109 research outputs found

    GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer

    Get PDF
    This thesis is divided into two parts:Part I: Analysis of Fruits, Vegetables, Cheese and Fish based on Image Processing using Computer Vision and Deep Learning: A Review. It consists of a comprehensive review of image processing, computer vision and deep learning techniques applied to carry out analysis of fruits, vegetables, cheese and fish.This part also serves as a literature review for Part II.Part II: GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer. This part introduces to an end-to-end deep neural network architecture that can predict the degree of acceptability by the consumer for a guava based on sensory evaluation

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    Radial Basis Function Neural Network in Identifying The Types of Mangoes

    Get PDF
    Mango (Mangifera Indica L) is part of a fruit plant species that have different color and texture characteristics to indicate its type. The identification of the types of mangoes uses the manual method through direct visual observation of mangoes to be classified. At the same time, the more subjective way humans work causes differences in their determination. Therefore in the use of information technology, it is possible to classify mangoes based on their texture using a computerized system. In its completion, the acquisition process is using the camera as an image processing instrument of the recorded images. To determine the pattern of mango data taken from several samples of texture features using Gabor filters from various types of mangoes and the value of the feature extraction results through artificial neural networks (ANN). Using the Radial Base Function method, which produces weight values, is then used as a process for classifying types of mangoes. The accuracy of the test results obtained from the use of extraction methods and existing learning methods is 100%

    Deep Learning Detected Nutrient Deficiency in Chili Plant

    Get PDF
    Chili is a staple commodity that also affects the Indonesian economy due to high market demand. Proven in June 2019, chili is a contributor to Indonesia's inflation of 0.20% from 0.55%. One factor is crop failure due to malnutrition. In this study, the aim is to explore Deep Learning Technology in agriculture to help farmers be able to diagnose their plants, so that their plants are not malnourished. Using the RCNN algorithm as the architecture of this system. Use 270 datasets in 4 categories. The dataset used is primary data with chili samples in Boyolali Regency, Indonesia. The chili we use are curly chili. The results of this study are computers that can recognize nutrient deficiencies in chili plants based on image input received with the greatest testing accuracy of 82.61% and has the best mAP value of 15.57%

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised Adaptation

    Full text link
    Low light conditions not only degrade human visual experience, but also reduce the performance of downstream machine analytics. Although many works have been designed for low-light enhancement or domain adaptive machine analytics, the former considers less on high-level vision, while the latter neglects the potential of image-level signal adjustment. How to restore underexposed images/videos from the perspective of machine vision has long been overlooked. In this paper, we are the first to propose a learnable illumination enhancement model for high-level vision. Inspired by real camera response functions, we assume that the illumination enhancement function should be a concave curve, and propose to satisfy this concavity through discrete integral. With the intention of adapting illumination from the perspective of machine vision without task-specific annotated data, we design an asymmetric cross-domain self-supervised training strategy. Our model architecture and training designs mutually benefit each other, forming a powerful unsupervised normal-to-low light adaptation framework. Comprehensive experiments demonstrate that our method surpasses existing low-light enhancement and adaptation methods and shows superior generalization on various low-light vision tasks, including classification, detection, action recognition, and optical flow estimation. Project website: https://daooshee.github.io/SACC-Website/Comment: This paper has been accepted by ACM Multimedia 202

    Defect Detection and Classification in Sewer Pipeline Inspection Videos Using Deep Neural Networks

    Get PDF
    Sewer pipelines as a critical civil infrastructure become a concern for municipalities as they are getting near to the end of their service lives. Meanwhile, new environmental laws and regulations, city expansions, and budget constraints make it harder to maintain these networks. On the other hand, access and inspect sewer pipelines by human-entry based methods are problematic and risky. Current practice for sewer pipeline assessment uses various types of equipment to inspect the condition of pipelines. One of the most used technologies for sewer pipelines inspection is Closed Circuit Television (CCTV). However, application of CCTV method in extensive sewer networks involves certified operators to inspect hours of videos, which is time-consuming, labor-intensive, and error prone. The main objective of this research is to develop a framework for automated defect detection and classification in sewer CCTV inspection videos using computer vision techniques and deep neural networks. This study presents innovative algorithms to deal with the complexity of feature extraction and pattern recognition in sewer inspection videos due to lighting conditions, illumination variations, and unknown patterns of various sewer defects. Therefore, this research includes two main sub-models to first identify and localize anomalies in sewer inspection videos, and in the next phase, detect and classify the defects among the recognized anomalous frames. In the first phase, an innovative approach is proposed for identifying the frames with potential anomalies and localizing them in the pipe segment which is being inspected. The normal and anomalous frames are classified utilizing a one-class support vector machine (OC-SVM). The proposed approach employs 3D Scale Invariant Feature Transform (SIFT) to extract spatio-temporal features and capture scene dynamic statistics in sewer CCTV videos. The OC-SVM is trained by the frame-features which are considered normal, and the outliers to this model are considered abnormal frames. In the next step, the identified anomalous frames are located by recognizing the present text information in them using an end-to-end text recognition approach. The proposed localization approach is performed in two steps, first the text regions are detected using maximally stable extremal regions (MSER) algorithm, then the text characters are recognized using a convolutional neural network (CNN). The performance of the proposed model is tested using videos from real-world sewer inspection reports, where the accuracies of 95% and 86% were achieved for anomaly detection and frame localization, respectively. Identifying the anomalous frames and excluding the normal frames from further analysis could reduce the time and cost of detection. It also ensures the accuracy and quality of assessment by reducing the number of neglected anomalous frames caused by operator error. In the second phase, a defect detection framework is proposed to provide defect detection and classification among the identified anomalous frames. First, a deep Convolutional Neural Network (CNN) which is pre-trained using transfer learning, is used as a feature extractor. In the next step, the remaining convolutional layers of the constructed model are trained by the provided dataset from various types of sewer defects to detect and classify defects in the anomalous frames. The proposed methodology was validated by referencing the ground truth data of a dataset including four defects, and the mAP of 81.3% was achieved. It is expected that the developed model can help sewer inspectors in much faster and more accurate pipeline inspection. The whole framework would decrease the condition assessment time and increase the accuracy of sewer assessment reports

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    • …
    corecore