133 research outputs found

    Towards robust real-world historical handwriting recognition

    Get PDF
    In this thesis, we make a bridge from the past to the future by using artificial-intelligence methods for text recognition in a historical Dutch collection of the Natuurkundige Commissie that explored Indonesia (1820-1850). In spite of the successes of systems like 'ChatGPT', reading historical handwriting is still quite challenging for AI. Whereas GPT-like methods work on digital texts, historical manuscripts are only available as an extremely diverse collections of (pixel) images. Despite the great results, current DL methods are very data greedy, time consuming, heavily dependent on the human expert from the humanities for labeling and require machine-learning experts for designing the models. Ideally, the use of deep learning methods should require minimal human effort, have an algorithm observe the evolution of the training process, and avoid inefficient use of the already sparse amount of labeled data. We present several approaches towards dealing with these problems, aiming to improve the robustness of current methods and to improve the autonomy in training. We applied our novel word and line text recognition approaches on nine data sets differing in time period, language, and difficulty: three locally collected historical Latin-based data sets from Naturalis, Leiden; four public Latin-based benchmark data sets for comparability with other approaches; and two Arabic data sets. Using ensemble voting of just five neural networks, a level of accuracy was achieved which required hundreds of neural networks in earlier studies. Moreover, we increased the speed of evaluation of each training epoch without the need of labeled data

    A sequential handwriting recognition model based on a dynamically configurable CRNN

    Get PDF
    Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods

    Combining diverse systems for handwritten text line recognition

    Get PDF
    In this paper, we present a recognition system for on-line handwritten texts acquired from a whiteboard. The system is based on the combination of several individual classifiers of diverse nature. Recognizers based on different architectures (hidden Markov models and bidirectional long short-term memory networks) and on different sets of features (extracted from on-line and off-line data) are used in the combination. In order to increase the diversity of the underlying classifiers and fully exploit the current state-of-the-art in cursive handwriting recognition, commercial recognition systems have been included in the combined system, leading to a final word level accuracy of 86.16%. This value is significantly higher than the performance of the best individual classifier (81.26%

    Deep Sparse Auto-Encoder Features Learning for Arabic Text Recognition

    Get PDF
    One of the most recent challenging issues of pattern recognition and artificial intelligence is Arabic text recognition. This research topic is still a pervasive and unaddressed research field, because of several factors. Complications arise due to the cursive nature of the Arabic writing, character similarities, unlimited vocabulary, use of multi-size and mixed-fonts, etc. To handle these challenges, an automatic Arabic text recognition requires building a robust system by computing discriminative features and applying a rigorous classifier together to achieve an improved performance. In this work, we introduce a new deep learning based system that recognizes Arabic text contained in images. We propose a novel hybrid network, combining a Bag-of-Feature (BoF) framework for feature extraction based on a deep Sparse Auto-Encoder (SAE), and Hidden Markov Models (HMMs), for sequence recognition. Our proposed system, termed BoF-deep SAE-HMM, is tested on four datasets, namely the printed Arabic line images Printed KHATT (P-KHATT), the benchmark printed word images Arabic Printed Text Image (APTI), the benchmark handwritten Arabic word images IFN/ENIT, and the benchmark handwritten digits images Modified National Institute of Standards and Technology (MNIST)
    • …
    corecore