6 research outputs found

    Hybrid Microstrip Diplexer Design for Multi-band WiMAX Application in 2.3 and 3.5 GHz Bands

    Get PDF
    In this paper, a design of hybrid microstrip diplexer is proposed for multi-band Worldwide Interoperability for Microwave Access (WiMAX) application in 2.3 and 3.5 GHz bands. The diplexer consists of a combination of two different filter designs. These filters were designed based on microstripline coupling techniques in order to obtain minimum insertion losses and achieve the desired frequency bandwidth. Therefore, a coupled open loop ring resonator was chosen for the filter design in 2.3 GHz band and a folded coupled line resonator was chosen for the filter design in 3.5 GHz band. Then, these filters were combined with a ring manifold matching network to be a hybrid microstrip diplexer. Based on the results, good agreements were achieved between the simulation and measurement results in terms of insertion loss, return loss and bandwidth in the 2.3 and 3.5 GHz bands

    A Multiband Low Noise Amplifier for Software Defined Radio Using Switchable Active Shunt Feedback Input Matching

    Get PDF
    Radio frequency (RF) receivers are the key front-end blocks in wireless devices such as smartphones, pagers, PDAs etc. An important block of the RF receiver is the Low-noise amplifier. It’s function is to amplify with little noise addition, the RF signal received at the atenna. Modern wireless devices for example the smartphone, incorporates multiple functionalities supported by various RF standards- GPS, Bluetooth, Wifi, GSM etc. Thus, the current trend in the wireless technology is to integrate radio receivers for each RF standard into a single system-on-chip (SoC) in order to reduce cost and area of the devices. In view of this, multiband RF receivers have been developed which feature multiband LNAs. This thesis presents the design and implementation of a multiband LNA for Software Defined Radio Applications. In this thesis, basic radio-frequency concepts are discussed which is followed by a discussion of pros and cons of various multistandard low-noise amplifier topologies. This is then followed by the design of the proposed reconfigurable LNA. The LNA is designed and fabricated in IBM 0.18um CMOS technology. It is made up of dual LC resonant tanks, one to switch between 5.2GHz and 3.5GHz frequency bands and the other, to switch between 2.4GHz and 1.8GHz bands. The input matching of the LNA is achieved using a switchable shunt active feedback network. The LNA achieves S21 of between 10.1dB and 13.43dB. It achieves an input matching (S11) between -13.44 dB and -11.97 dB. The noise figure measured ranges from 2.8 dB to 4.3 dB. The LNA also achieves an IIP3 from -7.12 dBm to -3.45 dBm at 50 MHz offset. The power consumption ranges from 7 mW to 7.2 mW

    Reconfigurable multiband multimode LNA for LTE/GSM, WiMAX, and IEEE 802.11.a/b/g/n

    Get PDF
    This paper presents a low power multiband multimode low noise amplifier (LNA) targeting for GSM/LTE, WiMAX and IEEE 802.11 family standards. Wireless bands are reconfigurable by using selection of parallel cascode amplifiers and buffers with switching input inductors. Inductively degenerated cascode amplifiers, sharing the same transconductance for different bands, achieve good input matching and NF. Gain control is designed to provide equal gain for each band and for multimode operation. The maximum power gain is from 13 to 17 dB over different bands with controlled range of over 15dB. The NF is 1.6/2.8/2.7/3.1 dB at 1.9/2.4/3.5/5.2 GHz bands, respectively. The LNA achieves an average IIP3 of -17.5 dBm while consumes from 3 to 5.3 mW for different bands. The proposed reconfigurable LNA is designed in 0.18-ÎĽm CMOS process from 1.5V supply

    Apport de l'échantillonnage aléatoire à temps quantifié pour le traitement en bande de base dans un contexte radio logicielle restreinte

    Get PDF
    The work presented in this Ph.D. dissertation deals with the design of multistandard radio receivers that process signals with heterogeneous specifications. The originality of these research activities comes from the application of random sampling at the baseband stage of a software defined radio receiver. The purpose behind the choice of random sampling is to take advantage of its alias-free feature. The originality of this work is the analytic proof of the alias attenuation feature of the time quantized random sampling, the implementation version of the random sampling. A second contribution concerns also the analytic study of the simplest implementation version of the random sampling, the time quantized pseudo-random sampling (TQ-PRS). Theoretical formulas allow the estimation of the alias attenuation in terms of time quantization factor and oversampling ratio. Alias attenuation measurement permits to design the baseband stage of the proposed multistandard radio receiver architecture. The design concerns different configuration of the baseband stage according to the performances of the used analog-to-digital converters (ADC). The TQPRS allows decreasing the anti-aliasing filter order or the sampling frequency. The design of the baseband stage reveals a difference on the choice of the time quantization factor for each standard. The power consumption budget analysis demonstrates a power consumption gain of 30% regarding the power consumption of the analog baseband stage. This gain becomes 27.5% when the TQ-PRS clock and the digital canal selection stages are considered.Ces travaux de recherche s’inscrivent dans le cadre de la conception de récepteurs multistandard optimisés pouvant traiter des signaux à spécifications hétérogènes. L’idée est d’appliquer l’échantillonnage aléatoire au niveau de l’étage en bande de base d’un récepteur radio logicielle restreinte afin de tirer profit de son pouvoir d’anti-repliement. La nouveauté dans ces travaux est l’étude analytique de la réduction du repliement spectral par l’échantillonnage aléatoire à temps quantifié, candidat favorable à l’implémentation matérielle. Une deuxième contribution concerne aussi l’étude analytique de l’échantillonnage pseudo-aléatoire à temps quantifié (TQ-PRS) dont l’importance réside en sa grande facilité d’implémentation matérielle. Les formulations théoriques ont permis d’estimer l’atténuation des répliques en fonction du facteur de la quantification temporelle et du facteur du sur-échantillonnage. Les mesures de l’atténuation du repliement spectral ont permis de dimensionner l’étage en bande de base d’une architecture de réception multistandard. Le dimensionnement s’intéresse à différentes configurations de l’étage en bande de base régies par les performances du convertisseur analogique numérique (ADC) utilisé.Les travaux de recherche ont démontré que l’application du TQ-PRS au niveau de l’ADC mène soit à une réduction de l’ordre du filtre anti-repliement soit à une réduction de la fréquence d’échantillonnage. Un bilan global de la consommation de puissance a permis un gain de 30% de la consommation de l’étage en bande de base analogique. En tenant compte du générateur de l’horloge TQ-PRS et de l’étage de sélection numérique du canal, ce gain devient 25%

    Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

    Get PDF
    To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are particularly vulnerable to RF front-end non-idealities.This thesis addresses the modeling and digital mitigation of selected transmitter (TX) RF impairments in radio communication devices. The contributions can be divided into two areas. First, new modeling and digital mitigation techniques are proposed for two essential front-end impairments in direct-conversion architecture-based OFDM and OFDMA systems, namely inphase and quadrature phase (I/Q) imbalance and carrier frequency offset (CFO). Both joint and de-coupled estimation and compensation schemes for frequency-selective TX I/Q imbalance and channel distortions are proposed for OFDM systems, to be adopted on the receiver side. Then, in the context of uplink OFDMA and Single Carrier FDMA (SC-FDMA), which are the air interface technologies of the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced systems, joint estimation and equalization techniques of RF impairments and channel distortions are proposed. Here, the challenging multi-user uplink scenario with unequal received power levels is investigated where I/Q imbalance causes inter-user interference. A joint mirror subcarrier processing-based minimum mean-square error (MMSE) equalizer with an arbitrary number of receiver antennas is formulated to effectively handle the mirror sub-band users of different power levels. Furthermore, the joint channel and impairments filter responses are efficiently approximated with polynomial-based basis function models, and the parameters of basis functions are estimated with the reference signals conforming to the LTE uplink sub-frame structure. The resulting receiver concept adopting the proposed techniques enables improved link performance without modifying the design of RF transceivers.Second, digital baseband mitigation solutions are developed for the TX leakage signal-induced self-interference in frequency division duplex (FDD) transceivers. In FDD transceivers, a duplexer is used to connect the TX and receiver (RX) chains to a common antenna while also providing isolation to the receiver chain against the powerful transmit signal. In general, the continuous miniaturization of hardware and adoption of larger bandwidths through carrier aggregation type noncontiguous allocations complicates achieving sufficient TX-RX isolation. Here, two different effects of the transmitter leakage signal are investigated. The first is TX out-of-band (OOB) emissions and TX spurious emissions at own receiver band, due to the transmitter nonlinearity, and the second is nonlinearity of down-converter in the RX that generates second-order intermodulation distortion (IMD2) due to the TX in-band leakage signal. This work shows that the transmitter leakage signal-induced interference depends on an equivalent leakage channel that models the TX path non-idealities, duplexer filter responses, and the RX path non-idealities. The work proposes algorithms that operate in the digital baseband of the transceiver to estimate the TX-RX non-idealities and the duplexer filter responses, and subsequently regenerating and canceling the self-interference, thereby potentially relaxing the TX-RX isolation requirements as well as increasing the transceiver flexibility.Overall, this thesis provides useful signal models to understand the implications of different RF non-idealities and proposes compensation solutions to cope with certain RF impairments. This is complemented with extensive computer simulations and practical RF measurements to validate their application in real-world radio transceivers
    corecore