8 research outputs found

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamientoPostprint (published version

    Solving the challenges of concept drift in data stream classification.

    Get PDF
    The rise of network connected devices and applications leads to a significant increase in the volume of data that are continuously generated overtime time, called data streams. In real world applications, storing the entirety of a data stream for analyzing later is often not practical, due to the data stream’s potentially infinite volume. Data stream mining techniques and frameworks are therefore created to analyze streaming data as they arrive. However, compared to traditional data mining techniques, challenges unique to data stream mining also emerge, due to the high arrival rate of data streams and their dynamic nature. In this dissertation, an array of techniques and frameworks are presented to improve the solutions on some of the challenges. First, this dissertation acknowledges that a “no free lunch” theorem exists for data stream mining, where no silver bullet solution can solve all problems of data stream mining. The dissertation focuses on detection of changes of data distribution in data stream mining. These changes are called concept drift. Concept drift can be categorized into many types. A detection algorithm often works only on some types of drift, but not all of them. Because of this, the dissertation finds specific techniques to solve specific challenges, instead of looking for a general solution. Then, this dissertation considers improving solutions for the challenges of high arrival rate of data streams. Data stream mining frameworks often need to process vast among of data samples in limited time. Some data mining activities, notably data sample labeling for classification, are too costly or too slow in such large scale. This dissertation presents two techniques that reduce the amount of labeling needed for data stream classification. The first technique presents a grid-based label selection process that apply to highly imbalanced data streams. Such data streams have one class of data samples vastly outnumber another class. Many majority class samples need to be labeled before a minority class sample can be found due to the imbalance. The presented technique divides the data samples into groups, called grids, and actively search for minority class samples that are close by within a grid. Experiment results show the technique can reduce the total number of data samples needed to be labeled. The second technique presents a smart preprocessing technique that reduce the number of times a new learning model needs to be trained due to concept drift. Less model training means less data labels required, and thus costs less. Experiment results show that in some cases the reduced performance of learning models is the result of improper preprocessing of the data, not due to concept drift. By adapting preprocessing to the changes in data streams, models can retain high performance without retraining. Acknowledging the high cost of labeling, the dissertation then considers the scenario where labels are unavailable when needed. The framework Sliding Reservoir Approach for Delayed Labeling (SRADL) is presented to explore solutions to such problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, and no labels are immediately available. SRADL uses semi-supervised learning by employing a sliding windowed approach to store historical data, which is combined with newly unlabeled data to train new models. Experiments show that SRADL perform well in some cases of delayed labeling. Next, the dissertation considers improving solutions for the challenge of dynamism within data streams, most notably concept drift. The complex nature of concept drift means that most existing detection algorithms can only detect limited types of concept drift. To detect more types of concept drift, an ensemble approach that employs various algorithms, called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted on by the detection results of each algorithm in the ensemble. Types of concept drift with votes past majority are then declared detected. Experiment results show that HEFDD is able to improve detection accuracy significantly while reducing false positives. With the ability to detect various types of concept drift provided by HEFDD, the dissertation tries to improve the delayed labeling framework SRADL. A new combined framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the unavailability of labels by human expert. SRADL-HEFDD employs different synthetic labeling techniques based on different types of drift detected by HEFDD. Experimental results show that comparing to the default SRADL, the combined framework improves prediction performance when small amount of labeled samples is available. Finally, as machine learning applications are increasingly used in critical domains such as medical diagnostics, accountability, explainability and interpretability of machine learning algorithms needs to be considered. Explainable machine learning aims to use a white box approach for data analytics, which enables learning models to be explained and interpreted by human users. However, few studies have been done on explaining what has changed in a dynamic data stream environment. This dissertation thus presents Data Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and model classification boundaries between chunks of streaming data. The visualizations can then be used by a data mining researcher to generate explanations of what has changed within the data stream. To show that DSE can help average users understand data stream mining better, a survey was conducted with an expert group and a non-expert group of users. Results show DSE can reduce the gap of understanding what changed in data stream mining between the two groups

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez más complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detección y el diagnóstico de fallos (FDD), como un elemento clave de la supervisión del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los métodos disponibles de FDD, los enfoques basados en datos están recibiendo una atención creciente debido a su relativa simplicidad en la implementación. Independientemente de los tipos de FDD, una de las principales características de los sistemas FDD confiables es su capacidad de actualización, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualización, se han propuesto algunos métodos, pero no mayoritariamente en el área de investigación de la ingeniería química. Podrían ser categorizados en los que están dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los métodos disponibles, además de la falta de estrategias claras para la actualización, sufren debilidades en su funcionamiento y de un tiempo de capacitación ineficiente, como se ha referenciado. En consecuencia, esta tesis está dedicada principalmente a la actualización de FDD impulsada por datos en procesos químicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en métodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualización supervisados y no supervisados. Además, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales métodos de procesamiento de datos, incluida la imputación de valores perdidos, la selección de características y la extensión de características. Los algoritmos y marcos sugeridos para la actualización de FDD han sido evaluados a través de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuación adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la información redundante, así como ajustan correctamente la ventana de datos para la actualización oportuna y el reciclaje del sistema de detección de fallas. Además, el marco de actualización FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estáticas y dinámicas logra hasta 90% en términos de la puntuación de NPP (puntuación adimensional definida basada en el número de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de técnicas de clasificación y enfoques de agrupamient

    New perspectives and methods for stream learning in the presence of concept drift.

    Get PDF
    153 p.Applications that generate data in the form of fast streams from non-stationary environments, that is,those where the underlying phenomena change over time, are becoming increasingly prevalent. In thiskind of environments the probability density function of the data-generating process may change overtime, producing a drift. This causes that predictive models trained over these stream data become obsoleteand do not adapt suitably to the new distribution. Specially in online learning scenarios, there is apressing need for new algorithms that adapt to this change as fast as possible, while maintaining goodperformance scores. Examples of these applications include making inferences or predictions based onfinancial data, energy demand and climate data analysis, web usage or sensor network monitoring, andmalware/spam detection, among many others.Online learning and concept drift are two of the most hot topics in the recent literature due to theirrelevance for the so-called Big Data paradigm, where nowadays we can find an increasing number ofapplications based on training data continuously available, named as data streams. Thus, learning in nonstationaryenvironments requires adaptive or evolving approaches that can monitor and track theunderlying changes, and adapt a model to accommodate those changes accordingly. In this effort, Iprovide in this thesis a comprehensive state-of-the-art approaches as well as I identify the most relevantopen challenges in the literature, while focusing on addressing three of them by providing innovativeperspectives and methods.This thesis provides with a complete overview of several related fields, and tackles several openchallenges that have been identified in the very recent state of the art. Concretely, it presents aninnovative way to generate artificial diversity in ensembles, a set of necessary adaptations andimprovements for spiking neural networks in order to be used in online learning scenarios, and finally, adrift detector based on this former algorithm. All of these approaches together constitute an innovativework aimed at presenting new perspectives and methods for the field
    corecore