30 research outputs found

    An analytical model for Loc/ID mappings caches

    Get PDF
    Concerns regarding the scalability of the interdomain routing have encouraged researchers to start elaborating a more robust Internet architecture. While consensus on the exact form of the solution is yet to be found, the need for a semantic decoupling of a node's location and identity is generally accepted as a promising way forward. However, this typically requires the use of caches that store temporal bindings between the two namespaces, to avoid hampering router packet forwarding speeds. In this article, we propose a methodology for an analytical analysis of cache performance that relies on the working-set theory. We first identify the conditions that network traffic must comply with for the theory to be applicable and then develop a model that predicts average cache miss rates relying on easily measurable traffic parameters. We validate the result by emulation, using real packet traces collected at the egress points of a campus and an academic network. To prove its versatility, we extend the model to consider cache polluting user traffic and observe that simple, low intensity attacks drastically reduce performance, whereby manufacturers should either overprovision router memory or implement more complex cache eviction policies.Peer ReviewedPostprint (author's final draft

    An ILNP-based solution for future heterogeneous wireless networks

    Get PDF
    Utilization of the different wireless interfaces (Cellular, Wi-Fi and WiMAX) that come with many of the Mobile Nodes today is central to improving Quality of Experience and Quality of Service in future networks. Although the interfaces are of different technologies as are the access links, the core/backbone networks are now based on IP infrastructure. Efforts to simplify network handover between these technologies – termed vertical handover (VHO) – have not been successful with IP due its mechanism for managing nodes’ identity and location. Researchers have defined and implemented some solutions that proposed the separation of identity of a Mobile Node from its location, and among those proposals is the Identifier Locator Network Protocol (ILNP). In this work, we propose a Linux-based implementation of the ILNPv6 protocol – an instance of the ILNP that is compatible with IPv6 – on laboratory testbed. We also proposed an Information Server managing a defined geographical location we called AREA, to augment some of the shortfalls that we observed with ILNP. We believe that this combination provides the necessary ground for achieving seamless VHO in heterogeneous wireless environments of the future

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Mobility Support in User-Centric Networks

    Get PDF
    In this paper, an overview of challenges and requirements for mobility management in user-centric networks is given, and a new distributed and dynamic per-application mobility management solution is presented. After a brief summary of generic mobility management concepts, existing approaches from the distributed and peer-to-peer mobility management literature are introduced, along with their applicability or shortcomings in the UCN environment. Possible approaches to deal with the decentralized and highly dynamic nature of UCNs are also provided with a discussion and an introduction to potential future work

    Implementation and Evaluation of LISP Publish/Subscribe

    Full text link
    peer reviewedThe design of future 6G network will push even further the convergence of different types of mobile networks, integrating space, aerial and terrestrial access. Mobility, remains one of the most difficult aspects to tackle in this context. One approach under consideration is the use of an overlay solution able to cope with new mobility requirements. LISP (Locator/ID Separation Protocol) being one candidate overlay protocol. LISP separates the addressing space in two orthogonal spaces, one to identify end points, the other to locate them. End-to-end communication is guaranteed by a mapping system allowing to associate location with identities. Mapping resolution is done at communication setup, opening the question: how to guarantee that, in case of changes, the latest mapping is used? Originally, there was no mechanism to explicitly express the interest in updates of specific mappings. LISP Publish/Subscribe has been introduced in order to provide such a feature. This paper provides an implementation of LISP Publish/Subscribe in the NS-3 simulator and quantitatively analyze its benefits

    LISP Mapping System as DoS Amplification Vector

    Full text link
    peer reviewedThere is a growing interest in solutions relying on the identifier/locator separation paradigm. It introduces several benefits in terms of scalability and flexibility. It relies on two addressing spaces, namely the identifiers, for endpoint identification, and the locators, for packet forwarding. An additional control plane is necessary to map one space to the other. In this paper, we explore how control messages can be an amplification vector for DoS attacks. We evaluate the possible amplification factor based on a real deployment, showing that the amplification factor exists. We also build a GNS-3 testbed to demonstrate further and analyze the attack

    A review of IPv6 multihoming solutions

    Get PDF
    Abstract -Multihoming is simply defined as having connection to the Internet through more than one Internet service provider. Multihoming is a desired functionality with a growing demand because it provides fault tolerance and guarantees a continuous service for users. In the current Internet, which employs IPv4 as the network layer protocol, this functionality is achieved by announcing multihomed node prefixes through its all providers. But this solution, which employs Border Gateway Protocol, is not able to scale properly and adapt to the rapid growth of the Internet. IPv6 offers a larger address space compared to IPv4. Considering rapid growth of the Internet and demand for multihoming, the scalability issues of the current solution will turn into a disaster in the future Internet with IPv6 as the network layer protocol. A wide range of solutions have been proposed for multihoming in IPv6. In this paper, we briefly review active solutions in this area and perform an analysis, from deployability viewpoint, on them

    Seamless Internet connectivity for ubiquitous communication

    Get PDF
    The direct and flexible use of any network connectivity that is available within an urban scenario is essential for the successful operation of ubiquitous systems. We demonstrate seamless communication across different networks without the use of middleware, proxies, tunnels, or address translation, with minimal (near-zero) packet loss to communication flows as handoff occurs between networks. Our solution does not require any new functions in existing networks, will work on existing infrastructure, and does not require applications to be re-designed or re-engineered. Our solution requires only modifications to the end-systems involved in communication, so can be deployed incrementally only for those end-systems that require the functionality. We describe our approach and its design, based on the use of the Identifier-Locator Network Protocol (ILNP), which can be realised directly on IPv6. We demonstrate the efficacy of our solution with testbed experiments based on modifications to the Linux kernel v4.9 LTS, operating directly over IPv6, and using unmodified binary applications utilising directly the standard socket(2) POSIX.1-2008 API, and standard C library calls. As our approach is 'end-to-end', we also describe how to maintain packet-level secrecy and identity privacy for the communication flow as part of our approach.Postprin
    corecore