0.055%
0.2 FF 1655.6 ± 0.53% 4886.6 ± 3.3% 48187.1 ± 7.1% 0.991 ± 0.17% 0.998 ± 0.1% 0.991 ± 0.17%
0.2 FS 1525.7 ± 0.11% 1998.9 ± 0.0078% 41674.6 ± 5.2% 0.991 ± 0.16% 0.999 ± 0.099% 0.991 ± 0.16%
0.2 Rand 1589.2 ± 0.13% 3175.5 ± 1.1% 91618.8 ± 7.3% 0.983 ± 0.13% 0.999 ± 0.099% 0.983 ± 0.13%
0.2 SRPT 1528.4 ± 0.11% 2350.2 ± 0.88% 43538.3 ± 5.8% 0.992 ± 0.16% 0.999 ± 0.098% 0.992 ± 0.16%
0.3 FF 1812.5 ± 0.4% 7816.8 ± 1.9% 68547.0 ± 5.1% 0.986 ± 0.17% 0.999 ± 0.049% 0.986 ± 0.17%
0.3 FS 1532.3 ± 0.1% 2202.5 ± 0.51% 64297.6 ± 5.1% 0.987 ± 0.2% 0.999 ± 0.053% 0.987 ± 0.2%
0.3 Rand 1657.7 ± 0.13% 4051.6 ± 0.72% 227634.8 ± 3.2% 0.972 ± 0.33% 0.999 ± 0.051% 0.972 ± 0.33%
0.3 SRPT 1541.1 ± 0.11% 2701.4 ± 0.27% 73297.6 ± 7.1% 0.989 ± 0.14% 0.999 ± 0.053% 0.989 ± 0.14%
0.4 FF 2211.4 ± 1.3% 15442.4 ± 5.6% 107060.7 ± 14.0% 0.976 ± 0.26% 0.997 ± 0.065% 0.976 ± 0.26%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

30

Table F.16 (continued)

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.4 FS 1546.2 ± 0.12% 2605.9 ± 0.68% 76600.8 ± 12.0% 0.98 ± 0.3% 0.999 ± 0.046% 0.98 ± 0.3%
0.4 Rand 1823.3 ± 0.45% 6253.9 ± 1.4% 256431.0 ± 7.3% 0.918 ± 0.43% 0.998 ± 0.047% 0.918 ± 0.43%
0.4 SRPT 1560.4 ± 0.088% 2854.5 ± 0.31% 86910.4 ± 10.0% 0.98 ± 0.22% 0.999 ± 0.047% 0.98 ± 0.22%
0.5 FF 2670.2 ± 1.5% 20930.8 ± 5.2% 142824.2 ± 12.0% 0.963 ± 0.51% 0.995 ± 0.094% 0.963 ± 0.51%
0.5 FS 1561.9 ± 0.088% 2883.4 ± 0.46% 87631.8 ± 5.5% 0.968 ± 0.45% 0.999 ± 0.086% 0.968 ± 0.45%
0.5 Rand 2097.1 ± 1.6% 10368.7 ± 5.3% 266946.9 ± 14.0% 0.846 ± 0.85% 0.996 ± 0.093% 0.846 ± 0.85%
0.5 SRPT 1586.5 ± 0.14% 2988.9 ± 0.73% 108035.3 ± 3.4% 0.968 ± 0.46% 0.999 ± 0.087% 0.968 ± 0.46%
0.6 FF 3437.5 ± 0.59% 30455.8 ± 3.2% 221359.1 ± 14.0% 0.971 ± 0.22% 0.995 ± 0.097% 0.971 ± 0.22%
0.6 FS 1589.9 ± 0.079% 3541.0 ± 0.89% 121075.9 ± 9.3% 0.978 ± 0.15% 0.999 ± 0.066% 0.978 ± 0.15%
0.6 Rand 3021.9 ± 1.6% 24451.3 ± 2.3% 412148.6 ± 1.0% 0.771 ± 0.67% 0.993 ± 0.083% 0.771 ± 0.67%
0.6 SRPT 1632.0 ± 0.072% 3575.4 ± 0.19% 219688.9 ± 7.6% 0.97 ± 0.28% 0.999 ± 0.069% 0.97 ± 0.28%
0.7 FF 4226.4 ± 1.0% 37246.2 ± 1.9% 250830.8 ± 3.5% 0.955 ± 0.43% 0.992 ± 0.1% 0.955 ± 0.43%
0.7 FS 1630.6 ± 0.12% 4431.6 ± 0.92% 200199.1 ± 3.6% 0.961 ± 0.23% 0.999 ± 0.077% 0.961 ± 0.23%
0.7 Rand 3899.6 ± 1.9% 35618.2 ± 3.2% 367726.5 ± 1.9% 0.684 ± 0.88% 0.988 ± 0.14% 0.684 ± 0.88%
0.7 SRPT 1694.3 ± 0.1% 4009.5 ± 0.56% 299390.8 ± 5.7% 0.936 ± 0.3% 0.999 ± 0.079% 0.936 ± 0.3%
0.8 FF 5264.1 ± 1.5% 44602.4 ± 1.7% 284358.6 ± 6.4% 0.905 ± 0.58% 0.985 ± 0.066% 0.905 ± 0.58%
0.8 FS 1721.5 ± 0.35% 6287.8 ± 2.1% 249298.1 ± 4.5% 0.907 ± 0.49% 0.998 ± 0.076% 0.907 ± 0.49%
0.8 Rand 4485.1 ± 1.8% 44277.7 ± 2.8% 331280.5 ± 2.2% 0.59 ± 0.66% 0.98 ± 0.1% 0.59 ± 0.66%
0.8 SRPT 1772.7 ± 0.17% 4871.1 ± 0.47% 308528.4 ± 3.4% 0.871 ± 0.35% 0.998 ± 0.073% 0.871 ± 0.35%
0.9 FF 6797.9 ± 2.0% 53200.8 ± 2.1% 312515.9 ± 11.0% 0.866 ± 0.59% 0.977 ± 0.08% 0.866 ± 0.59%
0.9 FS 1891.3 ± 1.2% 10007.9 ± 4.7% 324448.5 ± 7.9% 0.856 ± 0.93% 0.998 ± 0.036% 0.856 ± 0.93%
0.9 Rand 5968.6 ± 7.1% 63779.3 ± 11.0% 351222.1 ± 11.0% 0.54 ± 0.64% 0.971 ± 0.097% 0.54 ± 0.64%
0.9 SRPT 1935.1 ± 0.79% 6647.8 ± 2.6% 315660.8 ± 11.0% 0.792 ± 0.17% 0.998 ± 0.049% 0.792 ± 0.17%

Appendix F.4. Winner Tables

The below ‘winner tables’ summarise the winning schedulers for each load and benchmark with their performance improvement relative to the
worst performing baseline for each PKPI averaged across 5 runs. These tables are useful for gaining an overarching view of the multi-faceted per-
formance results which are often difficult to interpret through graphical means alone.

Table F.17
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the 0 (uniform), 0.2, 0.4, 0.6, and 0.8 rack sensitivity traces. For brevity,
‘− ’ indicates all schedulers’ performances were equal.

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.1 SRPT, − 2.3% FS, − 33% FF, − 36% FF + FS + SRPT, 0.40% –
0.2 FS, − 6.0% FS, − 55% FS, − 47% SRPT, 0.92% –
0.3 FS, − 12% FS, − 66% FS, − 60% SRPT, 1.7% –
0.4 FS, − 19% FS, − 73% FS, − 64% FF, 3.7% FS + Rand + SRPT, 0.10%
0.5 FS, − 31% FS, − 80% FF, − 75% FS, 11% FS + SRPT, 0.21%
0.6 FS, − 52% SRPT, − 83% FS, − 60% FS, 19% FS + SRPT, 0.60%
0.7 FS, − 62% SRPT, − 86% FS, − 28% FS, 28% FS, 1.3%
0.8 FS + SRPT, − 69% SRPT, − 86% FS, − 14% FF, 31% FS + SRPT, 2.1%
0.9 SRPT, − 73% SRPT, − 85% FF, − 9.1% FF, 35% FS + SRPT, 3.1%

0.1 SRPT, − 2.107% FS, − 31.27% FS, − 34.06% FS + SRPT, 0.3027% –
0.2 FS, − 5.603% FS, − 52.53% FS, − 44.45% SRPT, 0.9202% FS + SRPT, 0.1001%
0.3 FS, − 12.37% FS, − 66.67% FS, − 57.27% FS, 1.331% –
0.4 FS, − 19.88% FS, − 73.94% FS, − 65.32% FS, 4.145% FS + SRPT, 0.1002%
0.5 FS, − 32.88% FS, − 79.82% FS, − 76.21% FS, 9.865% FS + SRPT, 0.2006%
0.6 FS, − 51.13% SRPT, − 85.25% FS, − 67.36% FS, 17.82% FS + SRPT, 0.503%
0.7 FS, − 64.61% SRPT, − 85.79% FS, − 39.0% FF + FS, 25.83% FS + SRPT, 1.421%
0.8 SRPT, − 70.16% SRPT, − 86.94% FS, − 13.96% FF, 30.26% FS + SRPT, 2.149%
0.9 FS, − 76.71% SRPT, − 85.63% FS, − 6.949% FF, 34.0% FS + SRPT, 3.527%

0.1 SRPT, − 2.471% FS, − 33.94% FS, − 40.28% FF + FS + SRPT, 0.1004% –
0.2 FS, − 7.185% FS, − 58.14% FS, − 61.28% SRPT, 1.23% –
0.3 FS, − 14.26% FS, − 70.72% FS, − 77.73% FS + SRPT, 3.452% FS + SRPT, 0.1001%
0.4 FS, − 22.77% FS, − 77.58% FS, − 76.84% SRPT, 10.77% FS + SRPT, 0.1002%
0.5 FS, − 36.9% FS, − 86.15% FS, − 74.53% FS, 18.98% FS + SRPT, 0.3012%
0.6 FS, − 44.7% SRPT, − 86.07% FS, − 68.43% FS, 24.94% FS + SRPT, 0.402%
0.7 FS, − 53.52% SRPT, − 88.65% FS, − 34.55% FS, 31.97% FS + SRPT, 0.6042%
0.8 FS, − 59.85% SRPT, − 88.11% FS, − 25.5% FF, 36.99% FS + SRPT, 0.9091%
0.9 SRPT, − 66.14% SRPT, − 87.17% FF, − 8.411% FF, 39.97% FS + SRPT, 1.424%

0.1 SRPT, − 2.472% FS, − 33.26% FF + FS, − 34.08% FF + FS + SRPT, 0.3024% –
0.2 FS, − 7.095% FS, − 57.56% SRPT, − 55.74% SRPT, 0.9174% –
0.3 FS, − 14.3% FS, − 70.03% FS, − 75.31% SRPT, 2.172% –
0.4 FS, − 25.46% FS, − 78.66% FS, − 59.65% FS + SRPT, 6.979% FS + SRPT, 0.2006%
0.5 FS, − 36.61% FS, − 84.19% FS, − 77.07% FF + FS + SRPT, 16.25% FS + SRPT, 0.2006%
0.6 FS, − 46.35% FS, − 85.4% FS, − 68.06% FS, 26.98% FS + SRPT, 0.503%
0.7 FS, − 57.73% SRPT, − 88.93% FS, − 36.77% FS, 34.6% FS + SRPT, 0.8073%
0.8 FS, − 61.94% SRPT, − 87.88% FS, − 19.25% FF, 42.08% FS + SRPT, 1.217%

(continued on next page)

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

31

Table F.17 (continued)

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.9 FS, − 67.56% SRPT, − 86.46% FF, − 10.21% FF, 45.71% FS + SRPT, 1.943%

0.1 FS, − 2.621% FS, − 35.06% FS, − 43.61% FF + FS + SRPT, 0.2008% –
0.2 FS, − 7.846% FS, − 59.09% FS, − 54.51% SRPT, 0.9156% FS + Rand + SRPT, 0.1002%
0.3 FS, − 15.46% FS, − 71.82% FS, − 71.75% SRPT, 1.749% –
0.4 FS, − 30.08% FS, − 83.13% FS, − 70.13% FS + SRPT, 6.754% FS + SRPT, 0.2006%
0.5 FS, − 41.51% FS, − 86.22% FS, − 67.17% FS + SRPT, 14.42% FS + SRPT, 0.402%
0.6 FS, − 53.75% FS, − 88.37% FS, − 70.62% FS, 26.85% FS + SRPT, 0.6042%
0.7 FS, − 61.42% SRPT, − 89.24% FS, − 45.56% FS, 40.5% FS + SRPT, 1.113%
0.8 FS, − 67.3% SRPT, − 89.08% FS, − 24.75% FS, 53.73% FS + SRPT, 1.837%
0.9 FS, − 72.18% SRPT, − 89.58% FF, − 11.02% FF, 60.37% FS + SRPT, 2.781%

Table F.18
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the 0 (uniform), 0.05, 0.1, 0.2, and 0.4 skewed nodes sensitivity traces.
For brevity, ‘− ’ indicates all schedulers’ performances were equal.

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.1 SRPT, − 2.329% FS, − 32.9% FF, − 36.37% FF + FS + SRPT, 0.4036% –
0.2 FS, − 5.954% FS, − 54.54% FS, − 46.79% SRPT, 0.924% –
0.3 FS, − 12.11% FS, − 65.63% FS, − 60.37% SRPT, 1.747% –
0.4 FS, − 19.44% FS, − 72.55% FS, − 64.36% FF, 3.7% FS + Rand + SRPT, 0.1002%
0.5 FS, − 30.78% FS, − 80.21% FF, − 75.05% FS, 11.1% FS + SRPT, 0.2006%
0.6 FS, − 51.79% SRPT, − 82.76% FS, − 59.8% FS, 18.66% FS + SRPT, 0.6042%
0.7 FS, − 62.2% SRPT, − 86.3% FS, − 28.06% FS, 27.64% FS, 1.318%
0.8 FS + SRPT, − 69.49% SRPT, − 86.09% FS, − 13.95% FF, 30.88% FS + SRPT, 2.149%
0.9 SRPT, − 73.35% SRPT, − 84.72% FF, − 9.119% FF, 34.93% FS + SRPT, 3.099%

0.10 SRPT, − 8.757% SRPT, − 59.75% FS, − 45.46% FF, 0.8114% –
0.20 SRPT, − 12.59% SRPT, − 53.34% SRPT, − 41.18% SRPT, 4.129% SRPT, 0.2006%
0.30 SRPT, − 8.624% FS, − 43.4% Rand, − 29.39% FF, 4.171% –
0.40 SRPT, − 12.73% FS, − 55.02% FS, − 26.74% FF, 5.525% FS + SRPT, 0.1002%
0.50 SRPT, − 25.03% SRPT, − 69.41% FS, − 43.45% FF, 10.05% FS + SRPT, 0.2008%
0.60 FS, − 47.42% SRPT, − 77.59% FS, − 54.24% FF, 17.3% FS + SRPT, 0.402%
0.70 FS, − 61.53% SRPT, − 82.93% FS, − 30.62% FF, 25.03% FS + SRPT, 1.113%
0.79 FS, − 70.3% SRPT, − 85.75% FS, − 18.76% FF, 33.28% FS + SRPT, 2.149%
0.90 SRPT, − 73.83% SRPT, − 86.22% FF, − 8.617% FF, 37.2% FS + SRPT, 3.316%

0.10 SRPT, − 4.328% SRPT, − 44.2% FS, − 23.36% – –
0.20 SRPT, − 18.98% SRPT, − 78.65% FF, − 33.87% FF, 7.214% FS + Rand + SRPT, 0.1002%
0.30 SRPT, − 26.46% SRPT, − 80.41% Rand, − 9.494% FF, 5.855% FS + Rand + SRPT, 0.2006%
0.40 SRPT, − 10.98% SRPT, − 43.66% FF, − 19.9% FF, 7.365% SRPT, 0.1002%
0.50 SRPT, − 17.24% SRPT, − 55.39% FS, − 23.86% FF, 8.208% FF + FS + SRPT, 0.1002%
0.60 FS, − 37.96% FS, − 68.51% FS, − 32.95% FF, 12.16% FS + SRPT, 0.3012%
0.70 FS, − 59.81% SRPT, − 79.97% FS, − 37.32% FS, 19.26% FS + SRPT, 0.9091%
0.80 FS, − 66.85% SRPT, − 80.76% FS, − 11.75% FF, 26.29% FS, 2.045%
0.89 FS, − 73.71% FS, − 77.53% SRPT, − 10.75% FF, 34.9% FS, 3.423%

0.10 SRPT, − 2.553% SRPT, − 32.54% FS, − 33.37% SRPT, 0.3021% –
0.20 SRPT, − 7.511% FS, − 57.99% FS, − 58.96% FF, 4.589% –
0.30 SRPT, − 17.23% SRPT, − 73.84% FS, − 57.32% FF, 19.36% FS + SRPT, 0.1002%
0.40 SRPT, − 23.55% SRPT, − 78.58% SRPT, − 13.68% FF + FS, 16.41% FS + SRPT, 0.2006%
0.50 SRPT, − 18.2% SRPT, − 54.32% FS, − 27.63% FS, 11.7% FS + SRPT, 0.1002%
0.61 SRPT, − 25.65% SRPT, − 54.03% FS, − 26.91% FF, 12.48% FS + SRPT, 0.2006%
0.70 FS, − 47.05% FS, − 69.77% FS, − 20.66% FS, 15.86% FS + SRPT, 0.6042%
0.80 FS, − 67.39% FS, − 78.64% FS, − 28.66% FS, 23.76% FS, 1.939%
0.90 FS, − 78.26% FS, − 76.03% FS, − 13.49% FF, 29.39% FS, 3.638%

0.10 SRPT, − 2.218% FS, − 32.07% FS, − 34.68% – –
0.20 FS, − 6.063% FS, − 54.59% FS, − 52.78% SRPT, 2.289% –
0.30 FS, − 12.22% FS, − 65.35% FS, − 70.36% FS + SRPT, 1.955% –
0.40 FS, − 20.0% FS, − 72.18% FS, − 70.34% FS, 8.26% FS + SRPT, 0.1002%
0.51 FS, − 35.12% SRPT, − 81.59% FS, − 71.39% FS, 17.68% FS + SRPT, 0.402%
0.60 SRPT, − 49.0% SRPT, − 85.19% FS, − 40.78% FS, 25.2% FS + SRPT, 0.6042%
0.71 SRPT, − 56.38% SRPT, − 87.45% FS, − 28.14% FS, 26.13% FS + SRPT, 1.011%
0.80 SRPT, − 62.04% SRPT, − 85.79% SRPT, − 12.62% FS, 23.34% SRPT, 1.629%
0.89 FS, − 72.56% FS, − 71.52% FS, − 9.325% FF, 28.59% FS, 3.32%

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

32

Table F.19
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the University, Private Enterprise, Commercial Cloud, and Social Media
Cloud DCN traces. For brevity, ‘− ’ indicates all schedulers’ performances were equal.

Load Mean FCT p99 FCT Max FCT Throughput Flows

0.10 SRPT, − 2.466% SRPT, − 31.22% FF, − 38.81% SRPT, 0.4036% –
0.20 SRPT, − 8.834% FS, − 64.48% FS, − 60.01% FF + SRPT, 2.391% –
0.30 SRPT, − 17.83% SRPT, − 76.13% FS, − 64.78% FF, 13.77% FS + SRPT, 0.1001%
0.40 SRPT, − 26.47% SRPT, − 81.81% SRPT, − 25.11% FF, 15.07% SRPT, 0.2004%
0.50 SRPT, − 18.77% SRPT, − 54.54% FS, − 22.44% FF, 11.12% SRPT, 0.2004%
0.60 SRPT, − 29.81% SRPT, − 63.41% FS, − 21.25% FF, 13.91% SRPT, 0.3009%
0.70 FS, − 45.77% FS, − 77.26% FS, − 34.73% FS, 21.06% FS + SRPT, 0.6042%
0.79 FS, − 55.34% FS, − 75.18% FS, − 25.43% FS, 24.9% FS + SRPT, 1.113%
0.89 FS, − 64.75% FS, − 71.49% FS, − 26.74% FS, 26.16% FS, 1.941%

0.10 SRPT, − 3.577% FS, − 37.74% FS, − 43.91% FF, 0.4024% –
0.20 SRPT, − 11.42% FS, − 69.85% FS, − 60.28% SRPT, 4.017% FS + Rand + SRPT, 0.1001%
0.30 SRPT, − 25.05% FS, − 84.23% FS, − 57.56% FS, 9.121% FS + SRPT, 0.1001%
0.40 SRPT, − 40.72% SRPT, − 90.67% FF, − 26.91% FS, 12.26% FS + SRPT, 0.3009%
0.50 SRPT, − 43.96% SRPT, − 91.43% FS, − 18.36% FF, 11.84% SRPT, 0.6036%
0.60 SRPT, − 28.85% SRPT, − 72.65% FS, − 20.9% FF, 17.01% SRPT, 0.3009%
0.70 SRPT, − 35.86% SRPT, − 77.65% FS, − 21.9% FF, 24.46% SRPT, 0.5025%
0.79 FS, − 49.05% SRPT, − 78.85% FS, − 20.43% FF, 32.89% FS + SRPT, 1.011%
0.90 FS, − 66.84% FS, − 77.31% SRPT, − 9.144% FF, 38.56% FS, 1.526%

0.10 SRPT, − 4.338% FS, − 44.59% FS, − 43.56% FF + SRPT, 0.6061% –
0.20 FS, − 12.75% FS, − 73.12% FS, − 65.3% FS + SRPT, 2.165% FS + Rand + SRPT, 0.1001%
0.30 FS, − 32.36% FS, − 89.81% FS, − 65.67% FS, 6.109% FS + Rand + SRPT, 0.1001%
0.40 FS, − 51.39% FS, − 93.5% FS, − 50.1% SRPT, 11.49% FS + SRPT, 0.6036%
0.50 FS, − 64.75% SRPT, − 95.14% FS, − 44.25% FS, 18.82% FS + SRPT, 1.112%
0.60 SRPT, − 66.34% SRPT, − 94.78% FS, − 38.79% FS, 26.48% FS + SRPT, 2.249%
0.70 FS, − 55.14% SRPT, − 86.15% FS, − 30.44% FS, 36.44% SRPT, 1.112%
0.79 FS, − 63.22% SRPT, − 86.61% FS, − 24.83% FS, 50.83% FS + SRPT, 1.939%
0.89 FS, − 71.7% SRPT, − 80.91% FS, − 15.77% FF, 57.67% FS, 2.675%

0.10 FS, − 1.484% FS, − 25.77% SRPT, − 49.67% – –
0.20 FS, − 4.266% FS, − 24.92% FS, − 61.38% – –
0.30 FS, − 9.855% FS, − 41.03% FS, − 66.9% FF + FS + SRPT, 0.1001% –
0.40 FS, − 18.74% FS, − 57.24% FS, − 81.16% FS + SRPT, 0.3012% FS + SRPT, 0.1001%
0.50 FS, − 38.63% FS, − 79.07% FS, − 84.78% FS + SRPT, 1.013% FS, 0.3009%
0.60 FS, − 60.95% FS, − 88.96% FS, − 82.32% FS + SRPT, 4.311% FS, 1.011%
0.69 FS, − 70.83% FS, − 88.24% FS, − 72.67% FS, 9.434% FS, 6.852%
0.80 FS, − 64.72% FS, − 79.18% FS, − 45.34% FS, 26.6% FS, 16.16%
0.90 FS, − 73.86% FS, − 80.41% FS, − 45.18% FF, 55.08% FS, 31.69%

Appendix G. A Note on the Flow- vs. Job-Centric Traffic Paradigms

Common DCN jobs include search queries, generating social media feeds, and performing machine learning tasks such as inference and back-
propagation. These jobs are directed acyclic graphs composed of operations (nodes) and dependencies (edges) [61]. The dependencies are either control
dependencies (where the child operation can only begin once the parent operation has been completed) or data dependencies (where ≥ 1 tensors are
output from the parent operation as required input for the child operation). In the context of DCNs, when a job arrives, each operation in the job is
placed onto some machine to execute it. These operations might all be placed onto one machine or, as is often the case, distributed across different
machines in the network [62]. The DCN is then used to pass the tensors around between machines executing the operations. Job data dependencies
whose parent and child operations are placed onto different machines have their tensors become DCN flows.

There are therefore two paradigms when considering traffic demand generation in DCNs; the flow-centric paradigm, which is agnostic to the overall
computation graph being executed in the DCN when servicing an application, and the job-centric paradigm, which does consider the computation
graph when generating network flows. For this manuscript, we considered the flow-centric paradigm, where a single demand is a flow; a task
demanding some information be sent from a source node to a destination node in the network. Flow characteristics include size (how much infor-
mation to send), arrival time (the time the flow arrives ready to be transported through the network, as derived from the network-level inter-arrival time
which is the time between a flow’s time of arrival and its predecessor’s), and source-destination node pair (which machine the flow is queued at and
where it is requesting to be sent). Together, these characteristics form a network-level source-destination node pair distribution (‘how much’ (as
measured by either probability or load) each machine tends to be requested by arriving flows).

In real DCNs, traffic flows can be correlated with one another since they may be part of the same job and therefore share similar characteristics. An
interesting area of future work will be to develop TrafPy to support the job-centric paradigm and have this type of inter-flow correlation. However, this
is beyond the scope of this manuscript.

C.W.F. Parsonson et al.

Optical Switching and Networking 46 (2022) 100695

33

References

[1] C. Parsonson, G. Zervas, Trafpy, July 2021. https://github.com/cwfparsonson/
trafpy.

[2] C. Parsonson, G. Zervas, Trafpy Rdr Data, July 2021, https://doi.org/10.5522/04/
14815853.

[3] L.M. Weber, W. Saelens, R. Cannoodt, C. Soneson, A. Hapfelmeier, P.P. Gardner, A.
L. Boulesteix, Y. Saeys, M.D. Robinson, Essential guidelines for computational
method benchmarking, Genome Biol. 20 (1) (2019) 1–12, https://doi.org/
10.1186/s13059-019-1738-8. arXiv:1812.00661.

[4] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, Li Fei-Fei, Imagenet: a large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255, https://doi.org/10.1109/
CVPR.2009.5206848.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, M. Yasuda, Less is
more: trading a little bandwidth for Ultra-Low latency in the data center, in: 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),
USENIX Association, San Jose, CA, 2012, pp. 253–266. https://www.usenix.org
/conference/nsdi12/technical-sessions/presentation/alizadeh.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, S. Shenker,
Pfabric: minimal near-optimal datacenter transport, SIGCOMM Comput. Commun.
Rev. 43 (4) (2013) 435–446, https://doi.org/10.1145/2534169.2486031.

[7] W. Bai, L. Chen, K. Chen, H. Wu, Enabling ecn in multi-service multi-queue data
centers, in: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), USENIX Association, Santa Clara, CA, 2016,
pp. 537–549. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/bai.

[8] Yahoo, Yahoo Computing Systems Data, Tech. Rep., 2015 https://webscope.
sandbox.yahoo.com/catalog.php?datatype=s{&}guccounter=1.

[9] Google, Google Cluster Workload, Tech. Rep., 2015 https://github.com/google/clu
ster-data.

[10] Facebook, Facebook Workload Repository, Tech. Rep., 2014 https://github.
com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.

[11] OpenCloud, OpenCloud Hadoop Workload, Tech. Rep., 2012 http://ftp.pdl.cmu.ed
u/pub/datasets/hla/.

[12] K. Ren, G. Gibson, Y. Kwon, M. Balazinska, B. Howe, Hadoop’s adolescence; A
comparative workloads analysis from three research clusters, in: High Performance
Computing, Networking, Storage and Analysis (SCC), 2012, p. 1452, https://doi.
org/10.1109/SC.Companion.2012.253.

[13] Eucalyptus, Eucalyptus IaaS Cloud Workload, Tech. Rep., 2015 https://sites.cs.
ucsb.edu/{~}rich/workload/.

[14] A. Pucher, E. Gul, R. Wolski, C. Krintz, Using trustworthy simulation to engineer
cloud schedulers, in: 2015 IEEE International Conference on Cloud Engineering,
2015, pp. 256–265, https://doi.org/10.1109/IC2E.2015.14.

[15] R. Wolski, J. Brevik, Qpred, Using quantile predictions to improve power usage for
private clouds, in: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), 2017, pp. 179–187, https://doi.org/10.1109/CLOUD.2017.31.

[16] Delft, GWA-T-12 Bitbrains Trace, Tech. Rep., 2015 http://gwa.ewi.tudelft.nl/datas
ets/gwa-t-12-bitbrains.

[17] S. Shen, V. Van Beek, A. Iosup, Statistical characterization of business-critical
workloads hosted in cloud datacenters, in: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 465–474, https://
doi.org/10.1109/CCGrid.2015.60.

[18] JSSPP, JSSPP Workloads Archive, Tech. Rep., 2017 https://jsspp.org/workload/.
[19] D. Klusáček, B. Parák, Analysis of mixed workloads from shared cloud

infrastructure, in: D. Klusáček, W. Cirne, N. Desai (Eds.), Job Scheduling Strategies
for Parallel Processing, Springer International Publishing, Cham, 2017, pp. 25–42.

[20] Azure, Azure Public Dataset, Tech. Rep., 2017 https://github.com/Azure/Azure
PublicDataset.

[21] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini, Resource
central: understanding and predicting workloads for improved resource
management in large cloud platforms, in: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, Association for Computing Machinery,
New York, NY, USA, 2017, pp. 153–167, https://doi.org/10.1145/
3132747.3132772.

[22] Alibaba, Alibaba Cluster Trace, Tech. Rep., 2017 https://github.com/alibaba/cl
usterdata.

[23] C. Lu, K. Ye, G. Xu, C. Xu, T. Bai, Imbalance in the cloud: an analysis on alibaba
cluster trace, in: 2017 IEEE International Conference on Big Data (Big Data), 2017,
pp. 2884–2892, https://doi.org/10.1109/BigData.2017.8258257.

[24] LANL, TwoSigma, ATLAS Traces Repository, Tech. Rep., 2018 https://ftp.pdl.cmu.
edu/pub/datasets/ATLAS/.

[25] G. Amvrosiadis, The Atlas cluster trace repository, USENIX 43 (4) (2018).
[26] G. Amvrosiadis, J.W. Park, G.R. Ganger, G.A. Gibson, E. Baseman,

N. DeBardeleben, On the diversity of cluster workloads and its impact on research
results, in: 2018 USENIX Annual Technical Conference (USENIX ATC 18), USENIX
Association, Boston, MA, 2018, pp. 533–546. https://www.usenix.org/conference
/atc18/presentation/amvrosiadis.

[27] NCSA, Blue Waters HPC Cluster Trace, Tech. Rep., 2018 https://github.
com/CSLDepend/monet.

[28] S. Jha, A. Patke, J. Brandt, A. Gentile, M. Showerman, E. Roman, Z.T. Kalbarczyk,
B. Kramer, R.K. Iyer, A study of network congestion in two supercomputing high-
speed interconnects, in: 2019 IEEE Symposium on High-Performance Interconnects
(HOTI), 2019, pp. 45–48, https://doi.org/10.1109/HOTI.2019.00024.

[29] S. Jha, A. Patke, J. Brandt, A. Gentile, B. Lim, M. Showerman, G. Bauer, L. Kaplan,
Z. Kalbarczyk, W. Kramer, R. Iyer, Measuring congestion in high-performance

datacenter interconnects, in: 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), USENIX Association, Santa Clara, CA, 2020,
pp. 37–57. https://www.usenix.org/conference/nsdi20/presentation/jha.

[30] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers in
the wild, in: Proceedings of the ACM SIGCOMM Internet Measurement Conference,
IMC, 2010, pp. 267–280, https://doi.org/10.1145/1879141.1879175.

[31] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of data
center traffic: measurements &; analysis, in: Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, IMC ’09, Association for
Computing Machinery, New York, NY, USA, 2009, pp. 202–208, https://doi.org/
10.1145/1644893.1644918.

[32] T. Benson, A. Anand, A. Akella, M. Zhang, Understanding data center traffic
characteristics, SIGCOMM Comput, Commun. Rev. 40 (1) (2010) 92–99, https://
doi.org/10.1145/1672308.1672325.

[33] A. Roy, H. Zeng, J. Bagga, G. Porter, A.C. Snoeren, Inside the social network’s
(datacenter) network, in: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, Association for Computing
Machinery, New York, NY, USA, 2015, pp. 123–137, https://doi.org/10.1145/
2785956.2787472.

[34] H. Li, Realistic workload modeling and its performance impacts in large-scale
escience grids, IEEE Trans. Parallel Distr. Syst. 21 (4) (2010) 480–493, https://doi.
org/10.1109/TPDS.2009.99.

[35] D.G. Feitelson, Metric and workload effects on computer systems evaluation,
Computer 36 (9) (2003) 18–25, https://doi.org/10.1109/MC.2003.1231190.

[36] C. Rao, Diversity and dissimilarity coefficients: a unified approach, Theor. Popul.
Biol. 21 (1) (1982) 24–43, https://doi.org/10.1016/0040-5809(82)90004-1.

[37] J. Lin, Divergence measures based on the shannon entropy, IEEE Trans. Inf. Theor.
37 (1) (1991) 145–151, https://doi.org/10.1109/18.61115.

[38] D. Abts, M.R. Marty, P.M. Wells, P. Klausler, H. Liu, Energy proportional
datacenter networks, in: Proceedings - International Symposium on Computer
Architecture, 2010, pp. 338–347, https://doi.org/10.1145/1815961.1816004.

[39] Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White
Paper - Cisco, Tech. Rep, 2018. https://www.cisco.com/c/en/us/solutions/colla
teral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html.

[40] IDG, Cloud Computing Survey, Tech. Rep., 2018.
[41] J. Webster, SERIES 7000 - 384x384 port Software-Defined Optical Circuit Switch

[Online]. Available: https://www.polatis.com/series-7000-384x384-port-soft
ware-controlled-optical-circuit-switch-sdn-enabled.asp.

[42] N. Farrington, G. Porter, S. Radhakrishnan, H.H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, A. Vahdat, Helios: a Hybrid Electrical/optical Switch
Architecture for Modular Data Centers, SIGCOMM, 2010.

[43] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S.R. Das, J.P. Longtin, H. Shah,
A. Tanwer, FireFly: a reconfigurable wireless data center fabric using free-space
optics, SIGCOMM Comput. Commun. Rev. 44 (4) (2014) 319–330, https://doi.org/
10.1145/2740070.2626328.

[44] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, Y. Chen,
OSA: an optical switching architecture for data center networks with
unprecedented flexibility, IEEE/ACM Trans. Netw. 22 (2) (2014) 498–511, https://
doi.org/10.1109/TNET.2013.2253120.

[45] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G.M. Voelker, G. Papen, A.
C. Snoeren, G. Porter, Circuit switching under the radar with REACToR, in:
Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14, USENIX Association, Berkeley, CA, USA, 2014,
pp. 1–15. http://dl.acm.org/citation.cfm?id=2616448.2616450.

[46] N. Farrington, A. Forencich, G. Porter, P. Sun, J.E. Ford, Y. Fainman, G.C. Papen,
A. Vahdat, A multiport microsecond optical circuit switch for data center
networking, IEEE Photon. Technol. Lett. 25 (16) (2013) 1589–1592, https://doi.
org/10.1109/LPT.2013.2270462.

[47] W.M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A.C. Snoeren,
G. Porter, RotorNet: a scalable, low-complexity, optical datacenter network, in:
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, ACM, New York, NY, USA, 2017, pp. 267–280,
https://doi.org/10.1145/3098822.3098838.

[48] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik, F. Karinou,
S. Lange, B. Thomsen, K. Shi, H. Williams, Sirius: a flat datacenter network with
nanosecond optical switching, in: SIGCOMM, ACM, 2020. https://www.microsoft.
com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanoseco
nd-optical-switching/.

[49] 800G: Coherent versus PAM4 Optical Transceivers inside Data Centers, Sep 2019
[Online]. Available: https://www.neophotonics.com/800g-coherent-versus-pa
m4-optical-transceivers-data-centers/.

[50] At a Glance: Tomahawk 3 is the first 12.8 Tb/s chip to achieve mass production
[Online]. Available: https://www.broadcom.com/blog/at-a-glance-tomahawk-3-i
s-the-first-12-8-tb-s-chip-to-achieve-mass-production.

[51] J. Benjamin, Towards Sub-microsecond Optical Circuit Switched Networks for
Future Data Centers (Ph.D. thesis), University College London, 2020.

[52] T. Gerard, C. Parsonson, Z. Shabka, B. Thomsen, P. Bayvel, D. Lavery, G. Zervas,
AI-optimised tuneable sources for bandwidth-scalable, sub-nanosecond wavelength
switching, Opt. Express 29 (7) (2021) 11221–11242, https://doi.org/10.1364/
OE.417272. http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221.

[53] J.L. Benjamin, C.W.F. Parsonson, G. Zervas, Benchmarking packet-granular OCS
network scheduling for data center traffic traces, in: OSA Advanced Photonics
Congress 2021, Optica Publishing Group, 2021, https://doi.org/10.1364/
NETWORKS.2021.NeW3B.3 p. NeW3B.3, http://opg.optica.org/abstract.cfm?URI
=Networks-2021-NeW3B.3.

C.W.F. Parsonson et al.

https://github.com/cwfparsonson/trafpy
https://github.com/cwfparsonson/trafpy
https://doi.org/10.5522/04/14815853
https://doi.org/10.5522/04/14815853
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://doi.org/10.1145/2534169.2486031
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://webscope.sandbox.yahoo.com/catalog.php%3fdatatype%3ds%7b%26%7dguccounter%3d1
https://webscope.sandbox.yahoo.com/catalog.php%3fdatatype%3ds%7b%26%7dguccounter%3d1
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
http://ftp.pdl.cmu.edu/pub/datasets/hla/
http://ftp.pdl.cmu.edu/pub/datasets/hla/
https://doi.org/10.1109/SC.Companion.2012.253
https://doi.org/10.1109/SC.Companion.2012.253
https://sites.cs.ucsb.edu/%7b%7e%7drich/workload/
https://sites.cs.ucsb.edu/%7b%7e%7drich/workload/
https://doi.org/10.1109/IC2E.2015.14
https://doi.org/10.1109/CLOUD.2017.31
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://doi.org/10.1109/CCGrid.2015.60
https://doi.org/10.1109/CCGrid.2015.60
https://jsspp.org/workload/
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref19
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref19
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref19
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://doi.org/10.1109/BigData.2017.8258257
https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/
https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref25
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://github.com/CSLDepend/monet
https://github.com/CSLDepend/monet
https://doi.org/10.1109/HOTI.2019.00024
https://www.usenix.org/conference/nsdi20/presentation/jha
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1644893.1644918
https://doi.org/10.1145/1644893.1644918
https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1109/TPDS.2009.99
https://doi.org/10.1109/TPDS.2009.99
https://doi.org/10.1109/MC.2003.1231190
https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.1109/18.61115
https://doi.org/10.1145/1815961.1816004
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref40
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref42
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref42
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref42
https://doi.org/10.1145/2740070.2626328
https://doi.org/10.1145/2740070.2626328
https://doi.org/10.1109/TNET.2013.2253120
https://doi.org/10.1109/TNET.2013.2253120
http://dl.acm.org/citation.cfm?id=2616448.2616450
https://doi.org/10.1109/LPT.2013.2270462
https://doi.org/10.1109/LPT.2013.2270462
https://doi.org/10.1145/3098822.3098838
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/
https://www.broadcom.com/blog/at-a-glance-tomahawk-3-is-the-first-12-8-tb-s-chip-to-achieve-mass-production
https://www.broadcom.com/blog/at-a-glance-tomahawk-3-is-the-first-12-8-tb-s-chip-to-achieve-mass-production
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref51
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref51
https://doi.org/10.1364/OE.417272
https://doi.org/10.1364/OE.417272
http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221
https://doi.org/10.1364/NETWORKS.2021.NeW3B.3
https://doi.org/10.1364/NETWORKS.2021.NeW3B.3
http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3
http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3

Optical Switching and Networking 46 (2022) 100695

34

[54] C.X. Cai, S. Saeed, I. Gupta, R.H. Campbell, F. Le, Phurti: application and network-
aware flow scheduling for multi-tenant mapreduce clusters, in: 2016 IEEE
International Conference on Cloud Engineering (IC2E), 2016, pp. 161–170,
https://doi.org/10.1109/IC2E.2016.21.

[55] C.-Y. Hong, M. Caesar, P.B. Godfrey, Finishing flows quickly with preemptive
scheduling, in: Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, Association for Computing Machinery, New York,
NY, USA, 2012, pp. 127–138, https://doi.org/10.1145/2342356.2342389.

[56] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera:
dynamic flow scheduling for data center networks, in: Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, NSDI’10,
USENIX Association, USA, 2010, p. 19.

[57] T. Benson, A. Anand, A. Akella, M. Zhang, Microte: fine grained traffic engineering
for data centers, in: Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, CoNEXT ’11, Association for
Computing Machinery, New York, NY, USA, 2011, https://doi.org/10.1145/
2079296.2079304.

[58] J.L. Benjamin, T. Gerard, D. Lavery, P. Bayvel, G. Zervas, PULSE: optical circuit
switched data center architecture operating at nanosecond timescales,
J. Lightwave Technol. 38 (18) (2020) 4906–4921. http://jlt.osa.org/abstract.cfm?
URI=jlt-38-18-4906.

[59] C.W.F. Parsonson, Z. Shabka, W.K. Chlupka, B. Goh, G. Zervas, Optimal control of
soas with artificial intelligence for sub-nanosecond optical switching, J. Lightwave
Technol. 38 (20) (2020) 5563–5573, https://doi.org/10.1109/JLT.2020.3004645.

[60] T. Gerard, C. Parsonson, Z. Shabka, P. Bayvel, D. Lavery, G. Zervas, Swift: Scalable
Ultra-wideband Sub-nanosecond Wavelength Switching for Data Centre Networks,
2020, https://doi.org/10.48550/ARXIV.2003.05489. https://arxiv.org/abs/2
003.05489.

[61] A. Paliwal, F. Gimeno, V. Nair, Y. Li, M. Lubin, P. Kohli, O. Vinyals, Reinforced
Genetic Algorithm Learning for Optimizing Computation Graphs, 2019. arXiv:
1905.02494.

[62] Z. Shabka, G. Zervas, Nara: Learning Network-Aware Resource Allocation
Algorithms for Cloud Data Centres, 2021. arXiv:2106.02412.

[63] Joshua Benjamin L., Alessandro Ottino, Christopher Parsonson W. F.,
Georgios Zervas, Traffic tolerance of nanosecond scheduling on optical circuit
switched data center network, Optical Fiber Communications Conference and
Exhibition (OFC) (2022) 1–3.

[64] Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, Vaibhawa Mishra,
Optically disaggregated data centers with minimal remote memory latency:
technologies, architectures, and resource allocation, J. Opt. Commun. Netw. 10 (2)
(2018) A270–A285.

[65] Vaibhawa Mishra, Joshua Benjamin L., Georgios Zervas, MONet: heterogeneous
Memory over Optical Network for large-scale data center resource disaggregation,
J. Opt. Commun. Netw. 13 (5) (2021) 126–139.

[66] Mehrdad Khani, et al., SiP-ML: high-bandwidth optical network interconnects for
machine learning training, SIGCOMM (2021) 657–675.

C.W.F. Parsonson et al.

https://doi.org/10.1109/IC2E.2016.21
https://doi.org/10.1145/2342356.2342389
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref56
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref56
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref56
http://refhub.elsevier.com/S1573-4277(22)00031-5/sref56
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
http://jlt.osa.org/abstract.cfm?URI=jlt-38-18-4906
http://jlt.osa.org/abstract.cfm?URI=jlt-38-18-4906
https://doi.org/10.1109/JLT.2020.3004645
https://doi.org/10.48550/ARXIV.2003.05489
https://arxiv.org/abs/2003.05489
https://arxiv.org/abs/2003.05489
http://refhub.elsevier.com/S1573-4277(22)00031-5/optvT1JDWtvLq
http://refhub.elsevier.com/S1573-4277(22)00031-5/optvT1JDWtvLq
http://refhub.elsevier.com/S1573-4277(22)00031-5/optvT1JDWtvLq
http://refhub.elsevier.com/S1573-4277(22)00031-5/optvT1JDWtvLq
http://refhub.elsevier.com/S1573-4277(22)00031-5/opt4ddA9V6l7t
http://refhub.elsevier.com/S1573-4277(22)00031-5/opt4ddA9V6l7t
http://refhub.elsevier.com/S1573-4277(22)00031-5/opt4ddA9V6l7t
http://refhub.elsevier.com/S1573-4277(22)00031-5/opt4ddA9V6l7t
http://refhub.elsevier.com/S1573-4277(22)00031-5/optMZcyxJyWXL
http://refhub.elsevier.com/S1573-4277(22)00031-5/optMZcyxJyWXL
http://refhub.elsevier.com/S1573-4277(22)00031-5/optMZcyxJyWXL
http://refhub.elsevier.com/S1573-4277(22)00031-5/optGSQ5bwRcTF
http://refhub.elsevier.com/S1573-4277(22)00031-5/optGSQ5bwRcTF

	Traffic generation for benchmarking data centre networks
	1 Introduction
	2 Related work
	3 Proposed framework
	3.1 Design objectives
	3.2 TrafPy overview
	3.2.1 Flow traffic
	3.2.2 TrafPy distributions

	3.3 Accuracy and reproducibility of distributions
	3.4 Node distributions
	3.5 Traffic generation methodology
	3.5.1 Traffic generation guidelines

	4 Optical networks
	4.1 Limitations of current electronic packet switched networks
	4.2 Optical circuit switched networks

	5 Experiment
	5.1 Network
	5.2 Traffic traces
	5.2.1 ‘Realistic’ DCN traces
	5.2.2 ‘Extreme’ skewed node and rack sensitivity traces

	5.3 Simulation details

	6 Results
	7 Conclusion & further work
	Author statement
	Declaration of competing interest
	Appendix A Table of Notation
	Appendix B TrafPy Distribution Parameters
	Appendix C TrafPy API Examples
	Appendix C.1 Custom Distribution Shaping
	Appendix C.1.1 Interactively & Visually Shaping a Custom ‘Named’ Distribution in a Jupyter Notebook
	Appendix C.1.2 Interactively & Visually Shaping a Custom ‘Multimodal’ Distribution in a Jupyter Notebook

	Appendix C.2 Benchmark Importing & Flow Generation

	Appendix D Pseudocode
	Appendix D.1 Scheduling
	Appendix D.2 TrafPy Benchmark Protocol

	Appendix E Traffic Skew Convergence
	Appendix F Scheduler Performance Summary
	Appendix F.1 Completion Time Performance Plots
	Appendix F.2 Throughput and Flows Accepted Performance Plots
	Appendix F.3 Performance Metric Tables
	Appendix F.3.1 DCN Benchmarks
	Appendix F.3.2 Skewed Nodes Distribution Benchmark
	Appendix F.3.3 Rack Distribution Benchmark

	Appendix F.4 Winner Tables

	Appendix G A Note on the Flow- vs. Job-Centric Traffic Paradigms
	References

