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A B S T R A C T   

Benchmarking is commonly used in research fields, such as computer architecture design and machine learning, 
as a powerful paradigm for rigorously assessing, comparing, and developing novel technologies. However, the 
data centre network (DCN) community lacks a standard open-access and reproducible traffic generation 
framework for benchmark workload generation. Driving factors behind this include the proprietary nature of 
traffic traces, the limited detail and quantity of open-access network-level data sets, the high cost of real world 
experimentation, and the poor reproducibility and fidelity of synthetically generated traffic. This is curtailing the 
community’s understanding of existing systems and hindering the ability with which novel technologies, such as 
optical DCNs, can be developed, compared, and tested. 

We present TrafPy; an open-access framework for generating both realistic and custom DCN traffic traces. 
TrafPy is compatible with any simulation, emulation, or experimentation environment, and can be used for 
standardised benchmarking and for investigating the properties and limitations of network systems such as 
schedulers, switches, routers, and resource managers. We give an overview of the TrafPy traffic generation 
framework, and provide a brief demonstration of its efficacy through an investigation into the sensitivity of some 
canonical scheduling algorithms to varying traffic trace characteristics in the context of optical DCNs. TrafPy is 
open-sourced via GitHub and all data associated with this manuscript via RDR.   

1. Introduction 

A benchmark is a series of experiments performed within some 
standard framework to measure the performance of an object. 
Researching data centre network (DCN) systems and objects such as 
networks, resource managers, and topologies involves understanding 
which types of mechanisms, principles or architectures are general-
isable, scalable and performant when deployed in real world environ-
ments. Benchmarking is a powerful paradigm for investigating such 
questions, and has proved to be a strong driving force behind innovation 
in a variety of fields [3]. A famous example of a successful benchmark is 
the ImageNet project [4], which has facilitated a range of significant 
discoveries in the field of deep learning over the last decade. 

In order to benchmark a DCN system, a traffic trace with which to 
load the network is required. This presents several challenges: (i) Data 
related to DCNs are often considered privacy-sensitive and proprietary 
to the owner, therefore few DCN traffic traces are openly available; (ii) 
when a real DCN trace is made available, it is often specific to a 
particular DCN and possibly not representative of current and future 
systems, too limited for cutting-edge data-hungry applications such as 

reinforcement learning, and not sufficient for stress-testing different 
loads in networks with arbitrary capacities to understand system limi-
tations and vulnerabilities to future workloads; (iii) even if an attempt is 
made to make a real DCN available for live testing, deploying experi-
mental systems in such large-scale production environments is often too 
expensive and time consuming; and (iv) reducing or approximating DCN 
traffic down to small-scale experiments is often unfruitful since many 
DCN application traffic patterns only emerge at large scales. 

For these reasons, most DCN researchers revert to simulating DCN 
traffic in order to conduct their experiments. However, synthetic DCN 
traffic generation is often plagued by numerous inadequacies. A com-
mon simplification approach is to assume uniform or ‘named’ (Gaussian, 
Pareto, log-normal, etc.) distributions from which to sample DCN traffic 
characteristics. However, such distributions often ignore fluctuations 
caused by the short bursty nature of real DCN traffic, rendering the 
simulation unrealistically simple. Sometimes researchers will try to 
implement their own unique distributions to better describe real DCN 
traffic, however this brings difficulties with trying to reproduce and 
benchmark against literature reports since there is no standard frame-
work for doing so. Another common approach is to only focus on the 
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temporal (arrival time) dependence of DCN traffic characteristics and 
assume uniform spatial (server-to-server) dependencies. However, this 
fails to capture the spatial variations in server-to-server communication 
which are needed to accurately mimic real traffic. Works by Alizadeh 
et al. [5,6] and Bai et al. [7] introduced important DCN systems, but the 
traffic generators released with their papers fall short of addressing the 
issues of fidelity, reproducibility, and compatibility with generic 
network architectures (see Section 2). 

These difficulties with simulating DCN traffic have meant that no 
traffic generation framework, and subsequently no universal DCN sys-
tem benchmark, has emerged as the networking research field’s tool-of- 
choice. The lack of a rigorous benchmarking framework has been a 
major issue in DCN literature since individual researchers have often 
used their own tests without adhering to the aforementioned re-
quirements. This has limited reproducibility, stifled network object 
prototype benchmarking, and hindered training data supply for novel 
machine learning systems. Without benchmarking, it is difficult to sys-
tematically and consistently test and validate new heuristics for specific 
tasks such as flow scheduling. Furthermore, without sufficient training 
data, state-of-the-art machine learning models are less able to replace 
existing heuristics. 

To address the lack of openly available traffic data sets, the afore-
mentioned problems with simulation, and the absence of a system 
benchmark, a common DCN traffic generation framework is needed. We 
introduce TrafPy: An open-source Python API for realistic and custom 
DCN traffic generation for any network under arbitrary loads, which can 
in turn be used for investigating a variety of network objects such as 
networks, schedulers, buffer managers, switch/route architectures, and 
topologies. TrafPy is open-access via GitHub [1] and all data associated 
with this manuscript via RDR [2]. TrafPy contributes two key novel 
ideas to traffic generation, which we detail in this paper: 

1. Reproducibility guarantee A novel method for providing a distri-
bution reproducibility guarantee when generating traffic based on 
the Jensen-Shannon distance metric (see Section 3.3).  

2. Traffic generation algorithm: A novel method for efficiently 
creating reproducible flow-level traffic with granular control over 
both spatial and temporal characteristics (see Section 3.5). 

In addition to the above, TrafPy also contains the following features 
which, when combined with these novel aspects, make TrafPy a useful 
tool for benchmark workload generation:  

⋅ Interactivity: A distribution shaping tool for rapid creation of 
complex distributions which accurately mimic realistic workloads 
given only high-level characteristic descriptions (see Appendix C).  

⋅ Compatibility: Compatibility with any simulation, emulation, or 
experimentation environment by exporting traffic into universally 
compatible file formats; and  

⋅ Accessibility: Open-source code and documentation with a low 
barrier to entry. 

2. Related work 

While there is limited literature on DCN traffic generation, data sets, 
and benchmarking for the reasons outlined in Section 1, there have been 
notable works striving towards their creation. 

Real workloads There are a collection of publicly available DCN 
workload traces and job computation graph data sets [8–29]. However, 
almost all of these stem from Hadoop clusters and are limited to data 
mining applications [14], therefore their use is primarily suited to 
application-specific testing and evaluation rather than as a generic tool 
for generating arbitrary loads and testing and designing DCN systems as 
TrafPy is proposed for. Additionally, many of them lack flow-level data, 
which is needed to accurately benchmark network systems. 

Real workload characteristics There is a limited body of work, 

primarily from private corporations, aiming to characterise real DCN 
workloads without open-accessing the underlying proprietary raw data. 
Benson et al. [30] built on work done by Kandula et al. [31] and Benson 
et al. [32] by characterising DCN traffic into one of three categories; 
university, private enterprise, and commercial cloud DCNs. They iden-
tified that each of these categories serviced different applications and 
therefore had different traffic patterns. University DCNs serviced ap-
plications such as database backups, distributed file system hosting (e.g. 
email servers, web services for faculty portals, etc.), and multicast video 
streams. Private enterprise hosted the same applications as university 
DCNs but additionally serviced a significant number of custom appli-
cations and development test beds. Commercial cloud DCNs focused 
more on internet-facing applications (e.g. search indexing, webmail, 
video, etc.), and intensive data mining and MapReduce-style jobs. They 
also went further than prior works by quantifying the number of hot 
spots and characterising the flow-level properties of DCN traffic. 

The above cloud DCN studies came almost exclusively from Micro-
soft, who primarily service MapReduce-style applications. Roy et al. 
[33] broke this homogeneous view of cloud traffic by reporting the 
traffic characteristics of Facebook’s DCNs, thereby introducing a fourth 
DCN category; social media cloud DCNs. Social media cloud applications 
include generating responses to web requests (email, messenger, etc.), 
MySQL database storage and cache querying, and newsfeed assembly. 
This results in network traffic being more uniform and, in contrast to 
Microsoft’s commercial cloud DCNs, having a much lower proportion 
(12.9%) of traffic being intra-rack. 

Note that the above examples did not open-access the full data sets, 
but rather provided quantitative characterisations of their nature for 
other researchers to inform their own traffic generators. 

Traffic generators In their seminal pFabric work, Alizadeh et al. [6] 
provided open-access traffic generation code which loosely replicated 
web search and data mining DCN workloads by following a Poisson flow 
inter-arrival time distribution whose arrival rate was adjusted to meet a 
required target load and with a mix of small and large characteristically 
heavy-tailed flow sizes. Additionally, the same authors [5] released a 
simple generator which used a server application to create many-to-one 
flow requests from 9 servers, again following a load-adjustable Poisson 
arrival time distribution with 80% of flows having a size of 1 kB (a single 
packet) and 20% being 10 MB. As the authors noted themselves, these 
workloads were not intended to be realistic, but rather were designed to 
demonstrate clear impact comparisons between different DCN design 
schemes and the small latency-sensitive and large bandwidth-sensitive 
flows. TrafPy, on the other hand, can facilitate the shaping of complex 
inter-arrival and flow size distributions with one-to-one, many-to-one, 
and one-to-many non-uniform server-server distributions with ease. 
Furthermore, TrafPy enables the generation of traffic with the same 
characteristics as Alizadeh et al. [5,6], but for any network topology 
with an arbitrary number of servers and link capacities, allowing for the 
straightforward comparison of novel DCN fabrics with pre-established 
benchmark workloads. 

Similarly, Bai et al. [7] conducted an extensive experiment into the 
trade-off between throughput, latency, and weighted fair sharing in 
scenarios where each switch port had multiple queues. Alongside their 
study they released an open-access traffic generator which could take a 
configuration file as input and generate both uniform and non-uniform 
server-server flow requests from pre-defined discrete probability distri-
butions. However, to produce traffic, users had to manually enter 
numbers into a configuration file, which made the code difficult to use. 
Furthermore, Bai et al.’s generator had no mechanism for ensuring 
distribution reproducibility when sampling from a pre-defined proba-
bility distribution; a feat achieved by TrafPy via the Jensen-Shannon 
distance method (see Section 3.3). 

The key objective of TrafPy is to augment DCN research projects such 
as those cited above [5–7]. Unlike our work, the primary focus of such 
projects was not on the traffic generator itself, but rather on using traffic 
generation as a means of benchmarking innovative ideas. We posit that 
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the fidelity, generality, reproducibility, and compatibility of TrafPy, 
achieved by generating custom server-level flow traffic, would make 
such works easier to conduct and to compare against as baselines in 
future projects. 

3. Proposed framework 

3.1. Design objectives 

Designing successful network object benchmarks requires a flexible, 
modular, and reproducible traffic generation framework. The frame-
work should enable fair comparisons between different systems whilst 
maintaining a rigorous experimental setting. In light of the issues 
highlighted in Section 1, the following criteria are required of such a 
framework:  

1 Fidelity: Generate demands which represent realistic DCN traffic.  
2 Generality: Generate traffic for arbitrary DCN applications and 

topologies.  
3 Scalability: Efficiently scale to large networks.  
4. Reproducibility: Reliably reproduce traffic traces to run multiple test 

repeats or to reproduce other researchers’ traffic conditions.  
5. Repeatability: Summarise traffic distributions such that, given just a 

few parameters, other researchers can repeat the demand data set for 
cross-validation and comparison.  

6. Replicability: Interactively shape characteristic distributions visually 
to replicate realistic data given only a plot or written description (i.e. 
in the absence of raw data).  

7. Compatibility: Export generated demands into universally compatible 
data formats such that they can be imported into any simulation, 
emulation, or experimentation test bed.  

8. Comparability: Compare a set of standardised performance metrics 
across different studies. 

3.2. TrafPy overview 

An overview of the TrafPy API user experience is given in Fig. 1 and 
further elaborated on throughout this manuscript, with Table A.1 
summarising the notation used and some API examples given in Ap-
pendix C. The core component of TrafPy is the Generator, which can be 
used for generating custom, literature, or standard benchmark network 
traffic traces. These traces can be saved in standard formats (e.g. JSON, 
CSV, pickle, etc.) and imported into any script or network simulator. 
Researchers can therefore design their systems and experiments inde-
pendently of TrafPy and use their own programming languages, making 

TrafPy compatible with already-developed research projects and future 
network objects. This also means that TrafPy can be used with any 
simulation, emulation, or experimentation test bed. The Generator has 
an optional interactive visual tool for shaping and reproducing distri-
butions, therefore little to no programming experience is required to use 
it to generate and save traffic data in standard formats. As the nature of 
DCN traffic changes, new traffic distributions can be generated with 
TrafPy and state-of-the-art benchmarks established. 

3.2.1. Flow traffic 
The flow-centric paradigm considers a single demand as a flow, 

which is a task demanding some information be sent from a source node 
to a destination node in the network. Flow characteristics include size 
(how much information to send), arrival time (the time the flow arrives 
ready to be transported through the network, as derived from the 
network-level inter-arrival time which is the time between a flow’s time 
of arrival and its predecessor’s), and source-destination node pair (which 
machine the flow is queued at and where it is requesting to be sent). 
Together, these characteristics form a network-level source-destination 
node pair distribution (‘how much’ (as measured by either probability or 
load) each machine tends to be requested by arriving flows). When a 
new flow arrives at a source and requests to be sent to a destination, it 
can be stored in a buffer until completed (all information fully trans-
ferred) or, if the buffer is full, dropped. Once dropped or completed, the 
flow is not re-used. 

3.2.2. TrafPy distributions 
At the heart of TrafPy are two key notions; that no raw data should be 

required to produce network traffic, and that every aspect of the API 
should be parameterised for reproducibility. To achieve the first, rather 
than using clustering and autoregressive models to fit distributions to 
data [34,35], TrafPy provides an interactive tool for visually shaping 
distributions. This way, researchers need only have either a written (e.g. 
‘the data followed a Pareto distribution with 90% of the values less than 
1’) or visual description of a traffic trace’s characteristics in order to 
produce it. To achieve the second, all distributions are parameterised by 
a handful of parameters (termed D′; see Appendix B for an example of 
the parameters used in this paper), and a third party need only see D′ in 
order to reproduce the original distribution. As such, TrafPy traces are 
discrete distributions in the form of hash tables, which can be sampled at 
run-time to generate flows. These tables map each possible value taken 
by all flow characteristics to fractional values which represent either the 
‘probability of occurring’ for size and time distributions, or the ‘fraction 
of the overall traffic load requested’ for node distributions. This enables 
traffic traces to be generated from common TrafPy benchmarks for 

Fig. 1. TrafPy API user experience for using custom or benchmark TrafPy parameters D′ to make flow traffic trace D with maximum Jensen-Shannon distance 
threshold 

̅̅̅̅̅̅̅̅
JSD

√
and minimum flow arrival duration tt,min for m loads {ρ1, …, ρm}. The generated trace D can then be used to benchmark a DCN system test object (e.g. 

a scheduler) in a test bed (a simulation, emulation, or experimentation environment) to measure the key performance indicators PKPI. The user need only use TrafPy 
to generate the traffic; all other tasks can be done externally to TrafPy in any programming language. 
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custom network systems in a reproducible manner without needing to 
reformat the original data in order to make it compatible with new 
systems and topologies, as would be needed if the benchmarks were 
hard-coded request data sets instead of distributions. 

3.3. Accuracy and reproducibility of distributions 

All TrafPy distributions are summarised by a set of parameters D′. 
Once D′ has been established (by e.g. the community as a benchmark or 
a researcher as a custom stress-test or future workload trace), TrafPy 
must be able to reliably and accurately reproduce (via sampling) the 
‘original’ distribution parameterised by D′ each time a new set of traffic 
data is generated. Therefore, a guarantee that the sampled distribution 
will be close to the original is required to ensure reproducibility. TrafPy 
utilises the Jensen-Shannon Divergence (JSD) [36,37] to quantify how 
distinguishable discrete probability distributions are from one another. 
Given a set of n probability distributions {P1,…,Pn}, a corresponding set 
of weights {π1, …, πn} to quantify the contribution of each distribution’s 
entropy to the overall similarity metric, and the entropy H(Pi) of a 
discrete distribution with m random variables Xi = {xi

1,…, xi
m} which 

occur with probability Pi = {Pi(xi
1),…,Pi(xi

m)} where H(Xi) = −
∑m

j=1Pi(xi
j)logPi(xi

j), the JSD between the distributions can be calculated 
as in Equation (1). In the context of TrafPy, the Pi distributions are the 
hash tables of variable value-fraction pairs and the weights are simply 
set to 1. 

JSDπ1 ,…,πn (P1,…,Pn) = H

(
∑n

i=1
πiPi

)

−
∑n

i=1
πiH(Pi) (1) 

The square root of the Jensen-Shannon Divergence gives the Jensen- 
Shannon distance [37], which is a metric between 0 and 1 used to 
describe the similarity between distributions (0 being exactly the same, 
1 being completely different). The TrafPy API enables users to specify 
their own maximum 

̅̅̅̅̅̅̅̅
JSD

√
threshold, 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
, when sampling data 

from a set of original distributions to create their own data set(s). A 
lower distance requires that the sampled distributions be more similar to 
the original distributions. TrafPy will automatically sample more de-
mands until, by the law of large numbers, the user-specified 

̅̅̅̅̅̅̅̅
JSD

√

threshold is met. 
Fig. 2 shows how, for an example benchmark’s flow size and inter- 

arrival time distribution, the 
̅̅̅̅̅̅̅̅
JSD

√
between the original and the 

sampled distributions changes with the number of samples (number of 
demands). As shown, most characteristic parameters (mean, minimum, 
maximum, and standard deviation) of the sampled distributions 
converge at 

̅̅̅̅̅̅̅̅
JSD

√
≈ 0.1; a threshold reached after 137,435 demands for 

the flow size distribution and 27,194 for the inter-arrival times. The 
greater the number of possible random variable values and complexity 
in the original distribution, the more demands which will be needed to 
lower the 

̅̅̅̅̅̅̅̅
JSD

√
. The distribution which requires the most demands to 

meet the 
̅̅̅̅̅̅̅̅
JSD

√
threshold will determine the minimum number of de-

mands needed for the generated flow data set to accurately reproduce 
the original set from which it is sampled. 

3.4. Node distributions 

‘Node distributions’ are a mapping of how much each machine 
(network node) pair tends to be requested by arriving flows, as measured 
by the pair’s load (flow information arriving per unit time), to form a 
source-destination pair matrix. These distributions can be defined 
explicitly on a per-node basis. However, explicit mappings would result 
in D′ being defined for a specific topology (since each topology might 
have a different number of machines and/or a different machine label-
ing convention). Therefore, TrafPy node distributions can also be 
implicitly defined by high-level parameters. These parameters are the 
fraction of the nodes and/or node pairs which account for some 

proportion of the overall traffic load and, optionally, the fraction of the 
traffic which is intra- vs. inter-cluster (where ‘clusters’ are usually 
considered as ‘racks’ in the context of DCNs). In this way, node distri-
butions can be defined independently of the network topology, enabling 
greater generality and the use of custom topologies with traffic traces 
and benchmarks parameterised by D′, even if D′ was originally defined 
for a different topology. Furthermore, this allows individual or groups of 
network nodes to be set as ‘hot’, ‘cold’, or any combination of hot and 
cold as desired by the user. Note that this formalism also enables both in- 
cast (many-to-one) and out-cast (one-to-many) traffic patterns, since any 
node(s) can have multiple out-cast and in-cast flow demands generated 
at a given point in time when sampling from the node distribution. 

3.5. Traffic generation methodology 

Algorithm 1 
TrafPy traffic generation process.  

Input: P(Bs), P(Bt), P(Bn), 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
ρtarget, 〈nn, nc, Cc〉, tt,min 

Output: {bs, ba, bp} 
Initialise: nf, {bs, bt} empty arrays  

Step 1: Partially initialise nf flows {bs, ba} 
while 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bs),P(bs))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
do 

bs ← Sample bs from P(Bs) nf times 
nf:=⌈1.1 × nf⌉ 

end while 
while 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bt),P(bt))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
do 

bt ← Sample bt from P(Bt) nf times 
nf:=⌈1.1 × nf⌉ 

end while 

(continued on next page) 

Fig. 2. How the Jensen-Shannon distances between the original (red) and 
sampled (cyan) distributions and the sampled distributions’ characteristic pa-
rameters (target from original distribution plotted as red dotted line) vary with 
the number of demands for (a) flow size and (b) inter-arrival time. Note that the 
first sub-plots of (a) and (b) are plotting the probability distribution of the flow 
characteristic in question, whereas the other sub-plots are plotting various 
metrics (

̅̅̅̅̅̅̅̅
JSD

√
, minimum value, maximum value, etc.) of the generated traffic 

as a function of the number of demands (flows) generated. 
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Algorithm 1 (continued ) 

nf = max({length(bs), length(bt)}) 
Resample so that length(bs) = length(bt) = nf 
Initialise ba zero array of length nf 
for i in [2, …, nf] do 

ba
i := ba

i− 1 + bt
i− 1 

end for 

ϱ =

∑nf
i=1bs

i
ba

nf
− ba

0
→ ρ =

ϱ
nn⋅Cc⋅nc

2

→ αt =
ρ

ρtarget 

for i in [1, …, nf] do 
ba

i := αt × ba
i 

end for 

ϱ :=

∑nf
i=1bs

i
ba

nf
− ba

0
→ ρ :=

ϱ
nn⋅Cc⋅nc

2  

Step 2: ‘Pack the flows’ → fully initialise nf flows {bs, ba, bp} 
Initialise bp and bn from P(Bn) with n2

n − nn elements 
d = ϱ⋅bn⋅(ba

nf
− ba

0)

for i in [1, …, nf] do 
Sort pairs in descending dp order and randomly self-shuffle equal dp pairs 
First pass: Attempt dp ≈ 0∀p ∈ [1,…,n2

n − nn ]

for p in [1,…,n2
n − nn] do 

if dp − bs
i ≥ 0 then 

bp
i = p 

dp := dp − bs
i 

break 
end if 

end for 
if first pass unsuccessful then 

Second pass: Ensure no link capacity exceeds 
Cc

2 
for p in [1,…,n2

n − nn ] do 
if capacity not exceeded then 

bp
i = p 

dp := dp − bs
i 

break 
end if 

end for 
end if 

end for  

Step 3: Ensure ba
nf
− ba

0 ≥ tt,min 

if ba
nf
− ba

0 < tt,min then 

β =

⌈ba
nf
− ba

0

tt,min

⌉

{bs, ba, bp}:= double({bs, ba, bp}) β times 
end if  

Given the distributions of flow sizes, inter-arrival times, and node 
pairs P(Bs), P(Bt), and P(Bn) of a benchmark B, TrafPy can generate 
traffic at a (optionally) specified target load fraction (fraction of overall 
network capacity being requested for a given time period) ρtarget ∈ [0, 1] 
with maximum Jensen-Shannon distance threshold 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
for an 

arbitrary topology T with nn server nodes, nc channels (light paths) per 
communication link, and Cc capacity per server node link channel 
(divided equally between the source and destination ports such that 
each machine may simultaneously transmit and receive data), forming 
tuple 〈nn, nc, Cc〉 with total network capacity per direction (maximum 
information units transported per unit time) Ct = nn ⋅Cc⋅nc

2 . Since load rate 
is defined as information arriving per unit time, in order to generate 
traffic at arbitrary loads, either the amount of information (flow sizes) or 
the rate of arrival (flow inter-arrival times) must be adjusted in order to 
change the load rate. Since DCNs tend to handle particular types of 
applications and jobs which result in particular flow sizes, we posit that 
a reasonable assumption is that changing loads are the result of changing 
rates of demand arrivals rather than changing flow sizes (which remain 
fixed for a given application type). Therefore, if a target load is specified, 
TrafPy automatically adjusts the scale of the inter-arrival time 

distribution values in P(Bt) by a constant factor to meet the target load 
whilst keeping the same general shape of the P(Bt) distribution that was 
initially input to the generator. The following 3-step traffic generation 
process (summarised in Algorithm 1) is used to achieve the above: 

Step 1 (generate nf flows with size and arrival time characteristics 
{bs, ba}): First, nbs flow sizes and nbt inter-arrival times are indepen-
dently sampled from P(Bs) and P(Bt) to form vectors bs and bt respec-
tively, where nbs and nbt are incrementally increased by a constant factor 
until 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bs),P(bs))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
and 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSD(P(Bt),P(bt))

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
by the law of large numbers. Whichever distribution needed 

fewer samples to meet 
̅̅̅̅̅̅̅̅
JSD

√
≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
is then continually sampled 

such that there are nf flow sizes and inter-arrival times, where nf =

max({nbs , nbt}). Then, bt (whose order is arbitrary from the previous 
random sampling process) can be converted to an equivalent arrival 
time vector ba by initialising a zero array of length nf and setting ba

i :=

ba
i− 1 + bt

i− 1∀i ∈ [2,…,nf ], resulting in a total time duration of tt = ba
nf
− ba

0 

over which the flows arrive. Next, the load rate ϱ is evaluated with ϱ =
∑nf

i=1bs
i

tt , converted to a load fraction ρ =
ϱ
Ct

, and adjusted to meet ρtarget by 
multiplying the elements of bt by a constant factor αt =

ρ
ρtarget

. Then, ba can 

be re-initialised with the updated bt as before, and a set {bs, ba} of nf 
flows can be partially initialised each with size bs and arrival time ba and 
an overall load ρ = ρtarget on network T. 

Step 2 (‘pack the flows’ → generate nf flows with size, arrival time, 
and source-destination node pair characteristics {bs, ba, bp}): Next, to 
meet the source-destination node pair load fractions specified by P(Bn), 
the flows are packed into node pairs with a simple packing algorithm. 
First, a vector of n2

n − nn node pairs bp (which do not include self-similar 
pairs) and their corresponding load pair fractions bn are extracted from 
P(Bn). Next, these ‘target’ load pair fractions bn are converted into a 
hash table mapping each pair p of the [1,…, n2

n − nn] pairs to their current 
‘distance’ from their respective target total information request magni-
tudes d = ϱ ⋅bn ⋅ tt. In other words, we take the load fractions (fraction of 
overall information requested) of each node pair bn and multiply them 
by the total simulation load rate (information units arriving per unit 
time) ϱ and the total simulation time tt to create a vector d which, when 
first initialised, represents the total amount of information which is 
requested by each source-destination pair across the whole simulation. 
The task of the packer is therefore to assign source-destination pairs to 
each flow such that dp ≈ 0∀p ∈ [1,…, n2

n − nn]. For each sequential ith 
flow ∀i ∈ [1, …, nf], after sorting the pairs in descending dp order (with 
any pairs with equal dp randomly shuffled amongst one-another), the 
packer will try to ‘pack the flow’ (given its size bs

i ) into a source- 
destination pair in two passes. For the first pass the packer loops 
through each sorted pth pair ∀p ∈ [1,…, n2

n − nn] and checks that 
assigning the flow to this pair would not result in dp < 0. If this condition 
is met, the packer sets bp

i = p and dp := dp − bs
i before moving to the next 

flow. However, if the condition is violated for all pairs, the packer moves 
to the second pass, where it again loops through each sorted pair p but 
now, rather than ensuring dp ≥ 0, only ensures that assigning the pair 
would not exceed the maximum server link’s source/destination port 
capacity Cc

2 before setting bp
i = p and dp := dp − bs

i . In other words, the 
first pass attempts to achieve dp ≈ 0∀p ∈ [1,…, n2

n − nn] to try to match 
P(Bn) but, failing that, the second pass ensures that no server link load 
exceeds 1.0 of the link capacity. Consequently, as ρtarget approaches 1.0, 
so too will the resultant packed node distribution’s server links, thereby 
converging on a uniform distribution no matter what the original 
skewness was of P(Bn) as shown in Fig. 3 and further elaborated on in 
Appendix E. Once this packing process is complete, a set {bs, ba, bp} of nf 
flows each with size bs, arrival time ba, and source-destination node pair 
bp, an overall load ρtarget on network T, and a flow size, inter-arrival time, 
and node distribution of approximately P(Bs), P(Bt), and P(Bn) will 
have been fully initialised. 

Step 3 (ensure ba
nf
− ba

0 ≥ tt,min): The final stage of the flow generation 
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process is then to ensure that the flow arrival duration tt is greater than 
or equal to some minimum duration tt,min (a parameter often required for 
test bed measurement reliability) specified by either the user. This is 

done by simply doubling the set {bs, ba, bp} of flows β =
⌈

tt
tt,min

⌉
times to 

make an updated set of nf:=β ⋅ nf flows with tt ≥ tt,min and the same 
distribution and load statistics as before. 

3.5.1. Traffic generation guidelines 
Given a user- or benchmark-specified set of distribution parameters 

D′, TrafPy generates traffic trace D. As such, whenever using TrafPy to 
generate D, D′ should always be reported to help others reproduce the 
same trace (as done in Table B.2 of Appendix B for this manuscript). For 
the same reason, all traffic traces D generated from D′ should have a 
maximum 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
of 0.1 as outlined in Section 3.3. Enough de-

mands should be generated so as to have a last demand arrival time tt 
larger than the time needed to complete the largest demands in the user- 
defined network T under the test conditions used; not doing so would 
result in all large flows being dropped regardless of what decisions were 
made. This would unfairly punish systems optimised for large demands, 
since such systems would allocate network resources to requests which 
ultimately could never be completed during the experiment. TrafPy 
conveniently generates and saves traffic data sets in a range of formats 
including JSON, CSV, and pickle. Therefore if desired, users may 
generate traffic in TrafPy and then use their own custom test bed and 
analysis scripts written in any programming language thereafter by 
simply importing the TrafPy-generated traffic. For result reliability, each 
trace D should be generated R times from D′ and used to test the network 
object, where R should be sufficiently large enough so as to have a 
satisfactory confidence interval (which might vary from project-to- 
project but should be reported regardless). 

4. Optical networks 

The key purpose of TrafPy is for it to be used as a tool to explore 
novel areas of DCN research. One such area of particular importance is 
that of optical DCNs, which strive to replace electronically inter-
connected networks with optical systems in order to improve perfor-
mance whilst reducing power consumption. 

4.1. Limitations of current electronic packet switched networks 

The servers of traditional multi-tier data centre and high perfor-
mance computing (HPC) systems are interconnected by electronic 
packet switched (EPS) networks. Such ‘electronic DCNs’ have poor 
scalability, bandwidth, latency, and power consumption. Data centres 
now consume 2% of the World’s electricity; more than the entire avia-
tion industry and estimated to increase to 15% by 2030, with the 
network sometimes accounting for >50% of total power consumption 
[38]. Furthermore, the sensitivity of electronic switches to workloads 
limits their computational and application performance. Compounding 
this, the slowing of Moore’s Law coinciding with new data-hungry de-
mands means that electronic switches are unable to keep up with 
emerging applications (internet-of-things, artificial intelligence, genome 
processing, etc.) which follow data-heavy trends [39,40]. Although the 
compute power of DCN server nodes, as measured by flops per second, 
has increased by a factor of 65 over the last 18 years, the bandwidth of 
the DCN network facilitating communication between these nodes has 
only increased by a factor of 4.8, resulting in an 8-factor decrease in 
bytes communicated per flop. This has created a performance bottleneck 
not in the server nodes themselves, but rather in the network connecting 
them. As a result, management systems such as machine placers, 
schedulers and topology controllers are being forced to minimise data 
movement and constrain applications to operate locally, which would 
otherwise benefit from utilising more distributed architectures. Further 
degrading system and application performance, these systems also suffer 
from high median and 99th percentile network latencies on the order of 
100 μs and 100 ms respectively. 

4.2. Optical circuit switched networks 

DCNs with optical interconnects have the potential to offer orders-of- 
magnitude improvements in performance and energy efficiency and 
thereby address the limitations of EPS networks [48,64–66]. Optical 
circuit switched (OCS) networks offer a promising avenue with which to 
realise optical DCNs, and have been used in many DCN solutions as they 
offer stable non-blocking circuit configurations with high-capacity and 
scalability [41]. In contrast to optical packet switching, they are simpler 
to implement and they eliminate the need for in-switch buffering or 

Fig. 3. Visualisation of the packed flow nodes converging on uniform distributions as the total network load approaches 1.0 regardless of how skewed the original 
target node distribution is. The plotted distributions are for overall network loads (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform 
endpoint loads on each server at 0.9 overall load. 
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queuing and addressing. They establish single-hop connections with a 
wide range of circuit establishment time, lasting from orders of magni-
tude less than a second to hours or days. Leveraging stable circuit es-
tablishments, they can employ wavelength division multiplexing 
(WDM) and modulation formats to reach higher capacity. OCS switches 
are readily available [41] and are being used as part of many existing 
networks. They are mainly employed as part of a hybrid network, as in 
Ref. [42], in order to cater to specific types of traffic. However, they 
cannot be used on their own as they suffer from two key limitations: the 
long reconfiguration time (time taken to switch) and the long circuit 
computation time (time taken to compute the schedule), as shown by 
Fig. 4. 

Fig. 4 shows the circuit computation and the reconfiguration time of 
the key state-of-the-art OCS technologies. In summary, slow beam 
steering and light guiding technologies (millisecond OCS) were assisted 
with slow software-based circuit computation to provide reconfigura-
tion, also in milliseconds (HELIOS, Firefly and OSA) [42–44]. More 
recent work has shown microsecond speed WSS-based OCS reliant on 
FPGA-based control (REACToR, Mordia) [45,46]. Rotor switches and 
fast SOA-based switches with schedule-less control were also explored 
for fast OCS in RotorNet [47] and Sirius [48] respectively. Although 
schedule-less architectures simplified the control plane, they result in 
performance-inefficient networks as network resources are allocated 
uniformly even in dynamic and skewed traffic environments. 

However, with transceivers growing at a staggering rate, already 
reaching 100 Gbps [49] (trending towards 400G and 800G) and switch 
bandwidth increasing beyond 6.4 Tbps [50], the increased data-rate 
makes OCS 5-6 orders of magnitude too slow. This ever increasing gap 
between OCS switching/control speed and transceiver data rate makes 
OCS unsuitable as standalone solutions. Hence, PULSE (indicated by a 
star in Fig. 4) [51] proposed a two-fold solution: The first is the use of 
SOA-aided widely tunable-switching methods to minimize the reconfi-
guration time to sub-nanoseconds [52]. The second is a custom-made 
ASIC controller or scheduler that reduces reconfiguration computation 
time to nanoseconds. PULSE matches OCS switching times to 
packet-level granularity, making them suitable and adaptable to modern 
high capacity, bandwidth and speed switching data centre networks. 

However, the performance of PULSE is heavily reliant on the per-
formance of the scheduling heuristic employed. TrafPy can therefore be 
used as a tool with which to evaluate the performance of different design 
choices and resource management systems in novel OCS networks, such 
as PULSE (an OCS DCN system which was developed with the help of 

TrafPy [53]), and thereby help to realise future all-optical DCNs. 

5. Experiment 

Here we conduct a brief experiment into the sensitivity of 4 sched-
ulers to different traffic traces. Specifically, we look at shortest 
remaining processing time (SRPT) [6,54,55], fair share [54], first fit (FF) 
[56], and random DCN flow scheduling. 

5.1. Network 

All experiments assume an optical TDM-based circuit switched 
network architecture with a 64-server folded clos (spine-leaf) topology 
made up of 2 core switches, 4 top-of-the-rack (ToR) switches, and 64 
servers (16 servers per rack) with bidirectional links, as shown in Fig. 5. 
The server-to-rack and ToR-to-core links each have 1 channel with 10 
Gbps and 80 Gbps capacity respectively, leading to a 1:1 subscription 
ratio and a total network capacity of 640 Gbps (320 Gbps bisection 
bandwidth). Flows are mapped to TDM circuits, and we assume ideal 
server-level time multiplexing of the flows’ packets such that the 
bandwidth of each channel can be fully utilised. The core switch per-
forms link/fiber switching. There are various ways to perform packet/ 
TDM aggregation of flows at the server and to realise such networks, but 
neither are the focus of this paper. 

5.2. Traffic traces 

We use TrafPy to generate 2 categories of traffic with which to 
investigate our schedulers; DCN traces based on real-world application 
data, and custom skewed node and rack data for testing system perfor-
mance under extreme conditions. We use a maximum 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
JSDthreshold

√
of 0.1, 

setting tt,min = 3.20 × 105μs (≈10 times larger than the time taken to 
complete the largest ≈20 × 106 B flow amongst our benchmarks), and 
generating traffic of loads 0.1–0.9 for each data set. We generate each set 
R = 5 times to run 5 repeats of our experiments and therefore ensure 
reliability. All TrafPy parameters D′ used to generate the traffic are re-
ported in Table B.2 of Appendix B for reproducibility. 

5.2.1. ‘Realistic’ DCN traces 
Four types of DCN and their network flow demand distributions are 

explored; University [30], Private Enterprise [57], Commercial Cloud [31], 
and Social Media Cloud [33]. Each DCN type services different applica-
tions and therefore has a different traffic pattern. Using TrafPy, flow 
distributions for each of these categories were generated to established a 
set of open-source traffic traces for the DCN benchmark. The tuned 
TrafPy parameters D′ of each flow characteristic have been summarised 
in Table B.2. The resultant distributions are shown in Fig. 6, and the 
subsequent quantitative summary of each distribution’s characteristics 
is given in Table B.3 of Appendix B. 

Fig. 4. Reconfiguration and computation times of various OCS architectures.  

Fig. 5. 2-layer spine-leaf topology used with 64 end point (server) nodes, 10 
Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1 subscription ratio, 
640 Gbps total network capacity). 
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5.2.2. ‘Extreme’ skewed node and rack sensitivity traces 
We generated two additional traces; the skewed nodes sensitivity 

benchmark and the rack sensitivity benchmark. These were not based on 
realistic data, but rather designed to test and better understand our 
systems under extreme conditions. Both use the same flow size and inter- 
arrival time distributions as the commercial cloud data set in Fig. 6, 
however the node distribution is adjusted. Specifically, the skewed 
nodes benchmark is made up of 5 sets with uniform, 5%, 10%, 20%, and 
40% of the server nodes being ‘skewed’ by accounting for 55% of the 
total overall traffic load, named skewed_nodes_sensitivity_uniform, 0.05, 
0.1, 0.2, and 0.4 respectively (see Appendix E for further justification 
and analysis of these values). Similarly, the rack distribution benchmark 
is made up of 5 sets with uniform, 20%, 40%, 60%, and 80% of the traffic 
being intra-rack (and the rest inter-rack) named rack_sensitivity_uniform, 
0.2, 0.4, 0.6, and 0.8 respectively. Therefore, these distributions allow 

for investigations into DCN system sensitivity to i) the number of skewed 
nodes and ii) the ratio of intra- vs. inter-rack traffic. They have been 
plotted in Fig. 7. 

5.3. Simulation details 

We use a time-driven simulator where scheduling decisions are made 
at fixed intervals. The time between decisions is the ‘slot size’; smaller 
slot sizes result in greater scheduling decision and measurement metric 
granularity, but at the cost of longer simulation times and the need for 
scheduler and switch hardware optimisation [52,53,58–60,63]. We use 
a slot size of 1 ms. We assume perfect packet time-multiplexing whereby 
the scheduler is allowed to schedule as many flow packets for the next 
time slot as the channel bandwidth of its rate-limiting link in its chosen 
path will allow. We run 9 simulations (loads 0.1–0.9) for each 

Fig. 6. TrafPy distribution plots for the DCN benchmark containing the (a) University [30], (b) Private Enterprise [57], (c) Commercial Cloud [31], and (d) Social 
Media Cloud [33] data sets. Each plot contains (i) the end point node load distribution matrix and (ii) the flow size and inter-arrival time histogram and CDF 
distributions. 

Fig. 7. TrafPy node distribution plots for the skewed nodes sensitivity benchmark with (a) uniform, (b) 5%, (c) 10%, (d) 20%, and (e) 40% of nodes accounting for 55% 
of the overall traffic load, and for the rack sensitivity benchmark with (f) uniform, (g) 20%, (h) 40%, (i) 60%, and (j) 80% traffic being intra-rack and the rest 
inter-rack. 
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benchmark data set, terminating the simulation when the last demand 
arrives at t = tt (which is ≥ tt,min = 3.20 × 105μs). We set the warm-up 
time as being 10% of the simulation time tt before which no collected 
data contribute to the final performance metrics. Similarly, since the 
simulation is terminated at tt, we exclude any cool-down period from 
measurement. For each experiment, we then record: (1) mean flow 
completion time (FCT); (2) 99th percentile (p99) FCT; (3) maximum 
(max) FCT; (4) absolute throughput (total number of information units 
transported per unit time); (5) relative throughput (fraction of arrived 
information successfully transported); and (6) fraction of arrived flows 
accepted. We report each of these metrics’ mean across the R = 5 runs 
and their corresponding 95% confidence intervals. 

6. Results 

To begin the investigation into the sensitivity of different schedulers, 
we first input TrafPy-generated traffic with heavily skewed nodes and 
racks (see Section 5.2.2) into our simulator to understand how the four 
schedulers considered behave at the extremes. We then test the same 
schedulers under traces for different DCN types to see how the results 
from the ‘extreme’ condition investigation translate into more realistic 
scenarios. For brevity, we provide the full results in Appendix G and a 
summary in this section. 

Extreme Rack Conditions As shown in Table F.17, as the rack dis-
tribution becomes heavily skewed to intra-rack, the completion time 
metrics of FS become increasingly superior to SRPT. This suggests that 
real DCNs which have heavy intra-rack traffic (e.g. social media cloud 
DCNs) would benefit from deploying pure FS scheduling policies, at least 
at higher loads, whereas DCNs with heavy inter-rack traffic (e.g. uni-
versity DCNs) would benefit from deploying FS at medium loads and 
SRPT at low and high loads. 

In terms of throughput and demands accepted, FF is competitive with 
SRPT and FS at low intra-rack traffic levels, but as the DCN becomes 
more heavily intra-rack (e.g. social media cloud DCNs), SRPT and FS are 
preferable, with FS achieving the best performances at higher loads. 
Again, a preferable strategy would likely be to utilise SRPT strategies at 
low loads before switching to FS at loads about 0.3–0.5 (depending on 
the level of intra-rack traffic). 

Extreme Node Conditions As shown in Table F.18, at the two ex-
tremes of heavily skewed and uniform traffic, scheduler completion time 
performances are similar in that SRPT outperforms FS at low and high 
loads, but FS performs well at medium loads. However, in between these 
two extremes (around 40% of nodes requesting 55% of overall traffic), 
there is a point where FS becomes the dominant scheduler in terms of 
completion time. 

In terms of throughput and demands accepted, under heavily skewed 
conditions (5% nodes requesting 55% of traffic), FF and/or Rand beat 
SRPT and FS across all 0.1–0.9 loads in terms of throughput and fraction 
of information accepted. This suggests that FF and SRPT are strained 
under high skews with respect to these two metrics. However, as 
observed with the uniform distribution, this comes at the cost of the 
fraction of arrived flows accepted, where SRPT and FS outperform FF 
and Rand across all loads. As the proportion of nodes requesting 55% of 
traffic is increased to 10%, 20%, and 40%, relative scheduler perfor-
mances converge to those seen with the uniform distribution, with FS 
and SRPT being mostly dominant except at high 0.8 and 0.9 loads, where 
FF often has the better throughput and fraction of information accepted. 

Realistic Conditions Table F.19 summarises the results for the four 
schedulers on each of the four ‘realistic’ DCN benchmarks considered. As 
shown, the SRPT scheduler tends to achieve the best completion time 
metrics when loads are low (≤ 0.7) and where traffic is primarily inter- 
rack (the University and Private Enterprise DCNs). This is to be ex-
pected, since a policy which prioritises completion of the smallest flows 
as soon as possible will keep its completion time averages low. However, 
as traffic reaches higher loads (> 0.7), the fair share policy achieves the 
best completion time metrics. This indicates that networks would benefit 

from scheduling policies which can dynamically adapt to changing 
traffic loads. Moreover, for networks with characteristically intra-rack 
traffic (the Commercial Cloud and Social Media Cloud DCNs), the fair 
share policy attains the best completion time and throughput metrics. 
These results therefore validate the predictions made by the rack dis-
tribution sensitivity analysis study; namely that completion time metrics 
in real DCN traces with heavily intra-rack (e.g. Commercial Cloud and 
Social Media Cloud) traffic benefit from FS scheduling strategies. On the 
other hand, at least for low loads, low intra-rack DCN traces (e.g. Uni-
versity and Private Enterprise) benefit from SRPT scheduling strategies. 

These results suggest that not only should scheduling policies be 
adapted to changing traffic loads, but also to changing characteristics 
such as the level of inter- vs. intra-rack communication. Note that, as 
expected, the fair share policy provides the best worst-case completion 
time (max FCT), the greatest network utilisation (throughput), and the 
strongest service guarantee (number of flow requests satisfied) across 
most loads and DCN types. 

7. Conclusion & further work 

In conclusion, we have introduced TrafPy; an API for generating 
custom and realistic DCN traffic and a standardised protocol for 
benchmarking DCN systems which is compatible with any simulation, 
emulation, or experimentation test bed. These systems can be any 
combination of networked devices or methods such as schedulers, 
switches, routers, admission control policies, management protocols, 
topologies, buffering methods, and so on. TrafPy has been developed 
with a focus on having a high level of fidelity, generality, scalability, 
reproducibility, repeatability, replicability, compatibility, and comparability 
in the context of DCN research, which in turn will aid in accelerating 
innovation. 

We have demonstrated the efficacy of TrafPy by briefly investigating 
the sensitivity of four canonical schedulers to varying traffic loads and 
characteristics. The scheduler performances were heavily dependent on 
the level of intra-rack traffic and overall network load. We found that 
SRPT was generally the dominant scheduler for low intra-rack traffic 
(particularly at low loads), but that FS became superior across all loads 
at high intra-rack levels. These insights were then found to translate into 
realistic DCN traces, with low intra-rack users such as University and 
Private Enterprise DCNs benefiting from SRPT policies at low and me-
dium loads and high intra-rack traces such as Commercial Cloud and 
Social Media Cloud being more suited to FS strategies. This shows that 
there is no ‘one size fits all’ strategy for scheduling different types of 
DCNs, and that there would be great value in the development of traffic- 
informed and dynamic DCN systems. With its standardised traffic gen-
eration and benchmark protocol, TrafPy is an ideal tool for developing 
such systems via the benchmark paradigm described throughout this 
manuscript. 

The space of potential research areas from this work is vast. We hope 
presently unforeseeable avenues will be pursued with the support of 
TrafPy’s standardised traffic generation and rigorous benchmarking 
framework. For our own work, based on the preliminary results of 
scheduler sensitivity to varying load conditions and traffic trace char-
acteristics, we expect to develop new scheduling heuristics and learning 
algorithms which can dynamically adapt to network traffic states and 
outperform literature baselines in open-source TrafPy benchmarks. The 
2.5 TB of open-access simulation data from this manuscript open some 
interesting offline reinforcement learning opportunities. We also antic-
ipate adding more sensitivity-testing and realistic DCN traffic traces to 
the suite of TrafPy benchmarks. Furthermore, there are some exciting 
features which could enhance TrafPy. For example, although TrafPy can 
generate traces without any raw data given whatever characteristic 
distributions the user provides, it would be useful to be able to input real 
data (e.g. Ref. [7]) and have TrafPy automatically characterise the 
traffic in order to generate realistic data. Additionally, we plan to 
include a computation graph view of DCN network traffic in the TrafPy 
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API, unifying the flow-centric paradigm from the networking commu-
nity with the job-centric perspective from computer science. This could 
lead to exciting novel research, such as network- and job-aware DCN 
scheduling. 
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Appendix A. Table of Notation  

Table A.1 
Table summarising the symbol notation used throughout the paper.  

Symbol Definition 

D′ Set of parameters defining the TrafPy distributions 
D Traffic trace generated using the D′ TrafPy parameters 
P Probability distribution 
X Discrete random variables 
H Entropy 
JSD Jensen-Shannon divergence 
̅̅̅̅̅̅̅̅
JSD

√ Jensen-Shannon distance 
{π1, …, πn} Weightings for the JSD of n distributions 
Bs, Bt, Bn Flow size, inter-arrival time, and node pair random variables for benchmark workload B 
bs, bt, bn Flow sizes, inter-arrival times, and node pairs sampled from benchmark workload B 
ba Flow arrival times derived from inter-arrival times bt 
T DCN network topology 
ρ Load fraction (fraction of overall network capacity requested) 
nn Number of server nodes 
nc Number of channels per communication link 
Cc Capacity per server node link channel 
Ct Total network capacity per direction 
nf Number of flows generated 
tt Total time duration of simulation 
ϱ Load rate (information arriving per unit time) 
αt Inter-arrival time adjustment factor 
dp Difference between a node pair’s current and target information request magnitude 
β Number of flows adjustment factor 
R Number of traffic traces to generate and simulate for a suitable confidence interval  

Appendix B. TrafPy Distribution Parameters  

Table B.2 
Benchmark categories with their real traffic characteristics reported in the literature (where appropriate) and the corresponding TrafPy parameters D′ needed to 
reproduce the distributions. DCN <i,ii,iii,iv> → <university, private_enterprise, commercial_cloud, social_media_cloud > Skewed <i,ii,iii,iv,v> → skewed_nodes_sensitivity_-
<uniform, 0.05, 0.1, 0.2, 0.4> Rack <i,ii,iii,iv,v> → rack_sensitivity_<uniform, 0.2, 0.4, 0.6, 0.8>.  

Benchmark 
Category 

Applications Size, Bytes Inter-arrival Time, μs Inter- | Intra-Rack 
Traffic, % 

Hot Nodes | Load 
Requested, % 

DCNi [30,57] Database backups, hosting distributed file systems 
(email, servers, web services for faculty portals etc.), 
multi-cast video streams 

a 80% < 10, 000 
b ‘lognormal’, 
{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7, 
round = 25 

a 10% < 400, 
80% < 10, 000 b ‘weibull’, 
{α: 0.9, λ: 6000}, min_val =
1, round = 25 

a70|30 
b r = {rd: c, p: 0.7 } 

a20| 55b 

‘multimodal’, 
ns = d(0.2), np = e 
(0.2, 0.55) 

DCNii [30] University + ‘custom’ applications and development 
test beds 

a 80% < 10, 000 
b ‘lognormal’, 
{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7, 
round = 25 

a 80% < 1, 000 
b ‘multimodal’, 
min_val = 1, 
max_val = 100,000, 
locations = [40,1], 
skews = [-1,4], 
scales = [60,1000], 
num_skew_samples  
= [10]e3, round = 25, 

bg_factor = 0.05 

a 50 | 50 
b r = {rd: c, p: 0.5} 

a20| 55b 

‘multimodal’, 
ns = d(0.2), np = e 
(0.2, 0.55) 

DCNiii [30,31] a 80% < 10, 000 
b ‘lognormal’, 

a Median 10 
b ‘multimodal’, 

a 20 | 80 
b r = {rd: c, p: 0.2} 

a20| 55b 

‘multimodal’, 

(continued on next page) 
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Table B.2 (continued ) 

Benchmark 
Category 

Applications Size, Bytes Inter-arrival Time, μs Inter- | Intra-Rack 
Traffic, % 

Hot Nodes | Load 
Requested, % 

Internet-facing applications (search indexing, 
webmail, video, etc.), data mining and MapReduce- 
style applications 

{μ: 7, σ: 2.5}, min_val =
1, max_val = 2e7, 
round = 25 

min_val = 1, 
max_val = 100,000, 
locations  
= [10,20,100,1], skews =

[0,0,0,100], 
scales = [1,3,4,50], 
num_skew_samples  
= [10,7,5,20]e3,round =

25, bg_factor = 0.01 

ns = d(0.2), np = e 
(0.2, 0.55) 

DCNiv [33] Web request response generation (mail, messenger, 
etc.), MySQL database storage & cache querying, 
newsfeed assembly 

a 10% < 300, 
90% < 100, 000 b 

‘weibull’, 
{α: 0.5, λ: 21,000}, 
min_val = 1, max_val =
2e6, 
round = 25 

a 10% < 20, 
90% < 10, 000 b 

‘lognormal’, 
{μ: 6, σ: 2.3}, min_val = 1, 
round = 25 

a 12.9 | 87.1 
b r = {rd: c, p: 
0.129} 

a20| 55b 

‘multimodal’, 
ns = d(0.2), np = e 
(0.2, 0.55) 

Skewedi, 
Racki 

– bDCNiii 
bDCNiii 

b ‘uniform’, r =
None 

b ‘uniform’ ns = np 
= None 

Skewedii – bDCNiii 
bDCNiii 

b ‘uniform’, r =
None 

5| 55b ‘uniform’ ns 
= d(0.05) 
np = e(0.05, 0.55) 

Skewediii – bDCNiii 
bDCNiii 

b ‘uniform’, r =
None 

5| 55b ‘uniform’ ns 
= d(0.1) 
np = e(0.1, 0.55) 

Skewediv – bDCNiii 
bDCNiii 

b ‘uniform’, r =
None 

5| 55b ‘uniform’ ns 
= d(0.2) 
np = e(0.2, 0.55) 

Skewedv – bDCNiii 
bDCNiii 

b ‘uniform’, r =
None 

5| 55b ‘uniform’ ns 
= d(0.4) 
np = e(0.4, 0.55) 

Rackii – bDCNiii 
bDCNiii 80| 20b ‘uniform’, 

r = {rd: c, p: 0.8} 

b ‘uniform’ ns = np 
= None 

Rackiii – bDCNiii 
bDCNiii 60| 40b ‘uniform’, 

r = {rd: c, p: 0.6} 

b ‘uniform’ ns = np 
= None 

Rackiv – bDCNiii 
bDCNiii 40| 60b ‘uniform’, 

r = {rd: c, p: 0.4} 

b ‘uniform’ ns = np 
= None 

Rackv – bDCNiii 
bDCNiii 20| 80b ‘uniform’, 

r = {rd: c, p: 0.2} 

b ‘uniform’ ns = np 
= None  

a Real traffic characteristics reported in the literature. 
b Corresponding TrafPy parameters D′. c = net.graph[‘rack_to_ep_dict’] → Network cluster (i.e. rack) configuration. d(u) = int(u * len(net.graph[‘endpoints’])) → 

Number of nodes to skew. e(u, v) = [v/d(u) for _in range(d(u))] → Fraction of overall traffic load to distribute amongst the skewed nodes. r|rd |p | ns | np = rack_-
prob_config | ‘racks_dict’ | ‘prob_inter_rack’ | num_skewed_nodes | skewed_node_probs.  

Table B.3 
Flow size, inter-arrival time, and node load distribution characteristics for the University (U), Private Enterprise (PE), Commercial Cloud (CC), and Social Media Cloud 
(SMC) data sets of the DCN benchmark after generating the distributions from TrafPy parameters D′.  

Variable DCN # Modes Min. Max. Mean Variance Skewness Kurtosis 

Size (B) U 1 1 19.80 × 106 22.90 × 103 42 × 109 39.4 2.41 × 103 

PE 1 1 19 × 106 23.30 × 103 53.50 × 109 44.1 2.79 × 103 

CC 1 1 19.20 × 106 22.30 × 103 38.40 × 109 36.9 2.08 × 103 

SMC 1 1 3.17 × 106 42 × 103 8.87 × 109 6.20 66.4 
Inter-arrival time (μs) U 1 1 126 × 103 6.30 × 103 49.90 × 106 2.44 9.92 

PE 2 1 100 × 103 2.83 × 103 154 × 106 5.7 33.1 
CC 4 1 10 × 103 84.5 0.32 × 106 13 179 
SMC 1 1 54.60 × 105 5.51 × 103 2.11 × 109 47.8 3.75 × 103 

Variable DCN % Hot Nodes % Hot Node Traffic % Inter-Rack 

Node load distribution (%) U 20 55 70 
PE 20 55 50 
CC 20 55 20 
SMC 20 55 12.9  
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Appendix C. TrafPy API Examples 

Appendix C.1. Custom Distribution Shaping 

Appendix C.1.1. Interactively & Visually Shaping a Custom ‘Named’ Distribution in a Jupyter Notebook

Fig. C.8. Output of example code for interactively and visually shaping a ‘named’ distribution in a Jupyter Notebook.  

Example of interactively and visually shaping a weibull distribution’s parameters to achieve a target distribution for some random variable in 
Jupyter Notebook (output in Fig. C.8):

This same distribution can then be reproduced by using the same parameters:

Appendix C.1.2. Interactively & Visually Shaping a Custom ‘Multimodal’ Distribution in a Jupyter Notebook 
To generate a multimodal distribution, first shape each mode individually (output in Fig. C.9):

Then combine the distributions, filling the distribution with a tuneable amount of ‘background noise’ (output in Fig. C.10):

This same distribution can be reproduced using the same parameters: 
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N.B. An equivalent function can be used for generating custom skew distributions with a single mode which also do not fall under one of the 
canonical ‘named’ distributions.

Fig. C.9. Output for step 1 of example code for interactively and visually shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must first shape each 
mode individually.  
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Fig. C.10. Output for step 2 of example code for interactively and visually shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must combine your 
individually shaped modes into a single distribution. 

Appendix C.2. Benchmark Importing & Flow Generation 

Example code for generating and visualising a load 0.1 University benchmark data set of flows for a custom topology (output in Fig. C.11):
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Fig. C.11. Output of example code for generating a benchmark.  

Appendix D. Pseudocode 

Appendix D.1. Scheduling 

The flow scheduling pseudocode is shown in Algorithm 2. First, information about the queued flows such as their characteristics (packets left, time 
of arrival, flow queue, destination node, etc.), the network links requested in the source-destination path, and the bandwidth requested, is collected. If 
the scheduler uses cost-based scheduling (e.g. SRPT uses flow completion time cost), a cost is also assigned to each flow. Next, for each link being 
requested by the flows, while the link in question has some available bandwidth left to allocate for the current time slot, the scheduler chooses flows 
until either there is no bandwidth left or there are no flows demanding the link which have not been chosen. Finally, for each flow in the set of these 
provisionally chosen flows, the smallest number of packets scheduled for the flow in question across all links is chosen as the flow’s number of packets 
to schedule. Note that this simulation methodology considers bandwidth bottlenecks throughout all layers of the network. The pseudocode in Al-
gorithm 3 is used to resolve any contentions and attempt to set up the flow, thus adding the flow to the ultimate set of flows chosen by the scheduler for 
the given time slot. The parts which are scheduler-specific have been marked in bold.  
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Algorithm 2 
Flow scheduling process.  

Collect flow information 
link_allocations = [] 
for link in links do 

while link bandwidth ∕= 0 do 
link_allocations.append(scheduler choose flow) 

end while 
end for 
chosen_flows = [] 
for flow in flows do 

if flow in link_allocations then 
flow_packets = min(packets allocated for flow in link_allocations) 
establish, removed_flows = scheduler resolve_contentions(flow, chosen_flows) 
if establish then 

chosen_flows.append(flow) 
chosen_flows.remove(removed_flows) 

end if 
end if 

end for   

Algorithm 3 
Flow contention resolution process.  

Require: flow, chosen_flows 
removed_flows = [] 

while True do 
if no_contention(flow) then 

establish = True 
return establish, removed_flows 

else 
contending_flow = find_contending_flow() 
establish = scheduler resolve_contention(flow, contending_flow) 
if not establish then 

chosen_flows.append(removed_flows) 
return establish 

else 
chosen_flows.remove(contending_flow) 
continue 

end if 
end if 

end while  

Appendix D.2. TrafPy Benchmark Protocol  

Algorithm 4 
TrafPy benchmark protocol.  

for r in range(R) do 
for d in D do 

for ρ ← 0.1 to 0.9 step 0.1 do 
PKPI = ϒ(χ, d, ρ) 

end for 
end for 

end for  

Appendix E. Traffic Skew Convergence 

A constraint of any traffic matrix is that the load on each end point (the fraction of the end point’s capacity being requested) cannot exceed 1.0. 
Consequently, certain traffic skews become infeasible at higher loads (for example, it is impossible for an n > 1 network to have 1 node requesting 
100% of the traffic if the overall network is under a 1.0 load). As shown in Fig. 3, this results in all traffic matrices tending towards uniform (i.e. having 
no skew) as the overall network load tends to 1.0. 

A question traffic trace generators may ask is: for a given load, what combination of i) number of skewed nodes, ii) corresponding fraction of the 
arriving network traffic the skewed nodes request, and iii) overall network load results in the traffic matrix being skewed or not skewed? To answer 
this question, we make the following assumptions:  

⋅ All network end points have equal bandwidth capacities.  
⋅ All end points are either ‘skewed’ or ‘not skewed’ by the same amount. 
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⋅ ‘Skew’ is defined by a skew factor, which is the fractional difference between the load rate per skewed node and the load rate per non-skewed node 
(the highest being the numerator, and the lowest being the denominator).  

⋅ For a given combination of skewed nodes and the load rate they request of some overall network load, any excess load (exceeding 1.0) on a given 
end point is distributed equally amongst all other end points whose loads are < 1.0. 

With the above assumptions, we can calculate the skew factor for each combination of skewed nodes, corresponding traffic requested, and overall 
network load. Doing this for 0–100% of the network nodes being skewed and requesting 0–100% of the overall network load under network loads 
0.1–0.9, we can construct a look-up table of skew factors for each of these combinations before generating any actual traffic. Fig. E.12 shows a high 
resolution (0.1%) heat map of these combinations, with any skew factors ≥ 2.0 set to the same colour for visual clarity. Fig. E.13 shows the corre-
sponding plots with lower resolution (5%) but with the skew factors labelled. As expected, above 0.6 network loads, certain combinations of number of 
skewed nodes and traffic requested become restricted as to how much skew there can be in the matrix, with many combinations tending towards 
uniform (skew factor 1.0) at 0.9 loads.

Fig. E.12. Skew factor heat maps for 0–100% of network nodes requesting 0–100% of the overall network traffic across loads 0.1–0.9 plotted at 0.1% resolution. For 
clarity, combinations with skew factors ≥ 2 have been assigned the same colour.  

C.W.F. Parsonson et al.                                                                                                                                                                                                                        



Optical Switching and Networking 46 (2022) 100695

18

Fig. E.13. Labelled skew factor tables for 0–100% of network nodes requesting 0–100% of the overall network traffic across loads 0.1–0.9 plotted at 5% resolution.  

Using the skew factor data from Figs. E.12 and E.13, we can be confident at 5%, 10%, 20%, and 40% of the network nodes requesting 55% of the 
overall network traffic that the skew factor will be > 1.0 across loads 0.1–0.9. Fig. E.14 shows the skew factor as a function of load for these com-
binations. Therefore, these were the combinations chosen for the skewed nodes sensitivity benchmark defined in Section 5 of this manuscript.

Fig. E.14. Skew factor as a function of load for 5%, 10%, 20%, and 40% of the network nodes requesting 55% of the overall network traffic.  
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Appendix F. Scheduler Performance Summary 

Appendix F.1. Completion Time Performance Plots 

Plots showing the schedulers’ completion performances are provided for the realistic DCN (Fig. F.15) uniform (Fig. F.16), extreme rack (Fig. F.17), 
and extreme nodes (Fig. F.18) traffic traces.

Fig. F.15. The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion time metrics for the DCN benchmark distributions across loads 
0.1–0.9, and (d) a scatter plot of flow completion time as a function of flow size for the same distribution at load 0.9. 

Fig. F.16. The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion time metrics for the uniform node distribution across loads 0.1–0.9, 
and (d) a scatter plot of flow completion time as a function of flow size for the same distribution at load 0.9. 
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Fig. F.17. Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion times to the changing intra-rack distribution for loads 0.1, 
0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top 2 performing schedulers (SRPT and FS) 
for clarity. 

Fig. F.18. Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow completion times to the changing skewed nodes distribution for loads 
0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top 2 performing schedulers (SRPT and FS) 
for clarity. 

Appendix F.2. Throughput and Flows Accepted Performance Plots 

Plots showing the schedulers’ throughput and accepted flow performances are provided for the realistic DCN (Fig. F.19), uniform (Fig. F.20), 
extreme rack (Fig. F.21), and extreme nodes (Fig. F.22) traffic traces. 
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Fig. F.19. The schedulers’ (a) absolute throughput (information units transported per unit time), (b) relative throughput (fraction of arrived information successfully 
transported), (c) fraction of arrived flows accepted, and (d) fraction of arrived information accepted metrics for the DCN benchmark distributions across 
loads 0.1–0.9. 

Fig. F.20. The schedulers’ (a) absolute throughput (information units transported per unit time), (b) relative throughput (fraction of arrived information successfully 
transported), (c) fraction of arrived flows accepted, and (d) fraction of arrived information accepted metrics for the uniform node distribution across loads 0.1–0.9.  
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Fig. F.21. Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of arrived flows accepted, and (c) fraction of arrived information accepted metrics to the 
changing intra-rack distribution for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain the top 
3 performing schedulers (SRPT, FS, and FF) for clarity. 

Fig. F.22. Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of arrived flows accepted, and (c) fraction of arrived information accepted metrics to the 
changing skewed nodes distribution for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all 4 schedulers, whereas the scatter plots contain 
the top 3 performing schedulers (SRPT, FS, and FF) for clarity. 

Appendix F.3. Performance Metric Tables 

The below performance tables summarise the schedulers’ mean performances (averaged across 5 runs, 95% confidence intervals reported) for each 
PKPI, each load, and each benchmark. 

Appendix F.3.1. DCN Benchmarks   

Table F.4 
Scheduler performance summary with 95% confidence intervals for the University benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1557.2 ± 0.19% 2903.2 ± 0.77% 44249.8 ± 8.9% 0.994 ± 0.2% 1.0 ± 0.0012% 0.994 ± 0.2% 
0.10 FS 1521.5 ± 0.028% 1997.2 ± 0.0059% 45984.4 ± 11.0% 0.993 ± 0.24% 1.0 ± 0.00082% 0.993 ± 0.24% 
0.10 Rand 1543.5 ± 0.051% 2708.2 ± 0.38% 72316.3 ± 9.1% 0.991 ± 0.2% 1.0 ± 0.00078% 0.991 ± 0.2% 
0.10 SRPT 1518.8 ± 0.021% 1996.9 ± 0.0039% 50036.6 ± 11.0% 0.995 ± 0.2% 1.0 ± 0.00025% 0.995 ± 0.2% 
0.20 FF 1677.7 ± 1.0% 5629.1 ± 8.4% 77986.8 ± 8.3% 0.985 ± 0.39% 1.0 ± 0.01% 0.985 ± 0.39% 
0.20 FS 1537.6 ± 0.11% 1999.4 ± 0.0039% 72962.6 ± 5.9% 0.983 ± 0.4% 1.0 ± 0.0019% 0.983 ± 0.4% 
0.20 Rand 1600.8 ± 0.18% 3050.2 ± 1.3% 182454.6 ± 11.0% 0.962 ± 0.34% 1.0 ± 0.0025% 0.962 ± 0.34% 
0.20 SRPT 1529.5 ± 0.079% 2014.7 ± 0.56% 102306.4 ± 12.0% 0.985 ± 0.32% 1.0 ± 0.0019% 0.985 ± 0.32% 

(continued on next page) 

C.W.F. Parsonson et al.                                                                                                                                                                                                                        



Optical Switching and Networking 46 (2022) 100695

23

Table F.4 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.30 FF 1887.8 ± 0.78% 10474.4 ± 4.9% 174541.8 ± 16.0% 0.975 ± 0.17% 0.999 ± 0.0073% 0.975 ± 0.17% 
0.30 FS 1575.3 ± 0.19% 2630.4 ± 2.8% 134195.3 ± 3.0% 0.97 ± 0.12% 1.0 ± 0.0013% 0.97 ± 0.12% 
0.30 Rand 1682.3 ± 0.2% 3937.4 ± 0.35% 381073.0 ± 4.0% 0.857 ± 0.87% 0.999 ± 0.0063% 0.857 ± 0.87% 
0.30 SRPT 1551.2 ± 0.099% 2500.5 ± 0.29% 235811.0 ± 5.7% 0.956 ± 0.29% 1.0 ± 0.00062% 0.956 ± 0.29% 
0.40 FF 2124.1 ± 2.2% 15235.4 ± 11.0% 247350.9 ± 7.0% 0.939 ± 0.38% 0.998 ± 0.02% 0.939 ± 0.38% 
0.40 FS 1643.5 ± 0.12% 3562.8 ± 4.5% 230440.4 ± 6.6% 0.926 ± 0.58% 0.999 ± 0.0025% 0.926 ± 0.58% 
0.40 Rand 1762.5 ± 0.23% 5081.8 ± 0.67% 295319.0 ± 1.8% 0.816 ± 0.75% 0.999 ± 0.0092% 0.816 ± 0.75% 
0.40 SRPT 1561.9 ± 0.08% 2771.3 ± 0.31% 221163.5 ± 5.0% 0.902 ± 0.41% 1.0 ± 0.0014% 0.902 ± 0.41% 
0.50 FF 1902.1 ± 1.1% 6389.1 ± 2.7% 391005.8 ± 7.6% 0.909 ± 0.94% 0.999 ± 0.0067% 0.909 ± 0.94% 
0.50 FS 1740.5 ± 1.2% 4533.5 ± 12.0% 344343.1 ± 7.9% 0.9 ± 1.1% 0.999 ± 0.0055% 0.9 ± 1.1% 
0.50 Rand 1947.7 ± 1.8% 6365.3 ± 4.5% 443976.4 ± 11.0% 0.818 ± 1.2% 0.998 ± 0.0037% 0.818 ± 1.2% 
0.50 SRPT 1582.2 ± 0.16% 2904.8 ± 0.36% 363481.8 ± 7.4% 0.875 ± 0.76% 1.0 ± 0.0012% 0.875 ± 0.76% 
0.60 FF 1989.3 ± 1.0% 7602.7 ± 4.6% 335234.2 ± 5.2% 0.917 ± 0.39% 0.999 ± 0.0057% 0.917 ± 0.39% 
0.60 FS 1677.7 ± 0.53% 3701.9 ± 1.1% 314020.0 ± 4.8% 0.912 ± 0.31% 0.999 ± 0.0036% 0.912 ± 0.31% 
0.60 Rand 2322.4 ± 2.7% 9921.0 ± 8.2% 398738.8 ± 2.5% 0.805 ± 0.48% 0.997 ± 0.027% 0.805 ± 0.48% 
0.60 SRPT 1630.0 ± 0.084% 3630.4 ± 0.48% 322416.8 ± 5.0% 0.879 ± 0.47% 1.0 ± 0.0022% 0.879 ± 0.47% 
0.70 FF 2434.1 ± 1.8% 12649.6 ± 5.0% 305610.1 ± 2.9% 0.912 ± 0.35% 0.998 ± 0.033% 0.912 ± 0.35% 
0.70 FS 1672.2 ± 0.4% 4415.8 ± 1.9% 246486.9 ± 2.9% 0.914 ± 0.3% 0.999 ± 0.0033% 0.914 ± 0.3% 
0.70 Rand 3083.8 ± 1.4% 19421.0 ± 4.0% 377667.2 ± 2.1% 0.755 ± 1.1% 0.993 ± 0.048% 0.755 ± 1.1% 
0.70 SRPT 1712.6 ± 0.28% 4502.1 ± 1.8% 280418.9 ± 5.9% 0.878 ± 0.46% 0.999 ± 0.008% 0.878 ± 0.46% 
0.79 FF 3394.1 ± 2.1% 23179.1 ± 3.5% 265525.7 ± 5.5% 0.9 ± 0.23% 0.995 ± 0.033% 0.9 ± 0.23% 
0.79 FS 1724.5 ± 0.31% 6302.9 ± 1.9% 236377.1 ± 3.3% 0.913 ± 0.28% 0.999 ± 0.004% 0.913 ± 0.28% 
0.79 Rand 3861.5 ± 1.8% 25389.9 ± 1.9% 317002.4 ± 2.3% 0.731 ± 0.83% 0.988 ± 0.033% 0.731 ± 0.83% 
0.79 SRPT 1950.3 ± 1.3% 7574.3 ± 6.7% 271794.0 ± 1.7% 0.848 ± 0.36% 0.999 ± 0.017% 0.848 ± 0.36% 
0.89 FF 5550.1 ± 1.9% 44869.3 ± 2.5% 333023.3 ± 11.0% 0.87 ± 0.62% 0.987 ± 0.041% 0.87 ± 0.62% 
0.89 FS 2015.9 ± 0.54% 12793.3 ± 1.7% 254036.6 ± 10.0% 0.873 ± 0.9% 0.998 ± 0.013% 0.873 ± 0.9% 
0.89 Rand 5718.1 ± 7.5% 38174.0 ± 8.7% 346773.2 ± 12.0% 0.692 ± 0.71% 0.979 ± 0.045% 0.692 ± 0.71% 
0.89 SRPT 2645.0 ± 5.0% 19839.5 ± 12.0% 319581.9 ± 11.0% 0.755 ± 0.43% 0.993 ± 0.12% 0.755 ± 0.43%   

Table F.5 
Scheduler performance summary with 95% confidence intervals for the Private Enterprise benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1576.7 ± 0.34% 3207.9 ± 3.5% 50143.5 ± 5.5% 0.998 ± 0.085% 1.0 ± 0.00094% 0.998 ± 0.085% 
0.10 FS 1522.1 ± 0.021% 1997.1 ± 0.0079% 46335.0 ± 4.4% 0.997 ± 0.095% 1.0 ± 0.0006% 0.997 ± 0.095% 
0.10 Rand 1550.9 ± 0.053% 2765.2 ± 0.49% 82610.5 ± 7.8% 0.994 ± 0.19% 1.0 ± 0.00074% 0.994 ± 0.19% 
0.10 SRPT 1520.3 ± 0.01% 1997.3 ± 0.0079% 48062.1 ± 5.8% 0.997 ± 0.13% 1.0 ± 0.00047% 0.997 ± 0.13% 
0.20 FF 1726.6 ± 1.6% 6794.6 ± 11.0% 70833.7 ± 3.0% 0.983 ± 0.29% 0.999 ± 0.01% 0.983 ± 0.29% 
0.20 FS 1532.2 ± 0.13% 2048.4 ± 0.76% 66026.7 ± 2.0% 0.983 ± 0.22% 1.0 ± 0.00072% 0.983 ± 0.22% 
0.20 Rand 1598.9 ± 0.16% 3199.8 ± 2.0% 166233.2 ± 8.3% 0.946 ± 0.6% 1.0 ± 0.0044% 0.946 ± 0.6% 
0.20 SRPT 1529.5 ± 0.11% 2214.8 ± 1.6% 87532.1 ± 7.1% 0.984 ± 0.22% 1.0 ± 0.00048% 0.984 ± 0.22% 
0.30 FF 2058.9 ± 3.1% 16033.0 ± 12.0% 149462.6 ± 8.8% 0.98 ± 0.19% 0.999 ± 0.016% 0.98 ± 0.19% 
0.30 FS 1549.9 ± 0.13% 2528.8 ± 1.1% 121311.0 ± 7.3% 0.981 ± 0.24% 1.0 ± 0.001% 0.981 ± 0.24% 
0.30 Rand 1684.2 ± 0.39% 4149.8 ± 1.9% 285851.7 ± 4.8% 0.899 ± 0.73% 0.999 ± 0.0088% 0.899 ± 0.73% 
0.30 SRPT 1543.2 ± 0.056% 2616.2 ± 0.41% 196424.2 ± 9.0% 0.978 ± 0.22% 1.0 ± 0.00089% 0.978 ± 0.22% 
0.40 FF 2638.3 ± 4.1% 30026.6 ± 9.2% 205182.9 ± 8.2% 0.942 ± 0.6% 0.997 ± 0.036% 0.942 ± 0.6% 
0.40 FS 1599.4 ± 0.25% 3333.2 ± 1.9% 211188.7 ± 4.4% 0.943 ± 0.21% 1.0 ± 0.002% 0.943 ± 0.21% 
0.40 Rand 1799.1 ± 0.54% 5653.6 ± 2.3% 280714.7 ± 3.0% 0.84 ± 1.1% 0.999 ± 0.015% 0.84 ± 1.1% 
0.40 SRPT 1564.1 ± 0.085% 2802.8 ± 0.32% 210192.4 ± 7.6% 0.937 ± 0.46% 1.0 ± 0.0017% 0.937 ± 0.46% 
0.50 FF 2824.6 ± 5.9% 34301.5 ± 14.0% 365468.3 ± 13.0% 0.907 ± 1.0% 0.994 ± 0.11% 0.907 ± 1.0% 
0.50 FS 1682.6 ± 0.72% 5048.5 ± 3.6% 311288.1 ± 9.1% 0.902 ± 1.2% 0.999 ± 0.0061% 0.902 ± 1.2% 
0.50 Rand 1993.9 ± 1.9% 7870.4 ± 4.9% 381296.9 ± 10.0% 0.811 ± 1.1% 0.998 ± 0.019% 0.811 ± 1.1% 
0.50 SRPT 1582.9 ± 0.26% 2938.1 ± 0.38% 332134.3 ± 13.0% 0.903 ± 0.65% 1.0 ± 0.0026% 0.903 ± 0.65% 
0.60 FF 2230.4 ± 1.3% 11218.7 ± 5.3% 339021.9 ± 2.3% 0.915 ± 0.44% 0.997 ± 0.065% 0.915 ± 0.44% 
0.60 FS 1705.0 ± 0.53% 5843.2 ± 3.2% 326252.1 ± 3.6% 0.907 ± 0.43% 0.999 ± 0.0044% 0.907 ± 0.43% 
0.60 Rand 2282.4 ± 1.6% 12522.1 ± 6.0% 412445.3 ± 4.4% 0.782 ± 1.4% 0.997 ± 0.029% 0.782 ± 1.4% 
0.60 SRPT 1624.0 ± 0.21% 3425.1 ± 1.3% 375244.9 ± 5.9% 0.898 ± 0.38% 1.0 ± 0.0028% 0.898 ± 0.38% 
0.70 FF 2449.3 ± 0.71% 13110.2 ± 2.3% 297091.8 ± 4.2% 0.921 ± 0.26% 0.998 ± 0.02% 0.921 ± 0.26% 
0.70 FS 1696.4 ± 0.49% 5751.0 ± 4.4% 283512.5 ± 4.4% 0.907 ± 0.17% 0.999 ± 0.003% 0.907 ± 0.17% 
0.70 Rand 2636.5 ± 0.7% 18278.2 ± 2.0% 363011.5 ± 2.3% 0.74 ± 1.0% 0.995 ± 0.029% 0.74 ± 1.0% 
0.70 SRPT 1691.0 ± 0.23% 4085.2 ± 1.5% 315470.7 ± 7.2% 0.892 ± 0.36% 1.0 ± 0.0026% 0.892 ± 0.36% 
0.79 FF 3400.0 ± 0.81% 24127.3 ± 1.5% 275964.6 ± 3.9% 0.897 ± 0.37% 0.994 ± 0.03% 0.897 ± 0.37% 
0.79 FS 1732.4 ± 0.24% 6508.5 ± 1.6% 258779.8 ± 3.2% 0.893 ± 0.45% 0.999 ± 0.0034% 0.893 ± 0.45% 
0.79 Rand 3264.4 ± 1.7% 27586.4 ± 3.0% 325223.7 ± 2.3% 0.675 ± 0.73% 0.989 ± 0.04% 0.675 ± 0.73% 
0.79 SRPT 1841.9 ± 0.58% 5834.0 ± 2.5% 292946.1 ± 3.7% 0.853 ± 0.25% 0.999 ± 0.011% 0.853 ± 0.25% 
0.90 FF 5851.8 ± 1.9% 48861.6 ± 2.7% 274329.9 ± 2.0% 0.866 ± 0.64% 0.983 ± 0.08% 0.866 ± 0.64% 
0.90 FS 1940.3 ± 0.35% 11084.7 ± 2.1% 268340.1 ± 3.0% 0.842 ± 0.52% 0.998 ± 0.0064% 0.842 ± 0.52% 
0.90 Rand 4124.7 ± 1.4% 36647.1 ± 2.2% 294642.1 ± 0.58% 0.625 ± 1.5% 0.983 ± 0.055% 0.625 ± 1.5% 
0.90 SRPT 2492.0 ± 5.5% 16474.5 ± 15.0% 267699.8 ± 2.0% 0.711 ± 0.41% 0.994 ± 0.2% 0.711 ± 0.41%   
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Table F.6 
Scheduler performance summary with 95% confidence intervals for the Commercial Cloud benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1588.2 ± 0.46% 3604.1 ± 2.4% 49490.3 ± 6.8% 0.996 ± 0.052% 1.0 ± 0.0019% 0.996 ± 0.052% 
0.10 FS 1520.1 ± 0.083% 1997.1 ± 0.0039% 42361.1 ± 4.6% 0.994 ± 0.16% 1.0 ± 0.00059% 0.994 ± 0.16% 
0.10 Rand 1551.4 ± 0.12% 2816.9 ± 0.47% 75051.0 ± 13.0% 0.99 ± 0.2% 1.0 ± 0.0023% 0.99 ± 0.2% 
0.10 SRPT 1519.3 ± 0.077% 1997.7 ± 0.0059% 42911.8 ± 5.8% 0.996 ± 0.08% 1.0 ± 0.00037% 0.996 ± 0.08% 
0.20 FF 1747.8 ± 1.2% 7437.1 ± 6.9% 67090.9 ± 3.3% 0.99 ± 0.29% 0.999 ± 0.018% 0.99 ± 0.29% 
0.20 FS 1524.9 ± 0.14% 1998.8 ± 0.0059% 59363.5 ± 6.5% 0.991 ± 0.3% 1.0 ± 0.0013% 0.991 ± 0.3% 
0.20 Rand 1602.1 ± 0.24% 3372.3 ± 1.2% 171058.6 ± 6.9% 0.97 ± 0.64% 1.0 ± 0.0033% 0.97 ± 0.64% 
0.20 SRPT 1525.8 ± 0.13% 2276.5 ± 0.57% 71962.2 ± 7.8% 0.991 ± 0.26% 1.0 ± 0.0013% 0.991 ± 0.26% 
0.30 FF 2274.3 ± 2.6% 21086.7 ± 9.0% 116200.4 ± 8.8% 0.987 ± 0.06% 0.999 ± 0.012% 0.987 ± 0.06% 
0.30 FS 1538.4 ± 0.061% 2149.4 ± 0.9% 85571.7 ± 5.5% 0.99 ± 0.066% 1.0 ± 0.00071% 0.99 ± 0.066% 
0.30 Rand 1707.2 ± 0.29% 4544.2 ± 1.7% 249283.9 ± 9.6% 0.933 ± 0.58% 1.0 ± 0.003% 0.933 ± 0.58% 
0.30 SRPT 1540.7 ± 0.023% 2620.5 ± 0.31% 119981.5 ± 12.0% 0.989 ± 0.092% 1.0 ± 0.00056% 0.989 ± 0.092% 
0.40 FF 3203.2 ± 3.6% 39373.6 ± 7.1% 153040.1 ± 4.9% 0.964 ± 0.31% 0.994 ± 0.11% 0.964 ± 0.31% 
0.40 FS 1557.2 ± 0.17% 2559.2 ± 0.57% 129399.8 ± 9.6% 0.968 ± 0.36% 1.0 ± 0.00083% 0.968 ± 0.36% 
0.40 Rand 1889.3 ± 0.56% 6600.9 ± 3.0% 259317.4 ± 3.9% 0.87 ± 0.65% 0.999 ± 0.012% 0.87 ± 0.65% 
0.40 SRPT 1564.1 ± 0.13% 2830.9 ± 0.38% 190613.2 ± 10.0% 0.97 ± 0.25% 1.0 ± 0.00072% 0.97 ± 0.25% 
0.50 FF 4495.2 ± 3.4% 60948.4 ± 4.3% 255736.7 ± 14.0% 0.939 ± 0.64% 0.989 ± 0.18% 0.939 ± 0.64% 
0.50 FS 1584.6 ± 0.13% 2963.7 ± 0.38% 196875.6 ± 7.7% 0.947 ± 0.84% 1.0 ± 0.0039% 0.947 ± 0.84% 
0.50 Rand 2324.1 ± 3.3% 12139.1 ± 11.0% 353111.3 ± 13.0% 0.797 ± 0.74% 0.996 ± 0.027% 0.797 ± 0.74% 
0.50 SRPT 1585.3 ± 0.082% 2962.4 ± 0.21% 254463.8 ± 8.2% 0.942 ± 0.56% 1.0 ± 0.0022% 0.942 ± 0.56% 
0.60 FF 4837.1 ± 5.1% 68328.0 ± 3.3% 387525.7 ± 2.3% 0.924 ± 0.23% 0.978 ± 0.2% 0.924 ± 0.23% 
0.60 FS 1639.9 ± 0.14% 3835.1 ± 0.83% 268943.4 ± 3.6% 0.941 ± 0.14% 1.0 ± 0.0018% 0.941 ± 0.14% 
0.60 Rand 3236.8 ± 0.65% 22198.9 ± 0.66% 439374.7 ± 1.1% 0.744 ± 0.42% 0.993 ± 0.015% 0.744 ± 0.42% 
0.60 SRPT 1628.1 ± 0.15% 3565.0 ± 0.8% 308435.8 ± 4.8% 0.922 ± 0.26% 1.0 ± 0.0026% 0.922 ± 0.26% 
0.70 FF 3173.6 ± 0.7% 22472.4 ± 2.9% 327840.2 ± 2.7% 0.905 ± 0.31% 0.992 ± 0.044% 0.905 ± 0.31% 
0.70 FS 1686.9 ± 0.23% 4915.5 ± 1.0% 254484.7 ± 1.8% 0.921 ± 0.44% 0.999 ± 0.0024% 0.921 ± 0.44% 
0.70 Rand 3760.3 ± 0.94% 31788.5 ± 2.2% 365861.9 ± 2.2% 0.675 ± 0.25% 0.989 ± 0.027% 0.675 ± 0.25% 
0.70 SRPT 1715.2 ± 0.24% 4404.1 ± 1.2% 264969.5 ± 5.5% 0.903 ± 0.33% 1.0 ± 0.004% 0.903 ± 0.33% 
0.79 FF 4144.2 ± 2.0% 30541.3 ± 4.0% 301349.2 ± 2.6% 0.902 ± 0.18% 0.993 ± 0.025% 0.902 ± 0.18% 
0.79 FS 1743.5 ± 0.24% 6572.0 ± 1.6% 259058.4 ± 2.9% 0.905 ± 0.18% 0.999 ± 0.0026% 0.905 ± 0.18% 
0.79 Rand 4740.4 ± 0.98% 46094.7 ± 2.0% 344636.1 ± 0.65% 0.6 ± 0.65% 0.98 ± 0.032% 0.6 ± 0.65% 
0.79 SRPT 1889.5 ± 0.74% 6169.9 ± 3.9% 292500.7 ± 4.5% 0.868 ± 0.038% 0.999 ± 0.0052% 0.868 ± 0.038% 
0.89 FF 6856.2 ± 0.89% 54158.7 ± 2.0% 272757.7 ± 1.4% 0.853 ± 0.25% 0.976 ± 0.14% 0.853 ± 0.25% 
0.89 FS 1940.3 ± 0.16% 10891.2 ± 0.75% 253250.9 ± 1.6% 0.844 ± 0.37% 0.998 ± 0.0061% 0.844 ± 0.37% 
0.89 Rand 5320.7 ± 1.0% 55646.5 ± 1.6% 300652.9 ± 0.86% 0.541 ± 0.4% 0.972 ± 0.051% 0.541 ± 0.4% 
0.89 SRPT 2234.9 ± 1.5% 10623.8 ± 4.9% 267587.5 ± 2.8% 0.719 ± 0.62% 0.996 ± 0.025% 0.719 ± 0.62%   

Table F.7 
Scheduler performance summary with 95% confidence intervals for the Social Media Cloud benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1536.7 ± 0.074% 2766.2 ± 0.3% 7153.9 ± 2.0% 1.0 ± 0.0064% 1.0 ± 0.00041% 1.0 ± 0.0064% 
0.10 FS 1513.9 ± 0.062% 2053.4 ± 0.84% 6892.3 ± 3.1% 1.0 ± 0.0062% 1.0 ± 0.00024% 1.0 ± 0.0062% 
0.10 Rand 1536.5 ± 0.054% 2762.4 ± 0.35% 13551.4 ± 11.0% 1.0 ± 0.0079% 1.0 ± 0.00056% 1.0 ± 0.0079% 
0.10 SRPT 1515.2 ± 0.062% 2189.1 ± 0.38% 6820.5 ± 3.6% 1.0 ± 0.0063% 1.0 ± 0.00032% 1.0 ± 0.0063% 
0.20 FF 1591.6 ± 0.11% 3410.3 ± 1.2% 12773.2 ± 12.0% 1.0 ± 0.0045% 1.0 ± 0.00091% 1.0 ± 0.0045% 
0.20 FS 1523.7 ± 0.033% 2560.6 ± 0.61% 11206.1 ± 11.0% 1.0 ± 0.0056% 1.0 ± 0.00047% 1.0 ± 0.0056% 
0.20 Rand 1581.4 ± 0.097% 3237.3 ± 1.2% 29019.5 ± 19.0% 1.0 ± 0.0099% 1.0 ± 0.0015% 1.0 ± 0.0099% 
0.20 SRPT 1532.6 ± 0.054% 2720.7 ± 0.49% 11620.8 ± 11.0% 1.0 ± 0.0052% 1.0 ± 0.0005% 1.0 ± 0.0052% 
0.30 FF 1707.8 ± 0.42% 4849.3 ± 2.3% 24735.7 ± 10.0% 1.0 ± 0.011% 1.0 ± 0.0032% 1.0 ± 0.011% 
0.30 FS 1539.5 ± 0.056% 2859.5 ± 0.27% 15729.0 ± 8.7% 1.0 ± 0.0089% 1.0 ± 0.0006% 1.0 ± 0.0089% 
0.30 Rand 1660.7 ± 0.13% 4184.2 ± 1.1% 47524.1 ± 19.0% 0.999 ± 0.025% 1.0 ± 0.0033% 0.999 ± 0.025% 
0.30 SRPT 1565.8 ± 0.095% 2972.7 ± 0.14% 18417.1 ± 12.0% 1.0 ± 0.0073% 1.0 ± 0.00098% 1.0 ± 0.0073% 
0.40 FF 1924.6 ± 0.8% 7639.7 ± 3.0% 39600.9 ± 9.7% 0.998 ± 0.021% 0.999 ± 0.0098% 0.998 ± 0.021% 
0.40 FS 1563.9 ± 0.11% 3266.6 ± 1.1% 17450.8 ± 3.5% 0.999 ± 0.019% 1.0 ± 0.0023% 0.999 ± 0.019% 
0.40 Rand 1808.3 ± 0.31% 5802.5 ± 0.92% 92643.3 ± 23.0% 0.996 ± 0.042% 0.999 ± 0.0058% 0.996 ± 0.042% 
0.40 SRPT 1622.6 ± 0.19% 3731.7 ± 0.93% 23635.4 ± 7.2% 0.999 ± 0.01% 1.0 ± 0.0038% 0.999 ± 0.01% 
0.50 FF 2646.7 ± 2.9% 20076.0 ± 7.9% 117682.7 ± 9.7% 0.996 ± 0.066% 0.997 ± 0.052% 0.996 ± 0.066% 
0.50 FS 1624.4 ± 0.21% 4201.7 ± 1.4% 31567.8 ± 3.4% 0.997 ± 0.058% 1.0 ± 0.0047% 0.997 ± 0.058% 
0.50 Rand 2218.8 ± 0.77% 10570.1 ± 3.4% 207351.1 ± 11.0% 0.987 ± 0.15% 0.998 ± 0.019% 0.987 ± 0.15% 
0.50 SRPT 1737.3 ± 0.53% 4829.9 ± 1.8% 49492.8 ± 6.5% 0.997 ± 0.045% 0.999 ± 0.013% 0.997 ± 0.045% 
0.60 FF 4495.9 ± 4.4% 55356.7 ± 7.6% 237610.0 ± 7.3% 0.988 ± 0.16% 0.989 ± 0.053% 0.988 ± 0.16% 
0.60 FS 1755.8 ± 0.41% 6110.1 ± 1.8% 47599.2 ± 5.6% 0.992 ± 0.15% 0.999 ± 0.024% 0.992 ± 0.15% 
0.60 Rand 3262.0 ± 1.6% 24348.0 ± 2.2% 269243.0 ± 2.0% 0.951 ± 0.31% 0.991 ± 0.049% 0.951 ± 0.31% 
0.60 SRPT 2034.5 ± 2.0% 8447.1 ± 8.2% 193698.4 ± 8.9% 0.992 ± 0.12% 0.998 ± 0.071% 0.992 ± 0.12% 
0.69 FF 8175.5 ± 2.7% 121246.2 ± 3.5% 468538.0 ± 5.4% 0.964 ± 0.22% 0.934 ± 0.82% 0.964 ± 0.22% 
0.69 FS 2384.6 ± 1.7% 14253.5 ± 3.9% 138806.7 ± 6.4% 0.986 ± 0.14% 0.998 ± 0.026% 0.986 ± 0.14% 
0.69 Rand 6394.4 ± 1.4% 72096.8 ± 3.3% 507914.9 ± 2.5% 0.901 ± 0.29% 0.98 ± 0.049% 0.901 ± 0.29% 
0.69 SRPT 4937.4 ± 9.9% 64798.0 ± 18.0% 500125.6 ± 2.8% 0.939 ± 0.81% 0.981 ± 0.55% 0.939 ± 0.81% 
0.80 FF 7182.3 ± 1.7% 77566.2 ± 3.8% 443785.0 ± 2.9% 0.938 ± 0.13% 0.951 ± 0.19% 0.938 ± 0.13% 
0.80 FS 4026.1 ± 2.1% 32187.7 ± 2.7% 243834.5 ± 3.5% 0.947 ± 0.19% 0.992 ± 0.034% 0.947 ± 0.19% 

(continued on next page) 
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Table F.7 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.80 Rand 8489.0 ± 2.2% 89488.4 ± 1.5% 446095.0 ± 1.4% 0.846 ± 0.23% 0.966 ± 0.06% 0.846 ± 0.23% 
0.80 SRPT 11412.4 ± 4.1% 154590.0 ± 3.9% 443708.3 ± 1.7% 0.748 ± 0.42% 0.854 ± 0.88% 0.748 ± 0.42% 
0.90 FF 8731.6 ± 1.5% 76236.3 ± 1.8% 380339.7 ± 2.7% 0.946 ± 0.13% 0.97 ± 0.2% 0.946 ± 0.13% 
0.90 FS 4809.9 ± 1.4% 40007.0 ± 2.0% 228118.7 ± 2.1% 0.931 ± 0.14% 0.989 ± 0.038% 0.931 ± 0.14% 
0.90 Rand 10800.9 ± 0.96% 110549.1 ± 0.69% 407971.9 ± 1.1% 0.788 ± 0.41% 0.949 ± 0.15% 0.788 ± 0.41% 
0.90 SRPT 18401.3 ± 2.4% 204251.6 ± 2.0% 416090.4 ± 0.56% 0.61 ± 0.78% 0.751 ± 0.98% 0.61 ± 0.78%  

Appendix F.3.2. Skewed Nodes Distribution Benchmark   

Table F.8 
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_uniform and rack_sensitivity_uniform benchmarks.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.1 FF 1554.5 ± 0.15% 2977.0 ± 0.79% 38288.3 ± 6.7% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11% 
0.1 FS 1518.8 ± 0.12% 1997.5 ± 0.0039% 39693.2 ± 4.6% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11% 
0.1 Rand 1544.1 ± 0.11% 2750.1 ± 0.34% 60170.8 ± 9.4% 0.991 ± 0.15% 1.0 ± 0.024% 0.991 ± 0.15% 
0.1 SRPT 1518.3 ± 0.12% 1998.0 ± 0.0039% 41190.0 ± 5.2% 0.995 ± 0.11% 1.0 ± 0.024% 0.995 ± 0.11% 
0.2 FF 1620.8 ± 0.34% 4398.3 ± 4.0% 43732.0 ± 4.4% 0.98 ± 0.3% 0.999 ± 0.054% 0.98 ± 0.3% 
0.2 FS 1524.3 ± 0.1% 1999.6 ± 0.016% 42196.8 ± 4.5% 0.982 ± 0.32% 0.999 ± 0.055% 0.982 ± 0.32% 
0.2 Rand 1579.3 ± 0.18% 3049.8 ± 1.1% 79304.0 ± 9.3% 0.974 ± 0.25% 0.999 ± 0.057% 0.974 ± 0.25% 
0.2 SRPT 1524.9 ± 0.087% 2234.7 ± 1.0% 44396.8 ± 4.8% 0.983 ± 0.28% 0.999 ± 0.055% 0.983 ± 0.28% 
0.3 FF 1744.2 ± 0.55% 6564.0 ± 2.3% 80217.5 ± 5.9% 0.988 ± 0.18% 0.999 ± 0.069% 0.988 ± 0.18% 
0.3 FS 1532.9 ± 0.1% 2255.9 ± 0.46% 71447.0 ± 7.3% 0.989 ± 0.16% 0.999 ± 0.064% 0.989 ± 0.16% 
0.3 Rand 1643.6 ± 0.22% 3856.5 ± 0.36% 180283.0 ± 6.6% 0.973 ± 0.27% 0.999 ± 0.066% 0.973 ± 0.27% 
0.3 SRPT 1537.1 ± 0.071% 2612.7 ± 0.59% 84911.1 ± 7.0% 0.99 ± 0.15% 0.999 ± 0.064% 0.99 ± 0.15% 
0.4 FF 1917.3 ± 0.82% 9481.8 ± 2.8% 89676.1 ± 6.4% 0.981 ± 0.29% 0.998 ± 0.057% 0.981 ± 0.29% 
0.4 FS 1544.5 ± 0.079% 2602.7 ± 0.7% 85476.6 ± 5.7% 0.98 ± 0.3% 0.999 ± 0.049% 0.98 ± 0.3% 
0.4 Rand 1776.3 ± 0.22% 5093.5 ± 0.91% 239854.0 ± 7.3% 0.946 ± 0.38% 0.999 ± 0.05% 0.946 ± 0.38% 
0.4 SRPT 1554.7 ± 0.058% 2819.0 ± 0.48% 109885.3 ± 8.2% 0.98 ± 0.25% 0.999 ± 0.05% 0.98 ± 0.25% 
0.5 FF 2254.6 ± 0.82% 14792.9 ± 1.9% 100669.6 ± 4.8% 0.978 ± 0.24% 0.998 ± 0.046% 0.978 ± 0.24% 
0.5 FS 1563.8 ± 0.16% 2927.5 ± 0.58% 101281.5 ± 7.7% 0.981 ± 0.23% 0.999 ± 0.042% 0.981 ± 0.23% 
0.5 Rand 2259.1 ± 1.4% 9368.2 ± 3.4% 403534.7 ± 12.0% 0.883 ± 0.74% 0.997 ± 0.041% 0.883 ± 0.74% 
0.5 SRPT 1580.4 ± 0.069% 2948.5 ± 0.13% 148065.0 ± 4.9% 0.977 ± 0.25% 0.999 ± 0.04% 0.977 ± 0.25% 
0.6 FF 2696.5 ± 1.4% 19574.0 ± 3.3% 242541.4 ± 13.0% 0.971 ± 0.36% 0.997 ± 0.051% 0.971 ± 0.36% 
0.6 FS 1595.6 ± 0.15% 3652.1 ± 0.98% 161242.9 ± 14.0% 0.973 ± 0.24% 0.999 ± 0.051% 0.973 ± 0.24% 
0.6 Rand 3309.7 ± 1.1% 17326.4 ± 1.6% 401082.8 ± 4.4% 0.82 ± 0.87% 0.993 ± 0.066% 0.82 ± 0.87% 
0.6 SRPT 1620.9 ± 0.077% 3373.6 ± 0.78% 294496.9 ± 6.8% 0.962 ± 0.35% 0.999 ± 0.051% 0.962 ± 0.35% 
0.7 FF 3436.8 ± 1.0% 27933.1 ± 2.3% 297748.1 ± 3.1% 0.935 ± 0.51% 0.994 ± 0.077% 0.935 ± 0.51% 
0.7 FS 1660.9 ± 0.21% 4953.9 ± 1.2% 255268.4 ± 4.4% 0.942 ± 0.36% 0.999 ± 0.078% 0.942 ± 0.36% 
0.7 Rand 4393.5 ± 1.1% 24778.6 ± 1.8% 354839.4 ± 2.2% 0.738 ± 1.1% 0.986 ± 0.082% 0.738 ± 1.1% 
0.7 SRPT 1668.4 ± 0.15% 3827.3 ± 0.71% 320957.0 ± 4.4% 0.914 ± 0.47% 0.998 ± 0.077% 0.914 ± 0.47% 
0.8 FF 4361.4 ± 2.1% 34817.0 ± 2.7% 287276.9 ± 3.8% 0.907 ± 0.59% 0.99 ± 0.15% 0.907 ± 0.59% 
0.8 FS 1758.1 ± 0.5% 7135.0 ± 1.9% 283104.7 ± 1.3% 0.899 ± 0.8% 0.998 ± 0.1% 0.899 ± 0.8% 
0.8 Rand 5762.2 ± 1.5% 32239.6 ± 1.4% 329015.7 ± 2.0% 0.693 ± 1.1% 0.977 ± 0.15% 0.693 ± 1.1% 
0.8 SRPT 1758.1 ± 0.41% 4842.1 ± 2.4% 309165.9 ± 3.6% 0.858 ± 0.63% 0.998 ± 0.11% 0.858 ± 0.63% 
0.9 FF 5520.3 ± 1.7% 43104.1 ± 2.4% 278164.1 ± 2.2% 0.846 ± 0.61% 0.983 ± 0.061% 0.846 ± 0.61% 
0.9 FS 1890.9 ± 0.47% 9974.2 ± 1.9% 287700.1 ± 3.1% 0.823 ± 0.74% 0.998 ± 0.038% 0.823 ± 0.74% 
0.9 Rand 7095.9 ± 1.3% 39006.4 ± 1.4% 306075.6 ± 1.6% 0.627 ± 0.93% 0.968 ± 0.041% 0.627 ± 0.93% 
0.9 SRPT 1890.8 ± 0.89% 6584.6 ± 4.1% 287161.6 ± 2.9% 0.771 ± 0.54% 0.998 ± 0.036% 0.771 ± 0.54%   

Table F.9 
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.05 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1676.3 ± 1.3% 4965.6 ± 5.9% 115613.1 ± 12.0% 0.994 ± 0.17% 0.999 ± 0.042% 0.994 ± 0.17% 
0.10 FS 1545.9 ± 0.21% 2137.2 ± 1.5% 111455.6 ± 11.0% 0.993 ± 0.15% 0.999 ± 0.04% 0.993 ± 0.15% 
0.10 Rand 1586.2 ± 0.22% 3071.9 ± 1.5% 204371.5 ± 6.6% 0.986 ± 0.18% 0.999 ± 0.04% 0.986 ± 0.18% 
0.10 SRPT 1529.5 ± 0.14% 1998.7 ± 0.0078% 144042.5 ± 11.0% 0.993 ± 0.16% 0.999 ± 0.041% 0.993 ± 0.16% 
0.20 FF 1769.9 ± 2.2% 4943.9 ± 12.0% 281567.2 ± 4.5% 0.922 ± 0.66% 0.997 ± 0.086% 0.922 ± 0.66% 
0.20 FS 1653.3 ± 0.56% 3724.2 ± 11.0% 264636.5 ± 5.0% 0.896 ± 0.51% 0.998 ± 0.092% 0.896 ± 0.51% 
0.20 Rand 1691.1 ± 0.83% 4168.9 ± 5.4% 185373.4 ± 3.9% 0.901 ± 0.24% 0.998 ± 0.091% 0.901 ± 0.24% 
0.20 SRPT 1547.1 ± 0.16% 2306.6 ± 1.5% 165611.6 ± 5.4% 0.933 ± 0.29% 0.999 ± 0.093% 0.933 ± 0.29% 
0.30 FF 1697.5 ± 0.24% 4419.9 ± 2.0% 289568.9 ± 7.6% 0.949 ± 0.49% 0.999 ± 0.037% 0.949 ± 0.49% 
0.30 FS 1612.6 ± 0.46% 2501.7 ± 1.3% 297525.1 ± 2.3% 0.927 ± 0.69% 0.999 ± 0.035% 0.927 ± 0.69% 
0.30 Rand 1686.6 ± 0.47% 3854.9 ± 0.88% 210069.0 ± 5.6% 0.911 ± 0.71% 0.999 ± 0.036% 0.911 ± 0.71% 
0.30 SRPT 1551.1 ± 0.14% 2604.4 ± 0.24% 228406.2 ± 12.0% 0.943 ± 0.35% 0.999 ± 0.038% 0.943 ± 0.35% 
0.40 FF 1789.6 ± 0.58% 6066.7 ± 3.7% 257805.2 ± 5.8% 0.955 ± 0.24% 0.998 ± 0.096% 0.955 ± 0.24% 
0.40 FS 1584.6 ± 0.29% 2728.7 ± 0.95% 201816.6 ± 2.3% 0.938 ± 0.16% 0.999 ± 0.088% 0.938 ± 0.16% 
0.40 Rand 1783.5 ± 0.32% 4928.8 ± 0.76% 275464.8 ± 7.1% 0.905 ± 0.21% 0.998 ± 0.092% 0.905 ± 0.21% 
0.40 SRPT 1561.7 ± 0.11% 2830.3 ± 0.32% 266258.6 ± 11.0% 0.945 ± 0.21% 0.999 ± 0.09% 0.945 ± 0.21% 
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Table F.9 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.50 FF 2040.0 ± 1.8% 9688.9 ± 8.6% 287779.7 ± 19.0% 0.953 ± 0.52% 0.997 ± 0.15% 0.953 ± 0.52% 
0.50 FS 1589.9 ± 0.25% 2981.8 ± 0.49% 177708.6 ± 6.5% 0.95 ± 0.48% 0.998 ± 0.13% 0.95 ± 0.48% 
0.50 Rand 2120.0 ± 1.7% 7781.7 ± 3.5% 314269.3 ± 12.0% 0.866 ± 0.72% 0.996 ± 0.14% 0.866 ± 0.72% 
0.50 SRPT 1589.3 ± 0.16% 2963.8 ± 0.28% 306084.3 ± 13.0% 0.94 ± 0.52% 0.998 ± 0.14% 0.94 ± 0.52% 
0.60 FF 2468.3 ± 1.2% 14704.2 ± 3.3% 311801.5 ± 8.9% 0.956 ± 0.3% 0.998 ± 0.042% 0.956 ± 0.3% 
0.60 FS 1620.5 ± 0.097% 3756.5 ± 0.77% 197184.5 ± 4.0% 0.954 ± 0.23% 0.999 ± 0.038% 0.954 ± 0.23% 
0.60 Rand 3082.2 ± 1.8% 15591.2 ± 3.3% 430919.2 ± 2.4% 0.815 ± 0.9% 0.995 ± 0.056% 0.815 ± 0.9% 
0.60 SRPT 1633.7 ± 0.19% 3493.7 ± 1.2% 337388.2 ± 4.1% 0.94 ± 0.21% 0.999 ± 0.038% 0.94 ± 0.21% 
0.70 FF 3267.8 ± 2.8% 23735.1 ± 7.2% 301004.1 ± 4.5% 0.939 ± 0.27% 0.995 ± 0.062% 0.939 ± 0.27% 
0.70 FS 1659.3 ± 0.14% 4784.4 ± 0.97% 251399.3 ± 4.4% 0.937 ± 0.32% 0.999 ± 0.052% 0.937 ± 0.32% 
0.70 Rand 4312.8 ± 1.8% 23854.6 ± 2.8% 362330.2 ± 2.8% 0.751 ± 1.2% 0.988 ± 0.088% 0.751 ± 1.2% 
0.70 SRPT 1695.4 ± 0.39% 4072.7 ± 2.1% 320406.5 ± 3.1% 0.918 ± 0.35% 0.999 ± 0.054% 0.918 ± 0.35% 
0.79 FF 4478.6 ± 1.1% 36615.6 ± 3.5% 307393.6 ± 1.8% 0.905 ± 0.4% 0.989 ± 0.085% 0.905 ± 0.4% 
0.79 FS 1763.6 ± 0.15% 7054.1 ± 1.4% 269808.6 ± 5.0% 0.896 ± 0.29% 0.998 ± 0.067% 0.896 ± 0.29% 
0.79 Rand 5939.0 ± 1.5% 33275.3 ± 2.1% 332125.7 ± 1.8% 0.679 ± 1.2% 0.977 ± 0.087% 0.679 ± 1.2% 
0.79 SRPT 1792.6 ± 0.76% 5219.3 ± 3.7% 303203.6 ± 3.1% 0.842 ± 0.32% 0.998 ± 0.071% 0.842 ± 0.32% 
0.90 FF 6062.3 ± 2.5% 48771.8 ± 3.1% 278389.8 ± 2.2% 0.852 ± 0.38% 0.979 ± 0.075% 0.852 ± 0.38% 
0.90 FS 1924.4 ± 0.59% 10517.0 ± 2.1% 284887.0 ± 4.4% 0.819 ± 0.73% 0.997 ± 0.1% 0.819 ± 0.73% 
0.90 Rand 7280.9 ± 2.0% 40622.7 ± 2.7% 304640.3 ± 2.2% 0.621 ± 0.53% 0.965 ± 0.071% 0.621 ± 0.53% 
0.90 SRPT 1905.5 ± 0.72% 6722.4 ± 2.8% 288426.4 ± 2.8% 0.751 ± 0.27% 0.997 ± 0.095% 0.751 ± 0.27%   

Table F.10 
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.1 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1589.7 ± 0.2% 3580.9 ± 0.61% 72990.8 ± 4.8% 0.995 ± 0.13% 0.999 ± 0.044% 0.995 ± 0.13% 
0.10 FS 1526.7 ± 0.14% 1998.8 ± 0.016% 70198.0 ± 4.2% 0.995 ± 0.14% 0.999 ± 0.045% 0.995 ± 0.14% 
0.10 Rand 1554.9 ± 0.18% 2849.2 ± 0.33% 91598.0 ± 5.9% 0.995 ± 0.14% 0.999 ± 0.045% 0.995 ± 0.14% 
0.10 SRPT 1520.9 ± 0.11% 1998.2 ± 0.0098% 81555.4 ± 5.0% 0.995 ± 0.13% 0.999 ± 0.045% 0.995 ± 0.13% 
0.20 FF 1904.3 ± 1.3% 11165.2 ± 7.4% 170783.1 ± 17.0% 0.966 ± 0.67% 0.998 ± 0.044% 0.966 ± 0.67% 
0.20 FS 1575.6 ± 0.12% 2708.5 ± 4.0% 172624.9 ± 5.3% 0.957 ± 0.77% 0.999 ± 0.045% 0.957 ± 0.77% 
0.20 Rand 1641.1 ± 0.21% 3799.1 ± 0.95% 258243.8 ± 8.6% 0.901 ± 0.8% 0.999 ± 0.047% 0.901 ± 0.8% 
0.20 SRPT 1542.8 ± 0.11% 2384.0 ± 1.5% 237546.1 ± 11.0% 0.951 ± 0.71% 0.999 ± 0.046% 0.951 ± 0.71% 
0.30 FF 2110.4 ± 5.3% 13637.6 ± 22.0% 364074.5 ± 7.9% 0.922 ± 0.62% 0.997 ± 0.057% 0.922 ± 0.62% 
0.30 FS 1695.1 ± 0.62% 6015.8 ± 11.0% 348982.1 ± 3.3% 0.908 ± 0.47% 0.999 ± 0.031% 0.908 ± 0.47% 
0.30 Rand 1734.6 ± 1.1% 5030.5 ± 5.8% 329509.4 ± 5.2% 0.871 ± 0.9% 0.999 ± 0.036% 0.871 ± 0.9% 
0.30 SRPT 1551.9 ± 0.15% 2671.0 ± 0.84% 347195.5 ± 7.9% 0.911 ± 0.58% 0.999 ± 0.031% 0.911 ± 0.58% 
0.40 FF 1757.4 ± 0.3% 5007.6 ± 1.5% 232866.4 ± 6.1% 0.933 ± 0.32% 0.998 ± 0.086% 0.933 ± 0.32% 
0.40 FS 1640.0 ± 0.54% 2879.0 ± 1.3% 290705.3 ± 4.7% 0.903 ± 0.38% 0.998 ± 0.086% 0.903 ± 0.38% 
0.40 Rand 1738.4 ± 0.63% 4569.2 ± 1.4% 253293.4 ± 7.2% 0.869 ± 0.54% 0.998 ± 0.093% 0.869 ± 0.54% 
0.40 SRPT 1564.4 ± 0.083% 2821.2 ± 0.2% 236239.4 ± 6.3% 0.909 ± 0.35% 0.999 ± 0.087% 0.909 ± 0.35% 
0.50 FF 1890.3 ± 0.82% 6780.9 ± 4.0% 309771.9 ± 13.0% 0.936 ± 0.71% 0.999 ± 0.036% 0.936 ± 0.71% 
0.50 FS 1624.6 ± 0.76% 3202.1 ± 3.5% 263314.3 ± 5.5% 0.924 ± 0.54% 0.999 ± 0.03% 0.924 ± 0.54% 
0.50 Rand 1921.4 ± 0.49% 6121.4 ± 1.8% 344062.4 ± 11.0% 0.865 ± 0.87% 0.998 ± 0.036% 0.865 ± 0.87% 
0.50 SRPT 1590.1 ± 0.1% 3024.8 ± 0.66% 345835.9 ± 12.0% 0.912 ± 0.45% 0.999 ± 0.031% 0.912 ± 0.45% 
0.60 FF 2228.0 ± 1.3% 11127.2 ± 4.4% 325509.6 ± 4.4% 0.941 ± 0.43% 0.998 ± 0.063% 0.941 ± 0.43% 
0.60 FS 1619.8 ± 0.32% 3642.9 ± 1.6% 278038.2 ± 4.2% 0.935 ± 0.29% 0.999 ± 0.041% 0.935 ± 0.29% 
0.60 Rand 2611.0 ± 3.2% 11568.8 ± 5.7% 414642.6 ± 4.4% 0.839 ± 0.76% 0.996 ± 0.064% 0.839 ± 0.76% 
0.60 SRPT 1634.8 ± 0.17% 3676.2 ± 1.4% 310853.9 ± 6.2% 0.915 ± 0.3% 0.999 ± 0.044% 0.915 ± 0.3% 
0.70 FF 2875.4 ± 1.1% 18523.2 ± 3.0% 278140.2 ± 6.7% 0.932 ± 0.48% 0.996 ± 0.055% 0.932 ± 0.48% 
0.70 FS 1653.5 ± 0.21% 4697.6 ± 0.6% 230876.0 ± 2.8% 0.935 ± 0.28% 0.999 ± 0.042% 0.935 ± 0.28% 
0.70 Rand 4114.6 ± 1.3% 22245.1 ± 2.0% 368369.0 ± 2.3% 0.784 ± 0.92% 0.99 ± 0.13% 0.784 ± 0.92% 
0.70 SRPT 1719.6 ± 0.24% 4455.5 ± 1.8% 254458.0 ± 2.9% 0.904 ± 0.36% 0.999 ± 0.044% 0.904 ± 0.36% 
0.80 FF 4161.5 ± 3.0% 32209.9 ± 5.0% 290395.7 ± 3.7% 0.908 ± 0.36% 0.989 ± 0.055% 0.908 ± 0.36% 
0.80 FS 1754.4 ± 0.31% 7051.4 ± 1.7% 270181.8 ± 3.0% 0.9 ± 0.21% 0.998 ± 0.081% 0.9 ± 0.21% 
0.80 Rand 5293.0 ± 2.7% 29396.4 ± 3.3% 306156.3 ± 1.7% 0.719 ± 1.1% 0.978 ± 0.095% 0.719 ± 1.1% 
0.80 SRPT 1862.6 ± 0.57% 6197.4 ± 2.1% 296322.5 ± 3.7% 0.858 ± 0.27% 0.997 ± 0.088% 0.858 ± 0.27% 
0.89 FF 6157.7 ± 1.4% 49317.2 ± 1.9% 281000.4 ± 3.5% 0.862 ± 0.28% 0.979 ± 0.12% 0.862 ± 0.28% 
0.89 FS 1936.4 ± 0.45% 11082.2 ± 2.2% 272673.6 ± 2.7% 0.831 ± 0.44% 0.997 ± 0.071% 0.831 ± 0.44% 
0.89 Rand 7365.4 ± 0.86% 41371.3 ± 1.0% 297468.5 ± 1.7% 0.639 ± 0.88% 0.964 ± 0.12% 0.639 ± 0.88% 
0.89 SRPT 2185.8 ± 3.7% 11390.2 ± 12.0% 265498.8 ± 1.9% 0.726 ± 0.49% 0.996 ± 0.086% 0.726 ± 0.49%   

Table F.11 
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.2 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1555.2 ± 0.21% 2960.3 ± 0.45% 63958.8 ± 7.2% 0.995 ± 0.078% 1.0 ± 0.026% 0.995 ± 0.078% 
0.10 FS 1518.9 ± 0.18% 1997.5 ± 0.0059% 53307.4 ± 6.3% 0.995 ± 0.11% 1.0 ± 0.025% 0.995 ± 0.11% 
0.10 Rand 1544.8 ± 0.22% 2746.4 ± 0.76% 80003.7 ± 8.1% 0.993 ± 0.11% 1.0 ± 0.025% 0.993 ± 0.11% 
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Table F.11 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 SRPT 1515.5 ± 0.18% 1997.1 ± 0.0039% 55035.6 ± 6.0% 0.996 ± 0.068% 1.0 ± 0.025% 0.996 ± 0.068% 
0.20 FF 1653.6 ± 0.43% 4948.5 ± 3.1% 100796.4 ± 7.0% 0.98 ± 0.39% 0.999 ± 0.063% 0.98 ± 0.39% 
0.20 FS 1538.1 ± 0.21% 2078.9 ± 1.6% 86478.5 ± 8.6% 0.978 ± 0.44% 0.999 ± 0.059% 0.978 ± 0.44% 
0.20 Rand 1604.6 ± 0.33% 3121.7 ± 1.8% 210697.6 ± 5.6% 0.937 ± 0.7% 0.999 ± 0.06% 0.937 ± 0.7% 
0.20 SRPT 1529.4 ± 0.1% 2199.9 ± 0.86% 107139.2 ± 10.0% 0.979 ± 0.48% 0.999 ± 0.058% 0.979 ± 0.48% 
0.30 FF 1879.0 ± 1.4% 9864.3 ± 5.0% 219455.7 ± 9.2% 0.968 ± 0.39% 0.998 ± 0.059% 0.968 ± 0.39% 
0.30 FS 1587.8 ± 0.47% 2934.7 ± 2.7% 165814.7 ± 9.3% 0.965 ± 0.38% 0.999 ± 0.06% 0.965 ± 0.38% 
0.30 Rand 1688.9 ± 0.27% 4259.1 ± 1.6% 388493.8 ± 6.6% 0.811 ± 1.2% 0.998 ± 0.063% 0.811 ± 1.2% 
0.30 SRPT 1555.3 ± 0.14% 2580.5 ± 0.5% 318733.6 ± 8.1% 0.947 ± 0.66% 0.999 ± 0.061% 0.947 ± 0.66% 
0.40 FF 2047.8 ± 1.9% 12996.0 ± 8.4% 253351.7 ± 3.1% 0.901 ± 0.99% 0.997 ± 0.077% 0.901 ± 0.99% 
0.40 FS 1656.3 ± 0.3% 4469.8 ± 0.9% 237826.1 ± 6.6% 0.901 ± 0.88% 0.999 ± 0.058% 0.901 ± 0.88% 
0.40 Rand 1750.5 ± 0.46% 5216.2 ± 1.9% 272425.1 ± 5.7% 0.774 ± 0.66% 0.997 ± 0.059% 0.774 ± 0.66% 
0.40 SRPT 1565.6 ± 0.083% 2783.8 ± 0.28% 235162.6 ± 6.6% 0.88 ± 0.78% 0.999 ± 0.058% 0.88 ± 0.78% 
0.50 FF 1893.6 ± 1.5% 6355.4 ± 4.8% 440695.9 ± 8.9% 0.887 ± 0.41% 0.998 ± 0.073% 0.887 ± 0.41% 
0.50 FS 1752.4 ± 1.1% 5396.1 ± 12.0% 331678.2 ± 8.6% 0.888 ± 1.2% 0.999 ± 0.052% 0.888 ± 1.2% 
0.50 Rand 1941.6 ± 1.1% 6437.1 ± 3.0% 458290.7 ± 9.6% 0.795 ± 0.49% 0.998 ± 0.056% 0.795 ± 0.49% 
0.50 SRPT 1588.2 ± 0.059% 2940.4 ± 0.42% 415335.3 ± 7.7% 0.856 ± 0.52% 0.999 ± 0.056% 0.856 ± 0.52% 
0.61 FF 1981.7 ± 0.88% 7326.2 ± 3.0% 372958.5 ± 3.3% 0.901 ± 0.21% 0.998 ± 0.043% 0.901 ± 0.21% 
0.61 FS 1692.9 ± 0.47% 3992.5 ± 2.3% 297476.6 ± 4.3% 0.898 ± 0.22% 0.999 ± 0.037% 0.898 ± 0.22% 
0.61 Rand 2203.6 ± 1.2% 8062.8 ± 2.4% 407016.8 ± 2.1% 0.801 ± 0.43% 0.997 ± 0.043% 0.801 ± 0.43% 
0.61 SRPT 1638.4 ± 0.15% 3706.4 ± 0.78% 327127.1 ± 6.4% 0.863 ± 0.25% 0.999 ± 0.039% 0.863 ± 0.25% 
0.70 FF 2412.4 ± 0.75% 12132.2 ± 2.0% 307320.4 ± 1.3% 0.897 ± 0.33% 0.997 ± 0.054% 0.897 ± 0.33% 
0.70 FS 1671.6 ± 0.3% 4565.0 ± 1.8% 292849.3 ± 3.5% 0.906 ± 0.18% 0.999 ± 0.051% 0.906 ± 0.18% 
0.70 Rand 3156.7 ± 0.98% 15098.8 ± 1.5% 369120.8 ± 2.5% 0.782 ± 0.31% 0.993 ± 0.057% 0.782 ± 0.31% 
0.70 SRPT 1756.4 ± 0.26% 5157.5 ± 1.5% 326751.6 ± 4.6% 0.862 ± 0.16% 0.999 ± 0.053% 0.862 ± 0.16% 
0.80 FF 3541.7 ± 0.85% 24415.3 ± 1.9% 304075.1 ± 3.6% 0.892 ± 0.17% 0.993 ± 0.075% 0.892 ± 0.17% 
0.80 FS 1731.9 ± 0.23% 6430.1 ± 1.5% 234881.5 ± 4.1% 0.901 ± 0.21% 0.999 ± 0.061% 0.901 ± 0.21% 
0.80 Rand 5311.2 ± 3.2% 30099.0 ± 3.7% 329220.0 ± 1.8% 0.728 ± 1.2% 0.98 ± 0.12% 0.728 ± 1.2% 
0.80 SRPT 2006.7 ± 0.79% 8444.4 ± 3.0% 291953.9 ± 5.8% 0.833 ± 0.37% 0.998 ± 0.059% 0.833 ± 0.37% 
0.90 FF 6282.4 ± 3.1% 51863.0 ± 4.5% 361626.4 ± 12.0% 0.876 ± 0.5% 0.982 ± 0.17% 0.876 ± 0.5% 
0.90 FS 2051.1 ± 0.77% 13365.0 ± 2.2% 340927.7 ± 9.7% 0.869 ± 1.1% 0.997 ± 0.092% 0.869 ± 1.1% 
0.90 Rand 9434.3 ± 8.7% 55751.7 ± 9.7% 394053.6 ± 12.0% 0.677 ± 0.61% 0.962 ± 0.14% 0.677 ± 0.61% 
0.90 SRPT 2864.2 ± 4.1% 23077.6 ± 10.0% 394099.5 ± 12.0% 0.731 ± 1.4% 0.987 ± 0.23% 0.731 ± 1.4%   

Table F.12 
Scheduler performance summary with 95% confidence intervals for the skewed_nodes_sensitivity_0.4 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.10 FF 1550.7 ± 0.14% 2940.7 ± 0.61% 41390.8 ± 6.7% 0.997 ± 0.072% 1.0 ± 0.018% 0.997 ± 0.072% 
0.10 FS 1516.9 ± 0.13% 1997.5 ± 0.0078% 40765.3 ± 4.2% 0.997 ± 0.07% 1.0 ± 0.018% 0.997 ± 0.07% 
0.10 Rand 1542.2 ± 0.16% 2746.4 ± 0.23% 62404.4 ± 12.0% 0.997 ± 0.082% 1.0 ± 0.017% 0.997 ± 0.082% 
0.10 SRPT 1516.3 ± 0.13% 1997.9 ± 0.0098% 41765.3 ± 4.4% 0.997 ± 0.07% 1.0 ± 0.018% 0.997 ± 0.07% 
0.20 FF 1626.3 ± 0.32% 4422.1 ± 2.7% 55331.8 ± 5.9% 0.98 ± 0.11% 0.999 ± 0.044% 0.98 ± 0.11% 
0.20 FS 1527.7 ± 0.11% 2008.0 ± 0.33% 46606.0 ± 7.2% 0.981 ± 0.11% 0.999 ± 0.045% 0.981 ± 0.11% 
0.20 Rand 1582.2 ± 0.082% 2999.5 ± 0.33% 98692.2 ± 7.2% 0.961 ± 0.22% 0.999 ± 0.044% 0.961 ± 0.22% 
0.20 SRPT 1528.6 ± 0.12% 2280.1 ± 0.98% 53343.4 ± 7.0% 0.983 ± 0.22% 0.999 ± 0.045% 0.983 ± 0.22% 
0.30 FF 1748.0 ± 0.97% 6884.9 ± 6.0% 70468.9 ± 9.3% 0.99 ± 0.19% 0.999 ± 0.084% 0.99 ± 0.19% 
0.30 FS 1534.4 ± 0.1% 2385.5 ± 0.78% 68968.2 ± 8.7% 0.991 ± 0.2% 0.999 ± 0.084% 0.991 ± 0.2% 
0.30 Rand 1662.0 ± 0.58% 3976.1 ± 1.9% 232725.1 ± 11.0% 0.972 ± 0.47% 0.999 ± 0.085% 0.972 ± 0.47% 
0.30 SRPT 1538.9 ± 0.064% 2658.7 ± 0.41% 85328.2 ± 9.3% 0.991 ± 0.18% 0.999 ± 0.084% 0.991 ± 0.18% 
0.40 FF 1940.0 ± 0.89% 9772.0 ± 3.0% 88904.4 ± 3.9% 0.981 ± 0.23% 0.998 ± 0.086% 0.981 ± 0.23% 
0.40 FS 1552.0 ± 0.17% 2718.8 ± 0.66% 81504.4 ± 5.4% 0.983 ± 0.25% 0.999 ± 0.082% 0.983 ± 0.25% 
0.40 Rand 1836.8 ± 0.6% 5756.4 ± 1.2% 274773.4 ± 3.7% 0.908 ± 0.39% 0.998 ± 0.085% 0.908 ± 0.39% 
0.40 SRPT 1561.4 ± 0.11% 2844.9 ± 0.29% 111871.6 ± 4.0% 0.981 ± 0.24% 0.999 ± 0.082% 0.981 ± 0.24% 
0.51 FF 2329.1 ± 1.4% 16228.3 ± 6.2% 218249.3 ± 18.0% 0.97 ± 0.62% 0.997 ± 0.1% 0.97 ± 0.62% 
0.51 FS 1576.2 ± 0.19% 3237.0 ± 1.5% 120960.8 ± 6.1% 0.972 ± 0.6% 0.999 ± 0.078% 0.972 ± 0.6% 
0.51 Rand 2429.3 ± 3.3% 11991.0 ± 7.5% 422835.2 ± 8.8% 0.826 ± 0.52% 0.995 ± 0.089% 0.826 ± 0.52% 
0.51 SRPT 1592.1 ± 0.16% 2987.7 ± 0.52% 263110.8 ± 12.0% 0.967 ± 0.66% 0.999 ± 0.078% 0.967 ± 0.66% 
0.60 FF 2939.0 ± 2.1% 23736.5 ± 4.0% 343896.8 ± 6.1% 0.948 ± 0.36% 0.996 ± 0.045% 0.948 ± 0.36% 
0.60 FS 1633.6 ± 0.4% 4389.9 ± 2.1% 258643.0 ± 5.9% 0.959 ± 0.32% 0.999 ± 0.043% 0.959 ± 0.32% 
0.60 Rand 3201.2 ± 2.1% 19085.7 ± 4.6% 436718.7 ± 1.5% 0.766 ± 1.7% 0.993 ± 0.055% 0.766 ± 1.7% 
0.60 SRPT 1632.6 ± 0.094% 3514.9 ± 1.3% 323235.8 ± 4.6% 0.934 ± 0.47% 0.999 ± 0.044% 0.934 ± 0.47% 
0.71 FF 3837.7 ± 1.9% 34431.1 ± 4.0% 322903.8 ± 2.5% 0.911 ± 0.37% 0.992 ± 0.084% 0.911 ± 0.37% 
0.71 FS 1730.6 ± 0.38% 6601.9 ± 1.2% 274442.8 ± 2.9% 0.922 ± 0.39% 0.999 ± 0.05% 0.922 ± 0.39% 
0.71 Rand 3911.6 ± 1.4% 24538.5 ± 3.2% 381889.7 ± 2.0% 0.731 ± 1.2% 0.989 ± 0.076% 0.731 ± 1.2% 
0.71 SRPT 1706.2 ± 0.21% 4321.1 ± 1.7% 365187.1 ± 2.6% 0.886 ± 0.35% 0.999 ± 0.054% 0.886 ± 0.35% 
0.80 FF 4505.2 ± 3.5% 40048.5 ± 6.2% 297883.9 ± 2.8% 0.854 ± 0.38% 0.985 ± 0.18% 0.854 ± 0.38% 
0.80 FS 1843.6 ± 0.83% 9336.0 ± 3.2% 284147.5 ± 4.5% 0.856 ± 0.62% 0.997 ± 0.095% 0.856 ± 0.62% 
0.80 Rand 4761.7 ± 2.7% 28060.7 ± 2.3% 315479.6 ± 2.5% 0.694 ± 0.71% 0.982 ± 0.12% 0.694 ± 0.71% 
0.80 SRPT 1807.6 ± 0.51% 5691.1 ± 2.9% 275652.6 ± 5.5% 0.819 ± 0.61% 0.998 ± 0.1% 0.819 ± 0.61% 
0.89 FF 5277.0 ± 2.7% 49286.4 ± 4.5% 301906.9 ± 1.8% 0.814 ± 0.44% 0.97 ± 0.43% 0.814 ± 0.44% 
0.89 FS 2042.1 ± 0.48% 14036.0 ± 2.1% 273754.2 ± 3.0% 0.79 ± 0.55% 0.996 ± 0.11% 0.79 ± 0.55% 
0.89 Rand 7441.6 ± 3.5% 41471.0 ± 2.8% 294162.8 ± 1.2% 0.633 ± 1.2% 0.964 ± 0.2% 0.633 ± 1.2% 
0.89 SRPT 2271.4 ± 3.0% 14379.1 ± 11.0% 294316.1 ± 2.1% 0.746 ± 0.67% 0.992 ± 0.29% 0.746 ± 0.67% 
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Appendix F.3.3. Rack Distribution Benchmark   

Table F.13 
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.2 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.1 FF 1547.1 ± 0.2% 2905.6 ± 0.53% 36420.2 ± 3.8% 0.993 ± 0.23% 0.999 ± 0.047% 0.993 ± 0.23% 
0.1 FS 1514.8 ± 0.14% 1997.1 ± 0.0059% 35026.4 ± 2.6% 0.994 ± 0.23% 0.999 ± 0.046% 0.994 ± 0.23% 
0.1 Rand 1538.9 ± 0.15% 2708.2 ± 0.35% 53118.6 ± 2.9% 0.991 ± 0.21% 0.999 ± 0.046% 0.991 ± 0.21% 
0.1 SRPT 1514.5 ± 0.14% 1997.6 ± 0.0078% 35426.4 ± 2.6% 0.994 ± 0.22% 0.999 ± 0.046% 0.994 ± 0.22% 
0.2 FF 1613.3 ± 0.16% 4210.8 ± 1.1% 43491.3 ± 3.3% 0.985 ± 0.34% 0.999 ± 0.032% 0.985 ± 0.34% 
0.2 FS 1522.9 ± 0.14% 1998.9 ± 0.012% 38988.6 ± 1.6% 0.986 ± 0.37% 1.0 ± 0.029% 0.986 ± 0.37% 
0.2 Rand 1575.6 ± 0.2% 3009.0 ± 0.77% 70182.4 ± 2.6% 0.978 ± 0.45% 0.999 ± 0.029% 0.978 ± 0.45% 
0.2 SRPT 1524.5 ± 0.14% 2252.2 ± 1.0% 41095.6 ± 1.6% 0.987 ± 0.31% 1.0 ± 0.028% 0.987 ± 0.31% 
0.3 FF 1751.4 ± 0.79% 6744.9 ± 3.8% 67480.0 ± 9.5% 0.989 ± 0.17% 0.999 ± 0.042% 0.989 ± 0.17% 
0.3 FS 1534.7 ± 0.13% 2247.8 ± 0.56% 63424.2 ± 7.2% 0.99 ± 0.17% 0.999 ± 0.042% 0.99 ± 0.17% 
0.3 Rand 1649.2 ± 0.34% 3891.9 ± 0.76% 148433.8 ± 8.6% 0.977 ± 0.19% 0.999 ± 0.041% 0.977 ± 0.19% 
0.3 SRPT 1539.5 ± 0.12% 2626.4 ± 0.49% 83252.7 ± 9.4% 0.989 ± 0.2% 0.999 ± 0.041% 0.989 ± 0.2% 
0.4 FF 1924.1 ± 1.5% 9755.3 ± 7.2% 88414.1 ± 9.8% 0.977 ± 0.23% 0.998 ± 0.086% 0.977 ± 0.23% 
0.4 FS 1541.5 ± 0.092% 2542.4 ± 0.5% 74926.1 ± 11.0% 0.98 ± 0.19% 0.999 ± 0.085% 0.98 ± 0.19% 
0.4 Rand 1795.0 ± 0.49% 5339.0 ± 1.4% 216058.0 ± 7.5% 0.941 ± 0.46% 0.998 ± 0.089% 0.941 ± 0.46% 
0.4 SRPT 1552.2 ± 0.035% 2802.5 ± 0.34% 99179.4 ± 14.0% 0.979 ± 0.2% 0.999 ± 0.085% 0.979 ± 0.2% 
0.5 FF 2239.7 ± 2.0% 14440.3 ± 7.6% 120877.0 ± 5.2% 0.979 ± 0.27% 0.998 ± 0.048% 0.979 ± 0.27% 
0.5 FS 1564.2 ± 0.13% 2914.5 ± 0.6% 97264.9 ± 6.6% 0.98 ± 0.21% 0.999 ± 0.05% 0.98 ± 0.21% 
0.5 Rand 2330.3 ± 1.7% 9746.8 ± 4.0% 408828.1 ± 10.0% 0.892 ± 1.0% 0.997 ± 0.055% 0.892 ± 1.0% 
0.5 SRPT 1580.9 ± 0.082% 2940.4 ± 0.36% 153416.6 ± 10.0% 0.978 ± 0.3% 0.999 ± 0.051% 0.978 ± 0.3% 
0.6 FF 2842.5 ± 2.5% 22991.2 ± 7.0% 308474.4 ± 6.6% 0.967 ± 0.28% 0.996 ± 0.067% 0.967 ± 0.28% 
0.6 FS 1595.6 ± 0.19% 3658.7 ± 0.66% 137386.1 ± 5.7% 0.972 ± 0.28% 0.999 ± 0.048% 0.972 ± 0.28% 
0.6 Rand 3265.3 ± 0.75% 16613.3 ± 1.2% 420951.4 ± 3.7% 0.825 ± 0.81% 0.994 ± 0.065% 0.825 ± 0.81% 
0.6 SRPT 1619.1 ± 0.097% 3390.5 ± 1.8% 336922.0 ± 5.1% 0.961 ± 0.37% 0.999 ± 0.049% 0.961 ± 0.37% 
0.7 FF 3465.2 ± 0.49% 27554.1 ± 1.9% 287240.4 ± 6.0% 0.95 ± 0.29% 0.994 ± 0.066% 0.95 ± 0.29% 
0.7 FS 1648.7 ± 0.15% 4775.0 ± 1.0% 210756.3 ± 2.1% 0.95 ± 0.28% 0.999 ± 0.063% 0.95 ± 0.28% 
0.7 Rand 4658.5 ± 2.2% 25482.9 ± 2.8% 345529.5 ± 3.4% 0.755 ± 0.84% 0.985 ± 0.055% 0.755 ± 0.84% 
0.7 SRPT 1678.0 ± 0.25% 3916.3 ± 1.2% 307069.7 ± 3.6% 0.927 ± 0.29% 0.999 ± 0.063% 0.927 ± 0.29% 
0.8 FF 4604.8 ± 1.5% 37588.2 ± 2.3% 287174.0 ± 1.8% 0.904 ± 0.52% 0.988 ± 0.11% 0.904 ± 0.52% 
0.8 FS 1759.3 ± 0.18% 7189.5 ± 1.6% 278549.2 ± 2.2% 0.886 ± 0.5% 0.998 ± 0.071% 0.886 ± 0.5% 
0.8 Rand 5891.2 ± 0.77% 32310.3 ± 1.1% 323761.6 ± 2.1% 0.694 ± 1.3% 0.977 ± 0.11% 0.694 ± 1.3% 
0.8 SRPT 1757.8 ± 0.7% 4908.0 ± 3.1% 307367.1 ± 4.4% 0.853 ± 0.39% 0.998 ± 0.073% 0.853 ± 0.39% 
0.9 FF 6385.1 ± 2.0% 52863.8 ± 3.2% 320436.3 ± 9.5% 0.871 ± 0.69% 0.98 ± 0.041% 0.871 ± 0.69% 
0.9 FS 1956.4 ± 1.1% 11288.2 ± 3.1% 313425.0 ± 11.0% 0.845 ± 0.79% 0.998 ± 0.034% 0.845 ± 0.79% 
0.9 Rand 8399.6 ± 6.6% 46907.3 ± 7.9% 336830.9 ± 12.0% 0.65 ± 0.81% 0.964 ± 0.082% 0.65 ± 0.81% 
0.9 SRPT 1963.3 ± 1.2% 7596.5 ± 5.1% 320009.5 ± 13.0% 0.786 ± 0.3% 0.998 ± 0.042% 0.786 ± 0.3%   

Table F.14 
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.4 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.1 FF 1553.9 ± 0.15% 3023.9 ± 1.1% 38020.6 ± 5.6% 0.997 ± 0.15% 1.0 ± 0.029% 0.997 ± 0.15% 
0.1 FS 1515.8 ± 0.057% 1997.5 ± 0.0039% 37020.6 ± 5.8% 0.997 ± 0.15% 1.0 ± 0.026% 0.997 ± 0.15% 
0.1 Rand 1541.3 ± 0.058% 2739.1 ± 0.31% 61994.1 ± 11.0% 0.996 ± 0.16% 1.0 ± 0.026% 0.996 ± 0.16% 
0.1 SRPT 1515.5 ± 0.052% 1998.0 ± 0.0078% 37373.3 ± 6.5% 0.997 ± 0.15% 1.0 ± 0.026% 0.997 ± 0.15% 
0.2 FF 1643.8 ± 0.34% 4775.7 ± 2.4% 52879.5 ± 3.8% 0.986 ± 0.2% 0.999 ± 0.04% 0.986 ± 0.2% 
0.2 FS 1525.7 ± 0.11% 1999.3 ± 0.0059% 48949.2 ± 3.9% 0.987 ± 0.18% 0.999 ± 0.043% 0.987 ± 0.18% 
0.2 Rand 1587.8 ± 0.18% 3035.9 ± 0.46% 126408.0 ± 8.0% 0.976 ± 0.14% 0.999 ± 0.044% 0.976 ± 0.14% 
0.2 SRPT 1526.4 ± 0.12% 2225.3 ± 1.5% 51165.4 ± 4.0% 0.988 ± 0.17% 0.999 ± 0.044% 0.988 ± 0.17% 
0.3 FF 1787.0 ± 0.46% 7619.8 ± 3.9% 66882.6 ± 8.2% 0.988 ± 0.16% 0.999 ± 0.016% 0.988 ± 0.16% 
0.3 FS 1532.2 ± 0.15% 2231.4 ± 0.81% 57004.1 ± 7.0% 0.989 ± 0.21% 1.0 ± 0.015% 0.989 ± 0.21% 
0.3 Rand 1671.2 ± 0.57% 4113.2 ± 2.9% 256001.0 ± 7.5% 0.956 ± 0.31% 0.999 ± 0.015% 0.956 ± 0.31% 
0.3 SRPT 1536.4 ± 0.17% 2610.9 ± 0.51% 65648.0 ± 10.0% 0.989 ± 0.16% 1.0 ± 0.016% 0.989 ± 0.16% 
0.4 FF 1997.7 ± 0.57% 11546.2 ± 2.4% 78798.6 ± 6.6% 0.973 ± 0.27% 0.998 ± 0.054% 0.973 ± 0.27% 
0.4 FS 1542.8 ± 0.11% 2588.6 ± 0.51% 66608.7 ± 3.7% 0.976 ± 0.23% 0.999 ± 0.065% 0.976 ± 0.23% 
0.4 Rand 1805.3 ± 0.55% 6476.5 ± 3.3% 287594.6 ± 1.8% 0.882 ± 0.51% 0.998 ± 0.074% 0.882 ± 0.51% 
0.4 SRPT 1553.2 ± 0.061% 2820.2 ± 0.21% 85975.8 ± 3.3% 0.977 ± 0.22% 0.999 ± 0.066% 0.977 ± 0.22% 
0.5 FF 2476.5 ± 1.5% 20978.2 ± 5.7% 115951.9 ± 3.9% 0.976 ± 0.45% 0.997 ± 0.053% 0.976 ± 0.45% 
0.5 FS 1562.6 ± 0.05% 2906.2 ± 0.44% 104707.6 ± 4.4% 0.978 ± 0.38% 0.999 ± 0.046% 0.978 ± 0.38% 
0.5 Rand 2104.8 ± 2.3% 11901.7 ± 9.0% 411058.5 ± 11.0% 0.822 ± 0.74% 0.996 ± 0.041% 0.822 ± 0.74% 
0.5 SRPT 1578.2 ± 0.12% 2936.4 ± 0.35% 128711.3 ± 3.1% 0.976 ± 0.36% 0.999 ± 0.044% 0.976 ± 0.36% 
0.6 FF 2880.0 ± 1.5% 24414.7 ± 5.0% 242585.7 ± 3.1% 0.971 ± 0.31% 0.997 ± 0.044% 0.971 ± 0.31% 
0.6 FS 1592.5 ± 0.094% 3616.1 ± 0.56% 131921.2 ± 7.3% 0.972 ± 0.22% 0.999 ± 0.031% 0.972 ± 0.22% 
0.6 Rand 2420.9 ± 0.64% 17877.9 ± 2.6% 417817.1 ± 1.5% 0.778 ± 1.0% 0.995 ± 0.043% 0.778 ± 1.0% 
0.6 SRPT 1619.6 ± 0.11% 3401.4 ± 1.4% 235066.7 ± 3.8% 0.966 ± 0.35% 0.999 ± 0.033% 0.966 ± 0.35% 
0.7 FF 3534.3 ± 1.3% 33314.7 ± 4.1% 311692.8 ± 3.6% 0.935 ± 0.27% 0.994 ± 0.052% 0.935 ± 0.27% 
0.7 FS 1642.8 ± 0.05% 4665.5 ± 1.2% 245550.4 ± 4.2% 0.937 ± 0.3% 0.999 ± 0.057% 0.937 ± 0.3% 

(continued on next page) 
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Table F.14 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.7 Rand 2652.7 ± 1.1% 21768.7 ± 1.6% 375157.8 ± 2.3% 0.71 ± 0.89% 0.993 ± 0.071% 0.71 ± 0.89% 
0.7 SRPT 1660.0 ± 0.2% 3780.8 ± 1.1% 327831.0 ± 2.0% 0.915 ± 0.3% 0.999 ± 0.059% 0.915 ± 0.3% 
0.8 FF 4311.5 ± 0.84% 39028.2 ± 2.3% 294072.3 ± 2.3% 0.911 ± 0.39% 0.99 ± 0.056% 0.911 ± 0.39% 
0.8 FS 1731.1 ± 0.25% 6579.1 ± 1.4% 238819.8 ± 2.4% 0.904 ± 0.33% 0.999 ± 0.047% 0.904 ± 0.33% 
0.8 Rand 2906.5 ± 0.56% 24944.4 ± 1.5% 320552.6 ± 1.3% 0.665 ± 1.4% 0.99 ± 0.063% 0.665 ± 1.4% 
0.8 SRPT 1747.3 ± 0.58% 4642.0 ± 2.8% 280469.5 ± 6.0% 0.865 ± 0.3% 0.999 ± 0.05% 0.865 ± 0.3% 
0.9 FF 5497.1 ± 2.4% 46230.6 ± 2.7% 280463.7 ± 3.8% 0.851 ± 0.43% 0.983 ± 0.086% 0.851 ± 0.43% 
0.9 FS 1872.4 ± 0.26% 9593.3 ± 1.6% 290850.1 ± 1.7% 0.827 ± 0.43% 0.997 ± 0.094% 0.827 ± 0.43% 
0.9 Rand 3347.1 ± 1.2% 29914.9 ± 0.63% 306219.5 ± 1.8% 0.608 ± 1.4% 0.987 ± 0.095% 0.608 ± 1.4% 
0.9 SRPT 1861.4 ± 0.99% 5931.5 ± 4.3% 286319.1 ± 1.6% 0.781 ± 0.33% 0.997 ± 0.095% 0.781 ± 0.33%   

Table F.15 
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.6 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.1 FF 1557.4 ± 0.18% 2992.3 ± 1.3% 41866.0 ± 3.4% 0.995 ± 0.1% 0.999 ± 0.045% 0.995 ± 0.1% 
0.1 FS 1519.1 ± 0.041% 1997.0 ± 0.012% 41866.0 ± 2.5% 0.995 ± 0.1% 0.999 ± 0.044% 0.995 ± 0.1% 
0.1 Rand 1544.3 ± 0.069% 2738.7 ± 0.46% 63511.4 ± 5.0% 0.992 ± 0.23% 0.999 ± 0.044% 0.992 ± 0.23% 
0.1 SRPT 1518.9 ± 0.044% 1997.6 ± 0.0098% 42866.0 ± 3.2% 0.995 ± 0.1% 0.999 ± 0.044% 0.995 ± 0.1% 
0.2 FF 1639.1 ± 0.39% 4710.0 ± 2.0% 48916.2 ± 3.7% 0.989 ± 0.26% 0.999 ± 0.039% 0.989 ± 0.26% 
0.2 FS 1522.8 ± 0.17% 1998.9 ± 0.0039% 47869.5 ± 2.2% 0.989 ± 0.27% 0.999 ± 0.043% 0.989 ± 0.27% 
0.2 Rand 1582.2 ± 0.16% 3046.6 ± 0.46% 105951.9 ± 8.2% 0.981 ± 0.28% 0.999 ± 0.043% 0.981 ± 0.28% 
0.2 SRPT 1525.6 ± 0.18% 2338.1 ± 0.83% 46897.0 ± 4.4% 0.99 ± 0.23% 0.999 ± 0.043% 0.99 ± 0.23% 
0.3 FF 1786.7 ± 0.96% 7425.5 ± 4.7% 64656.1 ± 7.6% 0.986 ± 0.29% 0.999 ± 0.047% 0.986 ± 0.29% 
0.3 FS 1531.2 ± 0.19% 2225.5 ± 1.8% 57743.4 ± 4.0% 0.987 ± 0.32% 0.999 ± 0.046% 0.987 ± 0.32% 
0.3 Rand 1663.9 ± 0.3% 4087.7 ± 1.3% 233890.5 ± 4.2% 0.967 ± 0.37% 0.999 ± 0.046% 0.967 ± 0.37% 
0.3 SRPT 1538.9 ± 0.17% 2680.8 ± 0.29% 64343.4 ± 5.0% 0.988 ± 0.32% 0.999 ± 0.046% 0.988 ± 0.32% 
0.4 FF 2070.3 ± 1.5% 11972.7 ± 4.4% 89212.8 ± 6.2% 0.98 ± 0.34% 0.997 ± 0.09% 0.98 ± 0.34% 
0.4 FS 1543.2 ± 0.094% 2555.3 ± 1.1% 84834.8 ± 6.3% 0.981 ± 0.34% 0.999 ± 0.085% 0.981 ± 0.34% 
0.4 Rand 1804.3 ± 0.48% 6112.3 ± 1.9% 210247.2 ± 7.1% 0.917 ± 0.59% 0.998 ± 0.088% 0.917 ± 0.59% 
0.4 SRPT 1558.0 ± 0.083% 2842.9 ± 0.21% 108634.8 ± 9.3% 0.981 ± 0.28% 0.999 ± 0.085% 0.981 ± 0.28% 
0.5 FF 2462.2 ± 0.96% 18251.1 ± 3.1% 121295.6 ± 5.9% 0.98 ± 0.15% 0.997 ± 0.062% 0.98 ± 0.15% 
0.5 FS 1560.7 ± 0.05% 2885.8 ± 0.48% 89431.3 ± 4.1% 0.98 ± 0.18% 0.999 ± 0.048% 0.98 ± 0.18% 
0.5 Rand 2236.8 ± 1.9% 13576.8 ± 6.8% 390033.5 ± 9.3% 0.843 ± 0.62% 0.997 ± 0.048% 0.843 ± 0.62% 
0.5 SRPT 1585.1 ± 0.042% 2970.9 ± 0.11% 136545.8 ± 11.0% 0.98 ± 0.17% 0.999 ± 0.05% 0.98 ± 0.17% 
0.6 FF 2956.1 ± 1.6% 24090.4 ± 4.4% 242220.9 ± 13.0% 0.975 ± 0.13% 0.996 ± 0.065% 0.975 ± 0.13% 
0.6 FS 1586.0 ± 0.16% 3517.5 ± 0.65% 138093.6 ± 7.7% 0.979 ± 0.1% 0.999 ± 0.063% 0.979 ± 0.1% 
0.6 Rand 2728.2 ± 0.78% 22105.7 ± 1.7% 432399.7 ± 2.9% 0.771 ± 0.97% 0.994 ± 0.081% 0.771 ± 0.97% 
0.6 SRPT 1624.4 ± 0.043% 3519.2 ± 0.73% 284839.9 ± 4.3% 0.97 ± 0.16% 0.999 ± 0.064% 0.97 ± 0.16% 
0.7 FF 3858.3 ± 1.5% 35582.9 ± 3.2% 272734.1 ± 8.6% 0.951 ± 0.16% 0.993 ± 0.051% 0.951 ± 0.16% 
0.7 FS 1630.8 ± 0.12% 4456.6 ± 1.0% 225655.3 ± 3.9% 0.953 ± 0.13% 0.999 ± 0.058% 0.953 ± 0.13% 
0.7 Rand 3035.8 ± 0.58% 26654.0 ± 1.4% 356900.5 ± 1.4% 0.708 ± 0.38% 0.991 ± 0.072% 0.708 ± 0.38% 
0.7 SRPT 1680.3 ± 0.17% 3938.0 ± 0.64% 291331.3 ± 5.2% 0.931 ± 0.27% 0.999 ± 0.058% 0.931 ± 0.27% 
0.8 FF 4501.2 ± 1.5% 38457.9 ± 2.2% 277274.4 ± 2.6% 0.915 ± 0.42% 0.988 ± 0.16% 0.915 ± 0.42% 
0.8 FS 1713.2 ± 0.17% 6223.9 ± 1.2% 259604.2 ± 3.1% 0.908 ± 0.33% 0.998 ± 0.095% 0.908 ± 0.33% 
0.8 Rand 3484.0 ± 2.5% 32752.7 ± 3.8% 321488.9 ± 4.3% 0.644 ± 1.1% 0.986 ± 0.087% 0.644 ± 1.1% 
0.8 SRPT 1752.6 ± 0.43% 4662.8 ± 1.9% 279493.1 ± 6.2% 0.869 ± 0.31% 0.998 ± 0.098% 0.869 ± 0.31% 
0.9 FF 5773.6 ± 0.51% 46545.8 ± 0.72% 263361.6 ± 3.2% 0.867 ± 0.22% 0.978 ± 0.14% 0.867 ± 0.22% 
0.9 FS 1872.7 ± 0.3% 9645.7 ± 1.2% 274889.1 ± 1.4% 0.844 ± 0.17% 0.997 ± 0.07% 0.844 ± 0.17% 
0.9 Rand 3943.0 ± 1.1% 39082.1 ± 1.2% 293317.7 ± 1.1% 0.595 ± 0.58% 0.981 ± 0.062% 0.595 ± 0.58% 
0.9 SRPT 1900.9 ± 0.69% 6304.4 ± 3.1% 264047.5 ± 2.1% 0.793 ± 0.19% 0.997 ± 0.066% 0.793 ± 0.19%   

Table F.16 
Scheduler performance summary with 95% confidence intervals for the rack_sensitivity_0.8 benchmark.  

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.1 FF 1564.4 ± 0.17% 3075.8 ± 0.78% 38130.3 ± 3.3% 0.998 ± 0.055% 1.0 ± 0.032% 0.998 ± 0.055% 
0.1 FS 1523.4 ± 0.13% 1997.4 ± 0.002% 34026.7 ± 2.1% 0.998 ± 0.055% 1.0 ± 0.031% 0.998 ± 0.055% 
0.1 Rand 1549.9 ± 0.14% 2779.9 ± 0.22% 60347.0 ± 7.3% 0.996 ± 0.08% 1.0 ± 0.032% 0.996 ± 0.08% 
0.1 SRPT 1523.7 ± 0.13% 1998.4 ± 0.0039% 34147.9 ± 2.8% 0.998 ± 0.055% 1.0 ± 0.032% 0.998 ± 0.055% 
0.2 FF 1655.6 ± 0.53% 4886.6 ± 3.3% 48187.1 ± 7.1% 0.991 ± 0.17% 0.998 ± 0.1% 0.991 ± 0.17% 
0.2 FS 1525.7 ± 0.11% 1998.9 ± 0.0078% 41674.6 ± 5.2% 0.991 ± 0.16% 0.999 ± 0.099% 0.991 ± 0.16% 
0.2 Rand 1589.2 ± 0.13% 3175.5 ± 1.1% 91618.8 ± 7.3% 0.983 ± 0.13% 0.999 ± 0.099% 0.983 ± 0.13% 
0.2 SRPT 1528.4 ± 0.11% 2350.2 ± 0.88% 43538.3 ± 5.8% 0.992 ± 0.16% 0.999 ± 0.098% 0.992 ± 0.16% 
0.3 FF 1812.5 ± 0.4% 7816.8 ± 1.9% 68547.0 ± 5.1% 0.986 ± 0.17% 0.999 ± 0.049% 0.986 ± 0.17% 
0.3 FS 1532.3 ± 0.1% 2202.5 ± 0.51% 64297.6 ± 5.1% 0.987 ± 0.2% 0.999 ± 0.053% 0.987 ± 0.2% 
0.3 Rand 1657.7 ± 0.13% 4051.6 ± 0.72% 227634.8 ± 3.2% 0.972 ± 0.33% 0.999 ± 0.051% 0.972 ± 0.33% 
0.3 SRPT 1541.1 ± 0.11% 2701.4 ± 0.27% 73297.6 ± 7.1% 0.989 ± 0.14% 0.999 ± 0.053% 0.989 ± 0.14% 
0.4 FF 2211.4 ± 1.3% 15442.4 ± 5.6% 107060.7 ± 14.0% 0.976 ± 0.26% 0.997 ± 0.065% 0.976 ± 0.26% 
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Table F.16 (continued ) 

Load Subject Mean FCT (μs) p99 FCT (μs) Max FCT (μs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac) 

0.4 FS 1546.2 ± 0.12% 2605.9 ± 0.68% 76600.8 ± 12.0% 0.98 ± 0.3% 0.999 ± 0.046% 0.98 ± 0.3% 
0.4 Rand 1823.3 ± 0.45% 6253.9 ± 1.4% 256431.0 ± 7.3% 0.918 ± 0.43% 0.998 ± 0.047% 0.918 ± 0.43% 
0.4 SRPT 1560.4 ± 0.088% 2854.5 ± 0.31% 86910.4 ± 10.0% 0.98 ± 0.22% 0.999 ± 0.047% 0.98 ± 0.22% 
0.5 FF 2670.2 ± 1.5% 20930.8 ± 5.2% 142824.2 ± 12.0% 0.963 ± 0.51% 0.995 ± 0.094% 0.963 ± 0.51% 
0.5 FS 1561.9 ± 0.088% 2883.4 ± 0.46% 87631.8 ± 5.5% 0.968 ± 0.45% 0.999 ± 0.086% 0.968 ± 0.45% 
0.5 Rand 2097.1 ± 1.6% 10368.7 ± 5.3% 266946.9 ± 14.0% 0.846 ± 0.85% 0.996 ± 0.093% 0.846 ± 0.85% 
0.5 SRPT 1586.5 ± 0.14% 2988.9 ± 0.73% 108035.3 ± 3.4% 0.968 ± 0.46% 0.999 ± 0.087% 0.968 ± 0.46% 
0.6 FF 3437.5 ± 0.59% 30455.8 ± 3.2% 221359.1 ± 14.0% 0.971 ± 0.22% 0.995 ± 0.097% 0.971 ± 0.22% 
0.6 FS 1589.9 ± 0.079% 3541.0 ± 0.89% 121075.9 ± 9.3% 0.978 ± 0.15% 0.999 ± 0.066% 0.978 ± 0.15% 
0.6 Rand 3021.9 ± 1.6% 24451.3 ± 2.3% 412148.6 ± 1.0% 0.771 ± 0.67% 0.993 ± 0.083% 0.771 ± 0.67% 
0.6 SRPT 1632.0 ± 0.072% 3575.4 ± 0.19% 219688.9 ± 7.6% 0.97 ± 0.28% 0.999 ± 0.069% 0.97 ± 0.28% 
0.7 FF 4226.4 ± 1.0% 37246.2 ± 1.9% 250830.8 ± 3.5% 0.955 ± 0.43% 0.992 ± 0.1% 0.955 ± 0.43% 
0.7 FS 1630.6 ± 0.12% 4431.6 ± 0.92% 200199.1 ± 3.6% 0.961 ± 0.23% 0.999 ± 0.077% 0.961 ± 0.23% 
0.7 Rand 3899.6 ± 1.9% 35618.2 ± 3.2% 367726.5 ± 1.9% 0.684 ± 0.88% 0.988 ± 0.14% 0.684 ± 0.88% 
0.7 SRPT 1694.3 ± 0.1% 4009.5 ± 0.56% 299390.8 ± 5.7% 0.936 ± 0.3% 0.999 ± 0.079% 0.936 ± 0.3% 
0.8 FF 5264.1 ± 1.5% 44602.4 ± 1.7% 284358.6 ± 6.4% 0.905 ± 0.58% 0.985 ± 0.066% 0.905 ± 0.58% 
0.8 FS 1721.5 ± 0.35% 6287.8 ± 2.1% 249298.1 ± 4.5% 0.907 ± 0.49% 0.998 ± 0.076% 0.907 ± 0.49% 
0.8 Rand 4485.1 ± 1.8% 44277.7 ± 2.8% 331280.5 ± 2.2% 0.59 ± 0.66% 0.98 ± 0.1% 0.59 ± 0.66% 
0.8 SRPT 1772.7 ± 0.17% 4871.1 ± 0.47% 308528.4 ± 3.4% 0.871 ± 0.35% 0.998 ± 0.073% 0.871 ± 0.35% 
0.9 FF 6797.9 ± 2.0% 53200.8 ± 2.1% 312515.9 ± 11.0% 0.866 ± 0.59% 0.977 ± 0.08% 0.866 ± 0.59% 
0.9 FS 1891.3 ± 1.2% 10007.9 ± 4.7% 324448.5 ± 7.9% 0.856 ± 0.93% 0.998 ± 0.036% 0.856 ± 0.93% 
0.9 Rand 5968.6 ± 7.1% 63779.3 ± 11.0% 351222.1 ± 11.0% 0.54 ± 0.64% 0.971 ± 0.097% 0.54 ± 0.64% 
0.9 SRPT 1935.1 ± 0.79% 6647.8 ± 2.6% 315660.8 ± 11.0% 0.792 ± 0.17% 0.998 ± 0.049% 0.792 ± 0.17%  

Appendix F.4. Winner Tables 

The below ‘winner tables’ summarise the winning schedulers for each load and benchmark with their performance improvement relative to the 
worst performing baseline for each PKPI averaged across 5 runs. These tables are useful for gaining an overarching view of the multi-faceted per-
formance results which are often difficult to interpret through graphical means alone.  

Table F.17 
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the 0 (uniform), 0.2, 0.4, 0.6, and 0.8 rack sensitivity traces. For brevity, 
‘− ’ indicates all schedulers’ performances were equal.  

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted 

0.1 SRPT, − 2.3% FS, − 33% FF, − 36% FF + FS + SRPT, 0.40% – 
0.2 FS, − 6.0% FS, − 55% FS, − 47% SRPT, 0.92% – 
0.3 FS, − 12% FS, − 66% FS, − 60% SRPT, 1.7% – 
0.4 FS, − 19% FS, − 73% FS, − 64% FF, 3.7% FS + Rand + SRPT, 0.10% 
0.5 FS, − 31% FS, − 80% FF, − 75% FS, 11% FS + SRPT, 0.21% 
0.6 FS, − 52% SRPT, − 83% FS, − 60% FS, 19% FS + SRPT, 0.60% 
0.7 FS, − 62% SRPT, − 86% FS, − 28% FS, 28% FS, 1.3% 
0.8 FS + SRPT, − 69% SRPT, − 86% FS, − 14% FF, 31% FS + SRPT, 2.1% 
0.9 SRPT, − 73% SRPT, − 85% FF, − 9.1% FF, 35% FS + SRPT, 3.1% 

0.1 SRPT, − 2.107% FS, − 31.27% FS, − 34.06% FS + SRPT, 0.3027% – 
0.2 FS, − 5.603% FS, − 52.53% FS, − 44.45% SRPT, 0.9202% FS + SRPT, 0.1001% 
0.3 FS, − 12.37% FS, − 66.67% FS, − 57.27% FS, 1.331% – 
0.4 FS, − 19.88% FS, − 73.94% FS, − 65.32% FS, 4.145% FS + SRPT, 0.1002% 
0.5 FS, − 32.88% FS, − 79.82% FS, − 76.21% FS, 9.865% FS + SRPT, 0.2006% 
0.6 FS, − 51.13% SRPT, − 85.25% FS, − 67.36% FS, 17.82% FS + SRPT, 0.503% 
0.7 FS, − 64.61% SRPT, − 85.79% FS, − 39.0% FF + FS, 25.83% FS + SRPT, 1.421% 
0.8 SRPT, − 70.16% SRPT, − 86.94% FS, − 13.96% FF, 30.26% FS + SRPT, 2.149% 
0.9 FS, − 76.71% SRPT, − 85.63% FS, − 6.949% FF, 34.0% FS + SRPT, 3.527% 

0.1 SRPT, − 2.471% FS, − 33.94% FS, − 40.28% FF + FS + SRPT, 0.1004% – 
0.2 FS, − 7.185% FS, − 58.14% FS, − 61.28% SRPT, 1.23% – 
0.3 FS, − 14.26% FS, − 70.72% FS, − 77.73% FS + SRPT, 3.452% FS + SRPT, 0.1001% 
0.4 FS, − 22.77% FS, − 77.58% FS, − 76.84% SRPT, 10.77% FS + SRPT, 0.1002% 
0.5 FS, − 36.9% FS, − 86.15% FS, − 74.53% FS, 18.98% FS + SRPT, 0.3012% 
0.6 FS, − 44.7% SRPT, − 86.07% FS, − 68.43% FS, 24.94% FS + SRPT, 0.402% 
0.7 FS, − 53.52% SRPT, − 88.65% FS, − 34.55% FS, 31.97% FS + SRPT, 0.6042% 
0.8 FS, − 59.85% SRPT, − 88.11% FS, − 25.5% FF, 36.99% FS + SRPT, 0.9091% 
0.9 SRPT, − 66.14% SRPT, − 87.17% FF, − 8.411% FF, 39.97% FS + SRPT, 1.424% 

0.1 SRPT, − 2.472% FS, − 33.26% FF + FS, − 34.08% FF + FS + SRPT, 0.3024% – 
0.2 FS, − 7.095% FS, − 57.56% SRPT, − 55.74% SRPT, 0.9174% – 
0.3 FS, − 14.3% FS, − 70.03% FS, − 75.31% SRPT, 2.172% – 
0.4 FS, − 25.46% FS, − 78.66% FS, − 59.65% FS + SRPT, 6.979% FS + SRPT, 0.2006% 
0.5 FS, − 36.61% FS, − 84.19% FS, − 77.07% FF + FS + SRPT, 16.25% FS + SRPT, 0.2006% 
0.6 FS, − 46.35% FS, − 85.4% FS, − 68.06% FS, 26.98% FS + SRPT, 0.503% 
0.7 FS, − 57.73% SRPT, − 88.93% FS, − 36.77% FS, 34.6% FS + SRPT, 0.8073% 
0.8 FS, − 61.94% SRPT, − 87.88% FS, − 19.25% FF, 42.08% FS + SRPT, 1.217% 
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Table F.17 (continued ) 

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted 

0.9 FS, − 67.56% SRPT, − 86.46% FF, − 10.21% FF, 45.71% FS + SRPT, 1.943% 

0.1 FS, − 2.621% FS, − 35.06% FS, − 43.61% FF + FS + SRPT, 0.2008% – 
0.2 FS, − 7.846% FS, − 59.09% FS, − 54.51% SRPT, 0.9156% FS + Rand + SRPT, 0.1002% 
0.3 FS, − 15.46% FS, − 71.82% FS, − 71.75% SRPT, 1.749% – 
0.4 FS, − 30.08% FS, − 83.13% FS, − 70.13% FS + SRPT, 6.754% FS + SRPT, 0.2006% 
0.5 FS, − 41.51% FS, − 86.22% FS, − 67.17% FS + SRPT, 14.42% FS + SRPT, 0.402% 
0.6 FS, − 53.75% FS, − 88.37% FS, − 70.62% FS, 26.85% FS + SRPT, 0.6042% 
0.7 FS, − 61.42% SRPT, − 89.24% FS, − 45.56% FS, 40.5% FS + SRPT, 1.113% 
0.8 FS, − 67.3% SRPT, − 89.08% FS, − 24.75% FS, 53.73% FS + SRPT, 1.837% 
0.9 FS, − 72.18% SRPT, − 89.58% FF, − 11.02% FF, 60.37% FS + SRPT, 2.781%   

Table F.18 
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the 0 (uniform), 0.05, 0.1, 0.2, and 0.4 skewed nodes sensitivity traces. 
For brevity, ‘− ’ indicates all schedulers’ performances were equal.  

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted 

0.1 SRPT, − 2.329% FS, − 32.9% FF, − 36.37% FF + FS + SRPT, 0.4036% – 
0.2 FS, − 5.954% FS, − 54.54% FS, − 46.79% SRPT, 0.924% – 
0.3 FS, − 12.11% FS, − 65.63% FS, − 60.37% SRPT, 1.747% – 
0.4 FS, − 19.44% FS, − 72.55% FS, − 64.36% FF, 3.7% FS + Rand + SRPT, 0.1002% 
0.5 FS, − 30.78% FS, − 80.21% FF, − 75.05% FS, 11.1% FS + SRPT, 0.2006% 
0.6 FS, − 51.79% SRPT, − 82.76% FS, − 59.8% FS, 18.66% FS + SRPT, 0.6042% 
0.7 FS, − 62.2% SRPT, − 86.3% FS, − 28.06% FS, 27.64% FS, 1.318% 
0.8 FS + SRPT, − 69.49% SRPT, − 86.09% FS, − 13.95% FF, 30.88% FS + SRPT, 2.149% 
0.9 SRPT, − 73.35% SRPT, − 84.72% FF, − 9.119% FF, 34.93% FS + SRPT, 3.099% 

0.10 SRPT, − 8.757% SRPT, − 59.75% FS, − 45.46% FF, 0.8114% – 
0.20 SRPT, − 12.59% SRPT, − 53.34% SRPT, − 41.18% SRPT, 4.129% SRPT, 0.2006% 
0.30 SRPT, − 8.624% FS, − 43.4% Rand, − 29.39% FF, 4.171% – 
0.40 SRPT, − 12.73% FS, − 55.02% FS, − 26.74% FF, 5.525% FS + SRPT, 0.1002% 
0.50 SRPT, − 25.03% SRPT, − 69.41% FS, − 43.45% FF, 10.05% FS + SRPT, 0.2008% 
0.60 FS, − 47.42% SRPT, − 77.59% FS, − 54.24% FF, 17.3% FS + SRPT, 0.402% 
0.70 FS, − 61.53% SRPT, − 82.93% FS, − 30.62% FF, 25.03% FS + SRPT, 1.113% 
0.79 FS, − 70.3% SRPT, − 85.75% FS, − 18.76% FF, 33.28% FS + SRPT, 2.149% 
0.90 SRPT, − 73.83% SRPT, − 86.22% FF, − 8.617% FF, 37.2% FS + SRPT, 3.316% 

0.10 SRPT, − 4.328% SRPT, − 44.2% FS, − 23.36% – – 
0.20 SRPT, − 18.98% SRPT, − 78.65% FF, − 33.87% FF, 7.214% FS + Rand + SRPT, 0.1002% 
0.30 SRPT, − 26.46% SRPT, − 80.41% Rand, − 9.494% FF, 5.855% FS + Rand + SRPT, 0.2006% 
0.40 SRPT, − 10.98% SRPT, − 43.66% FF, − 19.9% FF, 7.365% SRPT, 0.1002% 
0.50 SRPT, − 17.24% SRPT, − 55.39% FS, − 23.86% FF, 8.208% FF + FS + SRPT, 0.1002% 
0.60 FS, − 37.96% FS, − 68.51% FS, − 32.95% FF, 12.16% FS + SRPT, 0.3012% 
0.70 FS, − 59.81% SRPT, − 79.97% FS, − 37.32% FS, 19.26% FS + SRPT, 0.9091% 
0.80 FS, − 66.85% SRPT, − 80.76% FS, − 11.75% FF, 26.29% FS, 2.045% 
0.89 FS, − 73.71% FS, − 77.53% SRPT, − 10.75% FF, 34.9% FS, 3.423% 

0.10 SRPT, − 2.553% SRPT, − 32.54% FS, − 33.37% SRPT, 0.3021% – 
0.20 SRPT, − 7.511% FS, − 57.99% FS, − 58.96% FF, 4.589% – 
0.30 SRPT, − 17.23% SRPT, − 73.84% FS, − 57.32% FF, 19.36% FS + SRPT, 0.1002% 
0.40 SRPT, − 23.55% SRPT, − 78.58% SRPT, − 13.68% FF + FS, 16.41% FS + SRPT, 0.2006% 
0.50 SRPT, − 18.2% SRPT, − 54.32% FS, − 27.63% FS, 11.7% FS + SRPT, 0.1002% 
0.61 SRPT, − 25.65% SRPT, − 54.03% FS, − 26.91% FF, 12.48% FS + SRPT, 0.2006% 
0.70 FS, − 47.05% FS, − 69.77% FS, − 20.66% FS, 15.86% FS + SRPT, 0.6042% 
0.80 FS, − 67.39% FS, − 78.64% FS, − 28.66% FS, 23.76% FS, 1.939% 
0.90 FS, − 78.26% FS, − 76.03% FS, − 13.49% FF, 29.39% FS, 3.638% 

0.10 SRPT, − 2.218% FS, − 32.07% FS, − 34.68% – – 
0.20 FS, − 6.063% FS, − 54.59% FS, − 52.78% SRPT, 2.289% – 
0.30 FS, − 12.22% FS, − 65.35% FS, − 70.36% FS + SRPT, 1.955% – 
0.40 FS, − 20.0% FS, − 72.18% FS, − 70.34% FS, 8.26% FS + SRPT, 0.1002% 
0.51 FS, − 35.12% SRPT, − 81.59% FS, − 71.39% FS, 17.68% FS + SRPT, 0.402% 
0.60 SRPT, − 49.0% SRPT, − 85.19% FS, − 40.78% FS, 25.2% FS + SRPT, 0.6042% 
0.71 SRPT, − 56.38% SRPT, − 87.45% FS, − 28.14% FS, 26.13% FS + SRPT, 1.011% 
0.80 SRPT, − 62.04% SRPT, − 85.79% SRPT, − 12.62% FS, 23.34% SRPT, 1.629% 
0.89 FS, − 72.56% FS, − 71.52% FS, − 9.325% FF, 28.59% FS, 3.32%   
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Table F.19 
The winning schedulers’ performances relative to the losing baselines for (from top to bottom) the University, Private Enterprise, Commercial Cloud, and Social Media 
Cloud DCN traces. For brevity, ‘− ’ indicates all schedulers’ performances were equal.  

Load Mean FCT p99 FCT Max FCT Throughput Flows 

0.10 SRPT, − 2.466% SRPT, − 31.22% FF, − 38.81% SRPT, 0.4036% – 
0.20 SRPT, − 8.834% FS, − 64.48% FS, − 60.01% FF + SRPT, 2.391% – 
0.30 SRPT, − 17.83% SRPT, − 76.13% FS, − 64.78% FF, 13.77% FS + SRPT, 0.1001% 
0.40 SRPT, − 26.47% SRPT, − 81.81% SRPT, − 25.11% FF, 15.07% SRPT, 0.2004% 
0.50 SRPT, − 18.77% SRPT, − 54.54% FS, − 22.44% FF, 11.12% SRPT, 0.2004% 
0.60 SRPT, − 29.81% SRPT, − 63.41% FS, − 21.25% FF, 13.91% SRPT, 0.3009% 
0.70 FS, − 45.77% FS, − 77.26% FS, − 34.73% FS, 21.06% FS + SRPT, 0.6042% 
0.79 FS, − 55.34% FS, − 75.18% FS, − 25.43% FS, 24.9% FS + SRPT, 1.113% 
0.89 FS, − 64.75% FS, − 71.49% FS, − 26.74% FS, 26.16% FS, 1.941% 

0.10 SRPT, − 3.577% FS, − 37.74% FS, − 43.91% FF, 0.4024% – 
0.20 SRPT, − 11.42% FS, − 69.85% FS, − 60.28% SRPT, 4.017% FS + Rand + SRPT, 0.1001% 
0.30 SRPT, − 25.05% FS, − 84.23% FS, − 57.56% FS, 9.121% FS + SRPT, 0.1001% 
0.40 SRPT, − 40.72% SRPT, − 90.67% FF, − 26.91% FS, 12.26% FS + SRPT, 0.3009% 
0.50 SRPT, − 43.96% SRPT, − 91.43% FS, − 18.36% FF, 11.84% SRPT, 0.6036% 
0.60 SRPT, − 28.85% SRPT, − 72.65% FS, − 20.9% FF, 17.01% SRPT, 0.3009% 
0.70 SRPT, − 35.86% SRPT, − 77.65% FS, − 21.9% FF, 24.46% SRPT, 0.5025% 
0.79 FS, − 49.05% SRPT, − 78.85% FS, − 20.43% FF, 32.89% FS + SRPT, 1.011% 
0.90 FS, − 66.84% FS, − 77.31% SRPT, − 9.144% FF, 38.56% FS, 1.526% 

0.10 SRPT, − 4.338% FS, − 44.59% FS, − 43.56% FF + SRPT, 0.6061% – 
0.20 FS, − 12.75% FS, − 73.12% FS, − 65.3% FS + SRPT, 2.165% FS + Rand + SRPT, 0.1001% 
0.30 FS, − 32.36% FS, − 89.81% FS, − 65.67% FS, 6.109% FS + Rand + SRPT, 0.1001% 
0.40 FS, − 51.39% FS, − 93.5% FS, − 50.1% SRPT, 11.49% FS + SRPT, 0.6036% 
0.50 FS, − 64.75% SRPT, − 95.14% FS, − 44.25% FS, 18.82% FS + SRPT, 1.112% 
0.60 SRPT, − 66.34% SRPT, − 94.78% FS, − 38.79% FS, 26.48% FS + SRPT, 2.249% 
0.70 FS, − 55.14% SRPT, − 86.15% FS, − 30.44% FS, 36.44% SRPT, 1.112% 
0.79 FS, − 63.22% SRPT, − 86.61% FS, − 24.83% FS, 50.83% FS + SRPT, 1.939% 
0.89 FS, − 71.7% SRPT, − 80.91% FS, − 15.77% FF, 57.67% FS, 2.675% 

0.10 FS, − 1.484% FS, − 25.77% SRPT, − 49.67% – – 
0.20 FS, − 4.266% FS, − 24.92% FS, − 61.38% – – 
0.30 FS, − 9.855% FS, − 41.03% FS, − 66.9% FF + FS + SRPT, 0.1001% – 
0.40 FS, − 18.74% FS, − 57.24% FS, − 81.16% FS + SRPT, 0.3012% FS + SRPT, 0.1001% 
0.50 FS, − 38.63% FS, − 79.07% FS, − 84.78% FS + SRPT, 1.013% FS, 0.3009% 
0.60 FS, − 60.95% FS, − 88.96% FS, − 82.32% FS + SRPT, 4.311% FS, 1.011% 
0.69 FS, − 70.83% FS, − 88.24% FS, − 72.67% FS, 9.434% FS, 6.852% 
0.80 FS, − 64.72% FS, − 79.18% FS, − 45.34% FS, 26.6% FS, 16.16% 
0.90 FS, − 73.86% FS, − 80.41% FS, − 45.18% FF, 55.08% FS, 31.69%  

Appendix G. A Note on the Flow- vs. Job-Centric Traffic Paradigms 

Common DCN jobs include search queries, generating social media feeds, and performing machine learning tasks such as inference and back-
propagation. These jobs are directed acyclic graphs composed of operations (nodes) and dependencies (edges) [61]. The dependencies are either control 
dependencies (where the child operation can only begin once the parent operation has been completed) or data dependencies (where ≥ 1 tensors are 
output from the parent operation as required input for the child operation). In the context of DCNs, when a job arrives, each operation in the job is 
placed onto some machine to execute it. These operations might all be placed onto one machine or, as is often the case, distributed across different 
machines in the network [62]. The DCN is then used to pass the tensors around between machines executing the operations. Job data dependencies 
whose parent and child operations are placed onto different machines have their tensors become DCN flows. 

There are therefore two paradigms when considering traffic demand generation in DCNs; the flow-centric paradigm, which is agnostic to the overall 
computation graph being executed in the DCN when servicing an application, and the job-centric paradigm, which does consider the computation 
graph when generating network flows. For this manuscript, we considered the flow-centric paradigm, where a single demand is a flow; a task 
demanding some information be sent from a source node to a destination node in the network. Flow characteristics include size (how much infor-
mation to send), arrival time (the time the flow arrives ready to be transported through the network, as derived from the network-level inter-arrival time 
which is the time between a flow’s time of arrival and its predecessor’s), and source-destination node pair (which machine the flow is queued at and 
where it is requesting to be sent). Together, these characteristics form a network-level source-destination node pair distribution (‘how much’ (as 
measured by either probability or load) each machine tends to be requested by arriving flows). 

In real DCNs, traffic flows can be correlated with one another since they may be part of the same job and therefore share similar characteristics. An 
interesting area of future work will be to develop TrafPy to support the job-centric paradigm and have this type of inter-flow correlation. However, this 
is beyond the scope of this manuscript. 
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