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Abstract 

Society seeks solutions that reduce the labour required in food production and 

increase farmers' quality of life. However, these solutions must have high levels of 

autonomy, precision and intelligence. The harvesting operation is a recurring task in the 

production of any crop, thus making it an excellent candidate for automation. That said, 

the development of an accurate fruit detection system is a crucial step towards achieving 

fully automated robotic harvesting. Most of the strategies used in fruit detection are 

based on Machine Learning (ML) applications. However, these applications are far from 

maturity, thus presenting challenges to robotic-assisted harvesting, which motivates their 

study. Deep Learning (DL), an ML approach, and detection frameworks like Single Shot 

MultiBox Detector (SSD) or YOLO are more robust and accurate alternatives with better 

response to highly complex scenarios. The present work proposed the creation of a 

database of annotated images of tomatoes in greenhouses. Two DL models (SSD 

MobileNet v2 and YOLOv4) were trained and evaluated for tomato detection using the 

collected images. Subsequently, their ability to classify the fruits in different classes 

based on their ripeness stage was evaluated by comparing them with a proposed HSV 

colour space model. In order to extract more information from the fruits, the correlation 

between fruit colour and soluble solids content (SSC) was also evaluated with the help 

of the proposed model. Regardind detection, both models obtained promising results, 

with the YOLOv4 model standing out with an F1-Score of 86.95%. As for classification, 

the MobileNetv2 model obtained an Macro F1-Score of 87.27%. The HSV colour space 

model outperformed the YOLOv4 model, obtaining results similar to the SSD 

MobileNetv2 model, with a Balanced Accuracy of 79.26%. Regarding the SSC, it was 

concluded that it is not possible to estimate the Brix degree only through colour. This 

dissertation is part of the activities of the project ROBOCARE, P2020 developed by 

INESCTEC. 
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Artificial Intelligence, Computer vision, Deep Learning, Single Shot Multibox Detector, 
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Resumo 

A sociedade procura soluções que reduzam a mão de obra necessária na produção 

de alimentos e que aumentem a qualidade de vida dos agricultores. No entanto, estas 

soluções devem ter elevados níveis de autonomia, precisão e inteligência. A operação 

de colheita é uma tarefa recorrente na produção de qualquer cultura, tornando-se assim 

uma excelente candidata para a automatização. Posto isto, o desenvolvimento de um 

sistema preciso de deteção de frutos é um passo crucial para que se alcance uma 

colheita robotizada totalmente automatizada. A maior parte das estratégias utilizadas na 

deteção de frutos estão assentes em aplicações de Machine Learning (ML). Todavia, 

estas aplicações estão longe da sua maturidade, apresentando assim desafios à 

colheita assistida por robótica, o que motiva o seu estudo. Deep Learning (DL), uma 

abordagem de ML, e frameworks de deteção como Single Shot MultiBox Detector (SSD) 

ou YOLO são alternativas consideradas mais robustas e precisas com melhor resposta 

a cenários altamente complexos. O presente trabalho propôs a criação de uma base de 

dados de imagens anotadas de tomate em estufa. Através das imagens recolhidas, 

foram treinados e avaliados dois modelos DL (SSD MobileNet v2 e YOLOv4) para 

deteção de tomate sendo, posteriormente, avaliada a sua capacidade de classificar os 

frutos em diferentes classes com base no seu estado de maturação, comparando-os 

com um modelo proposto baseado no espaço de cor HSV. De modo a extrair mais 

informação dos frutos, foi também avaliada a correlação entre a cor do fruto e o teor de 

sólidos solúveis (SSC), com a ajuda do modelo proposto. No que diz respeito à deteção, 

ambos os modelos obtiveram resultados promissores, destacando-se o modelo 

YOLOv4 com um F1-Score de 86.95%. Já na classificação, o modelo SSD MobileNetv2 

obteve um Macro F1-Score de 87.27%. O modelo do espaço de cor HSV superou o 

modelo YOLOv4, obtendo resultados semelhantes ao modelo MobileNetv2, com uma 

Balanced Accuracy de 79.26%. Em relação ao SSC, concluiu-se que não é possível 

estimar o grau Brix apenas através da cor. Esta dissertação está inserida nas atividades 

do projeto ROBOCARE, P2020 desenvolvido pelo INESCTEC. 
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1. Introduction 

Labour is the major cost factor in agriculture, accounting for up to 40% of operational 

costs in most production systems [1, 2]. The various agricultural tasks require an 

immense labour force that its necessity ultimately creates bottlenecks, leading to lower 

productivity and incomes, thus increasing costs. Problems such as ageing or shortage 

of workers contribute to labour scarcity [3], plus most agricultural activities are 

unattractive and exclusive, often associated with the news of social discrimination and 

illegal labour flows. Therefore, the execution of manual labour has given rise to concerns 

in terms of farm planning and competitiveness. 

Finding new solutions is vital, allowing farmers to produce with quality, higher yields 

and lower costs. One of the solutions involves robotization and automation. Robotic 

systems can operate in hazardous and challenging farming environments, completing 

tasks that are often strenuous and physically demanding [4]. Agricultural robots are far 

from mature, despite all the research and progress in robot technology, as manual work 

prevails. Production inefficiency and lack of economic payback are the main setbacks of 

robotics introduction in agriculture [2]. An agricultural robot must face several challenges, 

presenting difficulties when confronted and implemented in a very dynamic and highly 

unstructured environment such as the farm environment, characterised by soil variations, 

different luminosity and visibility caused by quick spatial-temporal changes [4, 5]. The 

development of advanced technology is essential to achieve high levels of autonomy, 

precision and intelligence, capable of suppressing the limited performance of today's 

robots and bringing it up to the standards of manual labour in the near future. 

In the greenhouse horticulture sector, where labour accounts for up to 50% of the 

usual costs [6], the penetration of robots is not yet comparable to the robots developed 

for open-field farming systems [7]. One of the most important horticultural crops is the 

tomato. It is the second most harvested vegetable in the world. Still, manual tomato 

harvesting is associated with low labour productivity, as the harvesting operation 

absorbed a large part of the labour costs. Thus, since this operation is a recurrent task 

in the production of any crop, it becomes an excellent candidate for automation [8]. 

However, automating an operation such as harvesting is not a simple matter, as the robot 

must be able to detect and manipulate the fruit in an environment that is full of objects of 

various colours, shapes, sizes, textures and reflective properties, highly unstructured 
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scenarios with a large degree of uncertainty, constantly changing lighting and shadow 

conditions as well as severe occlusions [9]. Therefore, the performance of harvesting 

robots is still limited. There is a need for a clearer understanding of the advances made 

in harvest robotisation, and a better understanding of this limited performance [8].  State-

of-the-art identifies the system's visual perception as one of the leading causes of the 

poor performance of harvesting robots. Therefore, a highly effective detection system is 

necessary and crucial to push forward their development [9]. 

Robotics agricultural applications present a close relationship with image processing 

and artificial vision techniques, promoting the joint development of these fields. 

Computer vision and Artificial Intelligence (AI) have attracted growing interest from the 

agricultural world to optimise several agricultural operations through accurate, robust 

and automated solutions [10]. Computer vision comprehends methods and techniques 

that allow the development of systems endowed with artificial vision. These systems 

involve an image acquisition phase, through cameras or sensors, which will be later 

processed and analysed. Image analysis refers to the methods used to differentiate a 

region to be detected, in this case, the fruit from the images acquired [11, 12]. Visual 

features are used to differentiate this region, mainly colour but also size, shape,or even 

spectral reflectance. Thresholding the visual features is the most elementary method, 

but it is less robust, as the high variance of the environment affects the performance of 

this type of method [9]. 

 Alternatively, Machine Learning (ML) has been increasingly used in fruit detection 

and classification. ML is an AI discipline, which enables machines to learn for 

themselves. ML algorithms learn and acquire knowledge through the data they analyse, 

creating a model capable of predicting or making intelligent decisions [13]. One of the 

most promising algorithms for its accuracy in complex scenarios is Artificial Neural 

Networks (ANN). Just like the human brain, these algorithms gather information, 

processes it and generate an output. They are mostly used in Supervised Learning, 

meaning that the inputs and outputs are known. The algorithm creates an input-output 

relationship to generalise and predict results from inputs never seen before [14]. The 

objects to be detected need to be annotated previously and the models are trained to 

recognise features from those objects. Then, the model is used to detect the trained 

objects on new images. 

Another strategy is Deep Learning (DL), which is based on ML. It is a modern, more 

robust and accurate approach with better response to complex scenarios since it has 
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strong learning capabilities [15]. It is similar to the ANN model, however, it is a "deeper" 

neural network that provides a hierarchical representation of the data through multiple 

convolutions [16]. The four main DL models are Unsupervised Pretrained Networks, 

Convolutional Neural Networks (CNN), Recurrent Neural Networks and Recursive 

Neural Networks. Since it is the most used in image analysis, the CNN model has been 

increasingly applied in agriculture and fruit detection [17]. Some detection frameworks 

have been developed using CNN and have achieved promising results. The most notable 

are the SSD (Single Shot Multibox Detector) [18] and the YOLO (You Only Look Once) 

models [19]. These frameworks are composed of a backbone, which is a CNN 

responsible for extracting the relevant features from the input image, and several 

convolution filters that detect/classify the objects and estimate their size with a bounding 

box. The SSD and YOLO models are called one-stage detectors as they are capable of 

feature extraction and object detection in a single step. This process consumes less time 

and can therefore be used in real-time applications, such as harvesting robots. Unlike 

two-stage detectors, these models are generally faster and structurally simpler [20].  

However, even with all these advances, robotic application in crop harvesting still 

presents several challenges. Despite increasing, research on fruit detection using 

models such as SSD or YOLO is still limited [21]. Better vision systems for all the different 

operations in the agricultural environment must be developed in parallel with faster and 

more accurate image processing/algorithm methods [7], demanding research in line with 

the objectives and the topic proposed by the presented dissertation project. 

This study is framed within the activities of the ROBOCARE1 (Intelligent Precision 

Robotic Platforms for Protected Crops) project, P2020 developed by INESC TEC and 

whose research team integrates the orientation of this dissertation. The ROBOCARE 

project aims to research and develop intelligent precision robotic platforms for protected 

crops, to decrease the reduction of labour burden and increase the ergonomics of the 

agricultural operations and the consequent increase in labour productivity and economic 

profitability of crops. The team leading the project is working on the development of a 

greenhouse tomato harvesting robot.  

This dissertation is focused on the computer vision of the robot. The main objective is 

to: i) create a dataset of annotated tomato images to train and evaluate two DL models 

 
1 INESC TEC – ROBOCARE Project (https://www.inesctec.pt/pt/projetos/robocare). Last accessed: 4 
November 2021 

https://www.inesctec.pt/pt/projetos/robocare
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(SSD MobileNet v2 and YOLOv4) for tomato detection and ii) compare whether the 

classification of tomatoes into different classes, based on their ripeness, can be done 

effectively through those same DL models or a proposed model based on HSV (Hue, 

Saturation and Value) colour space. Furthermore, automatic phenotyping of relevant 

features for harvesting decisions, such as Brix degree, based on its correlation with fruit 

colour is sought to be performed with the help of the model mentioned above. In all 

experiments, tomatoes of the "Plum" variety were used. A meta-analysis also seeks to 

better understand the landscape of harvesting robots developed specifically for protected 

horticulture to complement this work. 

The lack of access to robust and accurate fruit detection systems has limited the 

automation of harvesting and the commercialisation of robots for this purpose. It is hoped 

that this study will help take that final step towards the automation of harvesting and 

many other tasks in the agricultural sector. 
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2. Literature Review 

2.1 Agricultural Operations 

Labour is the main factor contributing to operational costs in agriculture [1]. Despite 

some differences and great variability in absolute magnitudes, labour generally accounts 

for about 40% of operational costs in most production systems [2]. The high labour 

demand for the execution of several agricultural tasks causes bottlenecks within the farm 

organization with associated efficiency costs, especially in frequent situations of 

unavailability of labour. Competition for labour between sectors and the ageing or 

scarcity of workers contribute to labour shortages [3]. In the agricultural industry, the 

problem is aggravated by the hazardous nature of most farming operations, which makes 

them unattractive and exclusive, often associated with social discrimination and illegal 

labour flows. Cost reduction is thus hindered by the vital need for labour power [22]. 

Horticulture is characterised by a wide range of production systems and methods and 

a great diversity of herbaceous and woody species for food and/or ornamental 

production. Within these systems, protected or greenhouse horticulture is one of the 

most intensive in production inputs and knowledge, focusing on the production of crops 

with high added value. Its role in regular food production is fundamental, as it is a system 

that enables the control of environmental factors (temperature, light, etc.), greater 

efficiency in the use of resources (water, fertilisers, etc.) and the use of high-tech 

systems leading to higher yields, in a stable and better quality production [7]. 

Protected horticulture sector has been growing over the years, and in 2019 its world 

market value was estimated at around 25 million euros, with projections indicating its 

annual increase of around 9% over the next 5 years [23].  

In protected crops, labour represents approximately 50% of operational costs and is 

considered critical for developing and maintaining this farming system [6]. However, the 

scarcity and associated costs reduce its economic efficiency, making it difficult to plan 

operations. This context demands the adoption of new technologies and the search for 

solutions that improve cost reduction or compensate for the lack of labour to guarantee 

the success of the most varied production systems. 
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2.2 Robotization in Agriculture 

2.2.1 Opportunities, Limitations and Conditions 

The agricultural sector has followed a trend towards valorising production inputs, 

namely labour and knowledge, to the detriment of the added value of primary production 

activities, promoting the emergence of technological value chains (generally longer) 

densified in knowledge aligned with the concept of digitalisation of the sector 

("Agriculture digitisation" or "Smart farming"). This orientation towards a more 

technological side of mechanization and automation systems is due to the revolution that 

has occurred in recent decades concerning the various technological fronts (computing, 

sensors, navigation, etc.) [4] (Fig. 1). These advances are mainly related to the necessity 

to minimise operational and production costs, reduce environmental impacts and 

optimise production cycles [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 | Temporal evolution of industry and agriculture with an indication of the common factors of change and the 
technological contexts that characterize the time frames. Adapted from: Liu, Ma [56]. 
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The introduction of robotic technology in agriculture could alter productivity, 

ergonomics and labour hardship. The robots can overcome critical human constraints, 

such as operating in hazardous and challenging farming environments, ultimately 

reducing the impact of physically demanding, mundane and repetitive arduous tasks [4]. 

These new technologies provide high potential for increasing agricultural productivity, 

which in turn supports the growth and development of the economy in a more sustainable 

way [24, 25]. 

Yet, implementing robotic solutions in the agricultural sector is by no means an easy 

task. The technical viability of agricultural robots for various tasks has been widely 

validated, however, despite all the research done in the last three decades, very few 

have commercial applications [26]. The robotic world can be divided into four groups 

based on the structural characteristics of the environments and objects in which they 

operate [2]: 

1. Environment and objects are structured; 

 

2. Environment is unstructured and objects are structured; 

 

3. Environment is structured and objects are unstructured; 

 

4. Environment and objects are unstructured. 

 

Robots applied in the agricultural branch are associated with the fourth group (Fig. 2), 

where nothing is structured, making the development of these robotic alternatives 

challenging [2]. 
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Unlike industrial applications, which deal with relatively simple, repetitive, well-defined 

and pre-determined tasks in stable and replicable environments (structured 

environment), agricultural applications for automation and robotics require advanced 

technologies to deal with complex and highly diverse environments [27, 28]. Most 

agricultural operations take place in unstructured environments characterised by quick 

spatial-temporal changes. Also, factors such as land (slope, shape, obstacles, among 

others), visibility, lighting and other weather conditions are poorly defined, vary 

continuously and have inherent uncertainties, creating unpredictable and dynamic 

situations that the robot will have to manage [5]. In addition, the sector deals with 

products that are highly sensitive to environmental and physical conditions [29], requiring 

careful and precise handling to preserve as much as possible the quality of these 

products along the chain up to the consumer. 

That being said, the challenges imposed by the instability of the environment and its 

objects, require complex technological solutions and, generally, with high specificity 

which limits its transferability between production systems. Thus, these solutions are not 

always efficient (especially if compared to industrial solutions) and are generally 

expensive, which is particularly relevant given the low added value of most agricultural 

Figure 2 | The four robotic groups based on the structural characteristics of environments and objects. Adapted from: 
Bechar and Vigneault [2]. 
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products. In this context, it can be considered that lower operational efficiency and high 

costs are the main limitations to the robotic application in agriculture [2]. 

The implementation of robotics technology in agriculture is feasible if at least one of 

the following conditions is met [2]: 

• The usage cost is lower than the cost of any current method; 

 

• Allows increasing productivity, making the production system more profitable 

and resilient against competitive market conditions; 

 

• Improves production quality and uniformity; 

 

• Minimises uncertainty and variation in the different production processes; 

 

• Allows the farmer to make decisions and act with higher spatio-temporal 

resolution; 

 

• Can perform specific tasks defined as being dangerous or that cannot be 

performed manually; 

 

• It emerges as a response to scenarios with no alternative, such as labour 

shortages. 

 

The diversity of agricultural operations highlights the usefulness of decomposing the 

tasks performed by human labour. This decomposition will identify critical factors where 

there is potential for strong substitution or complementarity and, in turn, identify areas 

where the introduction of new technologies will have the greatest impact [4]. Therefore, 

as in other industries and sectors, potentially automatable agricultural tasks can be 

categorised into four types (Fig. 3), based on their manual or cognitive nature and the 

execution of standardised and non-standardised tasks. 
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2.2.2 Concepts and Required Abilities of Robotic Systems 

Robotic solutions can be divided into two concepts [2]: 

• Human-Robot Systems (HRS); 

 

• Autonomous Robot Systems (ARS). 

 

As the name implies, HRS are driven by the synergy between human and robotic 

valences. Incorporating a human operator to interact, rather than just supervise the 

system, is an advantage as human capabilities in perception, thought and action are 

unmatched in abnormal and unpredictable environments. [30]. By taking advantage of 

human sensing capabilities and the accuracy and consistency of a robotic system, HRS 

become more streamlined solutions, resulting in better performance and reduced costs 

[2, 31].  

Figure 3 | Categorization of tasks in terms of cognitive-manual and nonroutine-routine levels. Adapted from: Marinoudi, 
Sørensen [4]. 
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On the other hand, ARS are developed to perform tasks, make decisions and act in 

real time without human dependence. This type of systems are requested in sectors that 

demand reductions in manpower and workload, being adequate in exigent scenarios with 

high precision and performance, under stable conditions. However, there is growing 

research focused on ARS for unstructured environments [2]. 

Agricultural ARS are composed of numerous subsystems and devices that allow their 

operation and the execution of various tasks with different degrees of autonomy. They 

must have the ability to manage unforeseen events, with a certain level of autonomy, 

where these subsystems and devices deal with various aspects such as: guidance and 

trajectory planning, mobility and navigation, detection and localization, manipulators and 

end effectors [32].  

Typically, agricultural robots are designed to perform a specific agricultural operation, 

such as seeding, weed control, pruning, harvesting, among others. For this operation to 

be executed, ARS needs to perform several supporting tasks that compose it, such as 

location and navigation, object detection, treatments or actions to be performed, etc. 

Information and commands are transferred between the various tasks and between the 

tasks and the main operation. Each task controls one or more subsystems and devices, 

and one subsystem or device may serve several tasks [2] (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 Figure 4 | Example of the structure of a main task and its support tasks and subsystems for an agricultural robot. Solid 
arrows represent commands, data and information; dashed arrows represent conceptual connections. Adapted from: 
Bechar and Vigneault [2]. 
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In order to achieve an adequate degree of autonomy, the ability to perceive and 

automate are basic system requirements. Therefore, an ARS should have a high degree 

of flexibility so that it can be incorporated into constantly changing scenarios as well as 

the ability to process the information it receives from its sensors. When designing an 

ARS, two major challenges are quite often imposed. The first is the requirements of non-

linear and real-time response underlying the sensor-motor control formulation. The 

second is how to model and use the approach that a human being would use to solve 

the problems he faces [33]. 

These autonomous systems are highly complex as they are made up of several 

different subsystems, that need to be integrated and correctly synchronised to perform 

tasks seamlessly and successfully transfer the necessary information [2]. 

Generally speaking, whether dealing with a HRS or ARS concept, a robot operating 

in the agricultural environment must have several capabilities [4]: 

• The robot should be configurable for the environment in which it operates, for 

different layouts of the land it moves (i.e. size and shape), soil types, crop 

parameters (variety, size, maturity), production conditions and systems (open 

field, greenhouse, with or without soil, etc.) and be adaptable to different crops, 

in case the farm produces more than one crop or practices crop rotation; 

 

• As far as safety is concerned, it should ensure safe mobility in a dynamic, partially 

known or completely unknown environment. Furthermore, it must be able to 

protect the environment from some degradations such as soil compaction; 

 

• For robots intended to manipulate crops, their handling capabilities should adjust 

to the sensitivity of the products in question. Their sensing capabilities should 

adjust to the variability of the product, in terms of colour, size, shape, etc. 

 

The development of these robots for integration in agricultural processes should 

consider: i) Technology and intelligent systems should be developed to overcome the 

difficulties imposed by the unstructured and complex environments that the sector 

presents, ii) economic aspects specific to production systems should be addressed in 

order to understand the effective viability of the various types of robots, iii) safety and 

reliability are one of the most critical aspects - safeguarding workers, the environment, 

crop damage (quantity and quality) and machinery is mandatory [2]. 
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Inevitably these systems will become intelligent enough to achieve high levels of 

autonomy in the near future [34]. However, it is necessary to determine how smart they 

have to be and define their appropriate behaviour. The increasing labour costs and the 

demand for differentiated and high quality products as mentioned above, on the one 

hand, and the decreasing cost of computers, electronics, and progressively more 

efficient sensors will promote the economic viability of agricultural robots [2]. 

Since this dissertation is related to the robotic harvesting of tomatoes, all these 

components and their synergies will be addressed in the following chapters. Special 

attention will be given to the harvesting operation, in a greenhouse environment, as the 

main operation and the fruit detection/classification, in this case of tomatoes, as the 

support task along with all the subsystems and devices needed to perform them. 

 

2.2.3 Operations, Crops and Environments of Robotic Applications 

Agricultural robots have been researched and developed for many operations 

performed throughout the production cycle, from seeding to harvest. However, the most 

labour-intensive tasks, such as harvesting, have attracted a greater focus from this type 

of technology (Fig. 5) [7].  

 

 

 

 

 

 

 

 

 

 

Figure 5 | Number of reviewed robots per agricultural operation. Adapted from: Fountas, Mylonas [7]. 



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

14 

 
 

Strawberries, peppers, grapes and tomatoes have been the most widely promoted 

crops within the research (Fig. 6) [7]. 

 

 

 

 

 

 

 

 

 

 

 

As mentioned, robotisation and implementation of automatisms are hampered by the 

unstructured environment that agricultural systems present. In this context, one would 

expect that robots operating in semi-structured environments, such as greenhouses, 

would be in the first line of development.  

However, this is not observed, as almost half of the developed robots are allocated to 

open-field production systems (Fig. 7). This can be explained by the fact that most of the 

crops around the world are grown in open-field systems and some operations are more 

associated with this type of production, such as weed control, which is also one of the 

most studied operations [7]. 

 

 

 

 

 

 

 

 

Figure 6 | Main crops in correlation with the number of robotic systems. Adapted from: Fountas, Mylonas [7]. 
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2.2.4 Tomato Robotic Harvesting in Protected Horticulture 

The harvesting operation becomes an excellent candidate for automation due to being 

recurrent and crucial in the production of high-value crops [8]. Increasing efficiency and 

reducing labour dependency in this operation could ensure higher yields and 

competitiveness in high-tech food production, so the development of harvesting robots 

should be considered as a viable alternative [35].  

Since the 1980's this subject has been researched, with Japan, The Netherlands and 

the USA being the pioneer countries that have made the greatest contribution to its 

development. However, despite all these advances, robotic harvesting is still far from 

maturity (Fig. 8), and every year millions of tons of fruit and vegetables are harvested 

manually in greenhouses. The scarce use of robots can be attributed to their low 

performance, so it is essential to understand why this limited performance and 

challenges that can generate a positive trend [8, 35, 36]. 

 

 

 

 

 

Figure 7 | Allocation of robots (%) in various agricultural production systems. Adapted from: Fountas, Mylonas [7]. 
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In protected horticulture, few crops are as important as tomatoes. It is the second 

most harvested vegetable worldwide and one of the crops with the highest economic 

value. Between 2003 and 2017, world tomato production increased annually from 124 

million tonnes to more than 177 million tonnes, and over the last 15 years, consumption 

has experienced sustained growth of around 2.5% [37]. This is one of the leaders when 

it comes to protected horticulture. In the south-east of Spain, Almería, home to the 

world's largest concentration of greenhouses (over 30,000 hectares), tomatoes are the 

main crop, accounting for 37.7% of all production [38]. 

Manual tomato harvesting is associated with low labour productivity because it is 

sporadic, fatiguing, with high to moderate physical effort and high repeatability by the 

operator, requiring about 700-900 h/year/ha [39], generating a low labour force 

attractiveness. Along with the scarcity of labour, the precarious working conditions and 

increased labour costs constrain the greenhouse harvesting operation. The importance 

of this crop and the associated high production costs justify, as mentioned above, the 

fact that this is one of the most common crops in the development of robotic harvesting. 

However, robotising tomato picking is not an easy task. The robot must detect and 

manipulate, in a heterogeneous and unpredictable environment, a fruit that also varies 

in terms of position, size, shape, colour and even reflectance [8, 9].  

Figure 8 | Robotic systems: market and technology readiness by agricultural activity. Adapted from: Michael Dent, 
IDTechEx. 
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The colour is used as an indicator of ripeness and the desired level of ripeness by the 

producer can vary. As a climacteric fruit, tomatoes can be harvested at the physiological 

maturity stage (green colour), ripening detached from the plant, or at a more advanced 

stage, showing a reddish colour (Fig. 9). [40]. The harvest moment can be dictated 

according to market requirements. If the consumption is local, for proximity markets, the 

fruit can be harvested later. However, if the fruit needs to be transported over long 

distances, harvesting in an immature stage would be more appropriate. Therefore, the 

robot must handle these colour variations in order to achieve a segmented harvest. 

 

 

 

 

 

 

 

 

 

 

 

 

Other important aspects of handling the fruit that should be automatically detected are 

size, shape, and morphological inconformities. Careful handling is crucial, especially with 

tomatoes because of their poor surface resistance and slippery surfaces. The 

susceptibility to damage is also a relevant factor. Thus, the development of an end-

effector that can handle variations in fruit size and shape and that takes into account the 

growing environment and the physical properties of the tomato is essential for the 

prevention of damage during the harvesting phase [41]. 

Accessibility and visibility of the fruit are two major challenges in the harvesting task 

[8]. Figure 10 illustrates different lighting conditions that the robot may encounter and 

scenarios where many fruits are occluded by different parts of the plant which, as 

mentioned before, end up becoming obstacles that prevent not only their access but also 

Figure 9 | Different colours that a tomato can present throughout its development. 
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their visibility. The robotic system must detect less visible fruits and harvest them without 

damaging other fruits and plant parts. 

 

 

 

 

 

 

 

 

 

 

 

The age of the plants, pests and diseases and different production methods are other 

aspects that might also play a role in the variation of the fruits to be detected and 

harvested. The variability and factors described above are already valid for a single 

cultivar, but as there are many cultivars of tomato, the variation is even more 

pronounced. A cultivar has slight genetic differences, which leads to a modification of 

the fruit in terms of position, shape, size and colour [8]. 

Despite the difficulties imposed by the set of factors described, there are already some 

prototypes developed for robotic tomato harvesting. In order to be able to evaluate them, 

the literature mentions two main performance metrics: speed and harvesting accuracy 

rate [7]. 

Instead of developing the entire robotic system, Li, Liu [42] designed an actuating 

organ by installing it in an industrial manipulator already on the market. The robot is 

composed of a Motoman-sv3x manipulator, an actuating organ with 3-DOF (Degrees Of 

Freedom), a camera, a computer, a PMAC controller and a micro servomotor. They 

analysed the workspace and kinematics of the system and concluded that the harvesting 

robot meets the operational requirements of a greenhouse, performing the task of 

separating and harvesting the fruit in only 3 seconds. In order to harvest truss tomatoes, 

Figure 10 | The environment a harvesting robot might encounter in a greenhouse. Fruits with high colour correlation with 
the background, overlaps and occlusions by different plant structures and different light conditions. 
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Ji, Zhang [43] proposed a robotic system, two technologies for the detection of the 

abscission point and an end effector. For the detection of the tomato and a reference 

point, an algorithm using a segmentation feature based on the RGB (Red, Green and 

Blue) colour was used. The approximate fit curve of the stem and the contour of the 

reference point were extracted to generate the optimal abscission point. Based on a 

flexible transmission, the end effector allows the robot to perform the harvesting task in 

37.2 seconds with a success rate of 88.6%. 

Zhao, Gong [44], opted for the HRS concept, to overcome the complexity imposed by 

the greenhouse environment and developed a modular robotic system of two 

manipulators with 3-DOF. The tomato detection is made through artificial recognition in 

which the operator, through an interface, selects the fruit. Two different end effectors 

were designed and tested, one for each manipulator, but no results were reported. 

Yasukawa, Li [45], authors of the Tomato-Harvesting Robot Competition, now in its 6th 

edition [46], designed a robot that moves on rails and is composed of a Kinect v.2 sensor, 

a USB camera, a computer, a six-axis serially linked manipulator and an end effector. 

Fruits are detected using infrared images and spectral reflection, with an 88.1% accuracy 

rate. Targeted for cherry tomatoes, Taqi, Al-Langawi [47] developed a robot that includes 

a Pixy camera connected to an Arduino Uno microcontroller, an infrared reflection sensor 

and a Cartesian robotic arm, that operates in X-Y space. The system can detect riped 

and rotten fruit at an accuracy rate of 100%, which only results from the low harvesting 

speed of only 2 fruits per minute. Wang, Zhao [48], created a robot composed of an 

independent four-wheel steering system, a robotic arm with 5-DOF, a navigation system 

and a stereo binocular vision system. Fruit detection is performed using the Otsu 

algorithm [49] and the elliptical model method, and the detection and picking is 

completed in 15 seconds with a success rate of about 86%. 

All the projects mentioned point towards the same future goal: to improve the robot's 

performance. Harvesting a greater number of fruits, in less time, while maintaining high 

precision becomes imperative. In most cases, the cause of failure is associated with the 

visual perception of the system, where problems such as light intensity, overlapping and 

occlusion of the fruits to be detected, due to the different parts of the plant, hinder and 

end up further delaying the intended goal. Therefore, fruit detection and classification is 

a critical area capable of dictating the success or failure of robotic systems. 
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2.3 Computer Vision of Harvesting Robots 

2.3.1 Image-based Fruit Detection and Classification 

The success of an agricultural robot is directly related to its ability to process 

information and, in particular, to analyse and interpret visual inputs. For all the difficulties, 

previously repeated emphatically, that the agricultural environment imposes, the 

development of an accurate fruit detection system is then a crucial step towards 

achieving a fully automated robotic harvest, where the main objectives are to [9]: 

• detect the presence of individual fruits; 

 

• find them in space; 

 

• discriminate them from their surroundings. 

 

Machine vision has attracted growing interest and is often used to provide accurate, 

efficient and automated solutions to tasks traditionally performed manually [10]. Their 

use improves the functionality, intelligence and remote interactivity of harvesting robots. 

However, it still presents technical difficulties, preventing most robots from reaching 

commercial use [50]. Even if this failure cannot be exclusively attributed to computer 

vision, it is undeniable that its success is crucial to achieve high levels of detection, which 

are mandatory for a robot to be efficient and profitable [9]. 

Computer vision comprises methods and techniques that allow developing systems 

endowed with artificial vision, feasibly implementing them in practical applications. These 

systems can be broken down into three phases [11]: 

• image acquisition; 

 

• image processing; 

 

• image analysis. 

 

Systems based on computer vision acquire sensory data through equipment, such as 

sensors or cameras, in a process defined by transferring electronic signals into a 

numerical representation [9, 12]. Usually, one or more cameras (monocular or binocular 
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vision) are used, to which sensors capable of measuring depth or other parameters such 

as the spectral behaviour of objects (LiDAR or RGB-D cameras) can be attached.  

On the other hand, processing encompasses all the tasks that allow the acquired 

images to be digitally manipulated. Manipulation may refer to more simplistic operations, 

such as greyscale adjustment, focus corrections, contrast or sharpness improvements 

and noise reduction. They are used to improve the quality of an image or modify the 

position of the object of interest through geometric transformations [51] or, at higher 

levels of processing, to segmentation techniques (partition of images into regions) of the 

objects present in the images.  

Image segmentation is a crucial part when aiming to perform agricultural tasks in an 

automated way. It results in a set of contours or regions of interest (RoI), which, with the 

proper extraction of their attributes, can be evaluated for their characteristics [52]. In the 

scope of segmentation, numerous approaches are proposed that search for several 

features of the object to be detected, from the most elementary ones, such as colour, 

size, shape or texture, to the most complex ones, such as spectral reflectance or thermal 

response, in an attempt to evaluate the relationship between a given set of pixels and 

those features. Still, most of these approaches involve using confidence thresholds for 

the feature values, which need to be defined for each image, making the performance 

dependent on these thresholds. The detection accuracy is therefore highly impacted by 

the performance of the image segmentation [10]. 

Finally, image analysis, is related to the recognition and classification of RoI, which 

are usually performed through the thresholding of visual features, statistical classifiers, 

or neural networks [11], reviewed in the following chapters. 

Several reviews have been elaborated in recent years highlighting the various 

computer vision techniques and models, specifically for harvesting robots [9, 50, 53]. 

These systems can present great variability. Different types of sensors can acquire the 

images and there are many algorithms, models, and features that can be used to 

process, segment, and classify the fruits to be detected. Thus, the Appendix A serves as 

a synthesis of these techniques and computational approaches. 
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2.3.1.1 Machine Learning 

With the development of new technologies, the amount of agricultural data has 

increased dramatically [54]. Thus, in the current era of smart agriculture, more 

conventional methods fail to ensure the extraction of more valuable information [55]. 

Therefore, the use of Machine Learning (ML) in agriculture is growing, with several fields 

of action [56]. 

ML is a discipline of Artificial Intelligence (AI) that provides computers with the ability 

to learn without being explicitly programmed [57]. Understands methods and techniques 

for computer applications, endowing them with the ability to adapt and modify their 

actions to make them more precise [11]. Optimising a given task is the goal of ML 

algorithms, which are based on analysing examples and past events. A bit like a human 

being, who performs a task better and better as he or she gains more experience, the 

more data used, the better the ML models will be [58]. Algorithms learn and acquire 

knowledge through the data they analyse, creating a model capable of predicting or 

making intelligent decisions. 

The type of the models' learning is fundamental and defines the different existing ML 

algorithms. In general, they can be divided into [11, 13, 58, 59] (Fig. 11):  

• Supervised learning – is applied to previously annotated data, the inputs and 

outputs are known, that is, to each input corresponds an output. The algorithm 

tries to create an input-output relationship based on the annotated dataset, so 

that it can then generalise and predict outputs from inputs never seen before; 

 

• Unsupervised learning – does not deal with annotated data, which leads to 

algorithm learning by itself, making it more difficult to implement. This learning 

is done by comparing inputs to find similarities, not to classify, but mainly to 

organize or find a structure in the data; 

 

• Reinforcement learning – works through reward and punishment, that is, while 

the algorithm makes its decisions it is not given any feedback. Only at the end, 

when it reaches the correct answer it is given positive feedback. Using this 

process reinforces and consolidates the previous decisions that led it to the 

correct answer. It is about exploring different answers until the correct ones 

are found. 
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Currently, there are numerous resources and innovative algorithms associated with 

ML that enable the resolution of various problems. One of the most promising, due to its 

accuracy in complex scenarios that require the analysis of a lot of data, is the Artificial 

Neural Networks (ANN). This is an algorithm mainly used in Supervised Learning, as a 

classification algorithm, inspired in the functioning of the human neuron, simulating the 

electrical activity of the brain and nervous system. In the human brain, dendrites are the 

network that transfers electrical signals to the cell body, which in turn adds and gathers 

those signals that axons will later transfer to other neurons (Fig. 12 a). ANN are 

composed of processing elements (neurons) arranged in layers or vectors, with the 

output of one layer serving as input for the next layer. The structure of an ANN can be 

divided into 3 main layers [14]: 

• Input layer – collects information from the outside world; 

 

• Hidden layer – layer where the neurons that will process the information 

contained in the inputs are located; 

 

• Output layer – transfers the information from the network to the outside world. 

Figure 11 | Different types of Machine Learning algorithms and their categorization according to their learning mode. 
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A neuron can be connected to all or a subset of neurons in the next layer, through 

adaptive weights, in a process similar to synaptic connections in the brain. The 

knowledge that the algorithm acquires is stored as a set of connection weights, which 

determine the strength and sign of that connection. These weights can be modified, and 

this modification allows ANN algorithms to learn [11, 60, 61]. 

Information processing begins at the input layer, and these inputs are weighed and 

grouped into the processing neurons via a scalar function vector, such as summation, to 

produce a single input value. Once the input value is calculated, the neuron uses an 

activation function to generate the output (Fig. 12 b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 12 | Similarity between a human neuron (a) and an ANN (b). Both are composed by processing elements (neurons) 
and connections between them (weights). 

(b) 

(a) 
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2.3.1.2 Deep Learning 

Deep Learning (DL) [62] is one of the ML-based methods most used nowadays. It is 

a modern technique for image processing, being very successful in several areas [63, 

64], having more recently entered the agricultural domain. The success of DL models is 

based on the fact that they have high levels of abstraction and the ability to automatically 

learn complex features present in images [65]. Although similar to ANN, DL consists of 

a "deeper" neural network, capable of providing a hierarchical representation of the data, 

which allows equipping these models with strong learning capabilities, quite valuable for 

answering different types of problems and adapting to their complexity. 

The main DL architecture used for image processing are the Convolutional Neural 

Networks (CNN) [17]. This is a type of ANN that makes use of convolution operations in 

at least one of its layers. The application of DL and CNN in agriculture has been 

extensively reviewed [16, 65-67], established itself as a promising and efficient approach 

to overcome several challenges in agriculture related to computer vision, mainly fruit 

detection and classification. 

Unlike conventional ANN, CNN are faster at learning and interpreting complex, large-

scale problems due to the sharing of weights and the use of more sophisticated models 

that allow massive parallelisation [68]. Figure 13 illustrates the architecture of CNN which 

can be divided into 2 major parts: 

• image feature extraction; 

 

• image classification. 
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At first, as the name implies, CNN seeks to extract high-level features through 

convolution/pooling processes. This information is then transferred to the fully connected 

layers (i.e ANN where all the inputs from one layer are connected to every activation unit 

of the next layer) responsible for object detection and classification. To better understand 

all these processes, Appendix B describes all the steps that make up a CNN architecture. 

Over the years, several CNN architectures have been successfully developed, 

making it easier to build models so that they do not have to be created from scratch. 

Each architecture has its advantages and disadvantages, as well as scenarios where 

they can be used in a more appropriate way. Some examples of these architectures are 

AlexNet [69], Visual Geometry Group (VGG) (Fig. 14) [70], Inception [71], ResNet [72] 

or MobileNet [73]. 

 

 

 

 

 

 

 

Figure 13 | Convolutional Neural Network architecture divided into two main phases: feature extraction through 
convolution layers and classification made by fully connected layers. 
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The most elementary feature extraction methods, which rely on the "manual" selection 

of certain features such as colour, shape or texture, can see their effectiveness dissipate 

when faced with the agricultural environment's problems (i.e. variations in illumination, 

occlusions, overlaps, etc.). The great advantage of DL models is that they do not require 

"manual" feature extraction. However, these can be used as a processing input, 

automatically selecting and classifying relevant features [66]. 

However, a CNN can only infer a single class of a given object per image. Thus, 

several object detection frameworks have been developed over the years, which can 

locate and classify the presence of multiple objects in a single image [20]. These 

frameworks usually consist of two parts (Fig. 15): the backbone, which is no more than 

a CNN responsible for feature extraction, and the head, which predicts the classes and 

the location of objects. The head can be organised into two types: 

• Two-stage detection; 

 

• One-stage detection. 

 

 

 

 

 

 

 

 

Figure 14 | CNN VGG16 architecture. Adapted from: Simonyan and Zisserman [70]. 
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Two-stage detection frameworks, as the name implies, require two steps to perform 

object detection and classification. The first is the region proposal step and the second 

is the detection/classification step. The most notable framework with this type of 

performance is Faster-RCNN (Regions with CNN's) [74]. In this case, a CNN called 

Region Proposal Network (RPN) is used, responsible for proposing rectangular regions 

(bounding boxes) that may contain the object to be detected. Then a region classifier 

such as Fast-RCNN [75] is used to classify the regions proposed by the RPN [76].  

In order to increase the speed of all these processes, frameworks that perform 

localization and classification in a single step were developed. In this case, the region 

proposal step has been removed and CNNs are used that consider a dense sampling of 

possible locations of the objects to detect. This process is less time consuming and can 

therefore be used in real-time applications. Although some one-stage detection 

frameworks do not perform as well as two-stage frameworks, they are much faster [77]. 

However, by prioritising inference speed, they end up having some disadvantages, 

especially when detecting objects with irregular shapes or small sizes [20]. The most 

popular approaches are the SDD (Single Shot Multibox Detector) [18] and YOLO (You 

Figure 15 | Two major types of object detection frameworks: Two-stage detectors and One-stage detectors. 
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Only Look Once) [19], which, as they are used within the scope of this work, are 

described in more detail in Appendix C. 

In order to implement these DL frameworks in object detection, the processes 

required can be broken down into 3 fundamental parts [13]:  

• data input; 

 

• model building; 

 

• generalization. 

 

The initial step consists in obtaining a set of images that contain features to be 

considered in model learning. This dataset must be carefully chosen so that it is relevant 

to the problem at hand and that it has variations consistent with the implementation 

context [66]. To facilitate this process, numerous public datasets of already annotated 

images are available, including for the agricultural context [78], which can be used to 

compare already trained models or to increase the dataset. Generally, this dataset is 

divided into training, validation and test sets, as well as the respective annotations of 

those images and the classes of objects to be detected. The training set is used to build 

the models. The validation set is used to fine-tune some model parameters, such as 

confidence or overlap thresholds, before being applied to the test set to achieve 

generalization [66]. 

Model building is when models learn to recognise a given object through the relevant 

features they extract from the images in the training set. A common practice in model 

training is called transfer learning (referred to as fine-tuning). This is a technique used to 

train DL models more efficiently and stably, as it allows the reuse of existing parameters 

(convolution weights) of a pre-trained model on large datasets. Basically, the weights of 

the initial layers of the pre-trained model are copied to the new model. Still, the final 

classification layer, responsible for classifying objects, is not transferred, and the new 

model is in charge of that part, being trained for the new classes [66]. 

Finally, the test set provides an unbiased evaluation of a final model fit on the training 

data set. The model needs to be assessed for its accuracy relative to the data it was 

trained on, so that it can then predict the outputs of inputs it has never been trained on 

(generalisation). This evaluation can be done using several metrics, as indicated by 

Padilla, Netto [79] or Kamilaris and Prenafeta-Boldú [80]. 
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2.3.1.3 Computer Vision for Tomato Detection and Classification 

This section presents some algorithms, methods and techniques proposed by 

different authors regarding fruit detection and classification, more specifically in tomato 

(Tab. 1). 

In the segmentation and detection of tomatoes, still in the plant, a RoI in the canopy 

is often used, which may include, besides the fruit, other structures, especially the leaves 

that may difficult the detection of the fruit (occlusion or overlap) mainly in the early stages 

of ripening (Fig. 16). Therefore, the colour is a feature used recurrently to differentiate 

the object to be detected, in this case, the fruit from everything external to it and from the 

background that, can be very complex at the crop level. Several colour spaces such as 

HSV, HSI (Hue, Saturation and Intensity), L*a*b* and RGB, among others, are used to 

extract this feature. Besides, mathematical morphology approaches [81] combined with 

Machine Learning techniques have also been used in fruit detection in occlusion and 

overlap situations. 

 

 

 

 

 

 

 

 

 

 

In order to develop a harvesting robot in greenhouses, Yin, Chai [82] segmented riped 

tomatoes through K-means clustering using the colour space L*a*b*, recording an 

average task execution time of 10.14 seconds. Huang, Yang [83] used the colour space 

L*a*b* to segment and localize riped tomatoes in a greenhouse and bi-level partition 

fuzzy logic entropy to discriminate the fruits from the background, but the results were 

Figure 16 | Example of an original image and the Region of Interest to be detected. 
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not quantified. Zhao, Gong [84], developed a detection algorithm capable of recognizing 

green, intermediate, and riped tomatoes. First, images of component a* and images of 

component L* were extracted from the colour space L*a*b* and the luminance of the 

Quadrature-phase (YIQ) colour space, respectively. Then, wavelet transformation was 

adopted to merge the images at a pixel level, which combined the information from the 

two original images. Finally, to differentiate the fruit from the background, an adaptive 

threshold algorithm was used to obtain the optimal threshold. When testing, 93% of the 

tomatoes were detected. Arefi, Motlagh [85] proposed an algorithm for recognising riped 

tomatoes through a combination of RGB, HSI and YIQ colour spaces and morphological 

characteristics of the image. The algorithm obtained a total accuracy of 96.36% when 

tested in a greenhouse with artificial lighting. Qingchun, Wang [86] developed a riped 

tomato harvesting robot for a greenhouse, whose identification and location of fruits 

consist of transforming RGB colour space images into a HIS colour model to identify and 

locate the fruits.  The robot performs this task in 4 seconds, and the harvest success rate 

is 83.9%. Zhang [87], aiming to detect riped tomatoes, also converted the RGB colour 

space into an HSI colour space. The riped tomato region was cut based on the grey 

distribution of the H component using the threshold method. The Canny operator [88] 

was used to detect the edges, and after a corrosive expansion, the coordinates of the 

center of the tomato were marked. The results were not quantified.  

Benavides, Cantón-Garbín [89] designed a computer vision system for the detection 

of riped tomatoes in greenhouses. The segmentation of the fruit was mainly done based 

on the colour and edges of the fruit, using the R component of the RGB images and the 

Sobel operator [90], respectively. Clustered tomatoes were detected with a precision of 

87.5% and beef tomatoes with 80.8%. Malik, Zhang [91] presented a riped tomato 

detection algorithm based on HSV colour space and the watershed segmentation 

method. In order to remove the background and detect only riped tomatoes, the HSV 

colour space was used, and through morphological operations it was possible to modify 

the detected fruits. The watershed segmentation algorithm was implemented to 

"separate" the clustered fruits. The combination of these two methods led to a precision 

of 81.6%. Zhu, Yang [92] combined mathematical morphology with a Fuzzy C-Means 

(FCM) based method for detecting riped tomatoes in a greenhouse, with no results 

reported. Again, based on mathematical morphology, Xiang, Ying [93] tested a riped 

cluster tomato recognition algorithm. The algorithm is divided into 4 fundamental steps: 

tomato image segmentation, performed based on a normalized colour difference; 

recognition of the clustered region according to the length of the longest edge of the 
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minimum enclosing rectangle of the tomato region; clustered regions, in a binary image, 

were processed by an iterative erosion course to separate each tomato in this clustered 

region and every seed region in the clustered region acquired by the iterative erosion 

was restored using a circulatory dilation operation. At a distance of 500 mm, they 

achieved a detection rate of 87.5%, while between 300 and 700 mm the rate dropped to 

58.4%.  

Yamamoto, Guo [94] used different Machine Learning techniques to detect and 

distinguish the different stages of tomato ripeness. The proposed method consists of 3 

steps: pixel-based segmentation conducted to roughly segment the pixels of the images 

into classes composed of fruits, leaves, stems and background; Blob-based 

segmentation to eliminate the wrong classifications generated in the first step, and finally 

X-means clustering was applied to detect fruits individually in a fruit cluster. The results 

indicated a precision of 88%. Zhao, Gong [95], to detect riped tomatoes, extracted the 

Haar-like features of grey-scale image, classifying them with AdaBoost classifier. The 

false negatives derived from this classification were eliminated using a colour analysis 

approach based on the average pixel value. The results showed that the combination of 

AdaBoost classification with the colour analysis allowed a 96% detection rate, although 

10% were false negatives and 3.5% of the fruits were not detected. Liu, Mao [96], 

proposed an algorithm for the detection of greenhouse riped tomatoes, where the 

Histograms of Oriented Gradients (HOG) descriptor was used to train a Support Vector 

Machine (SVM) classifier. A coarse-to-fine scanning method was developed to detect 

the fruit, followed by a proposed False Color Removal (FCR) method to eliminate false-

positive detections. The Non-Maximum Suppression (NMS) method was finally used to 

merge the overlapping results. The algorithm was able to detect the fruits with an 

accuracy of 94.41%. Wu, Zhang [97] developed a greenhouse riped tomato detection 

algorithm for a harvesting robot, through a method that combines analysis and selection 

of multiple features, a Relevance Vector Machine (RVM) classifier and a bi-layer 

classification strategy. The algorithm demonstrated an accuracy of 94.90%. Wang, Zhao 

[48], developing a greenhouse harvest robot for tomatoes, used the Otsu segmentation 

algorithm [49] to automatically detect riped tomatoes, obtaining success rates of 99.3%. 

In recent years, the use of ML and especially DL techniques in fruit detection has 

been increasingly tested and used. Unlike conventional methods, it is a more robust and 

accurate alternative with better response to occlusion and green tomato detection 
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problems. This problem is rarely studied due to the difficulty of segmentation and 

differentiating it from the background, as it has similar colours (Fig. 17). 

 

 

 

 

 

 

 

 

 

 

 

The comparison made by Alam Siddiquee, Islam [98] can observe this, who compared 

a ML method, known as "Cascaded Object Detector" with a system that combines more 

traditional methods of image processing, named "Colour Transformation", "Colour 

Segmentation" and "Circular Hough Transformation", in the detection of riped tomatoes. 

The results showed that the accuracy of the ML method is 95% better than conventional 

methods. 

Xu, Jia [99], have improved the YOLOv3-tiny method to obtain a faster and more 

accurate detection of riped tomatoes. The model’s accuracy was increased by enhancing 

the backbone network, and the image enhancement allowed better detection in more 

complex scenarios. The results show that the F1-score of the proposed model is 91.92%, 

which is 12% higher than the unmodified YOLOv3-tiny method. Liu, Nouaze [100] used 

the YOLOv3 detection model to create the YOLO-Tomato model, which was possible to 

achieve due to the incorporation of dense architecture for feature extraction and the 

replacement of the traditional R-box by the proposed C-box. In scenarios with moderate 

occlusions, the model obtained a detection rate of 94.58%, 4% more than in scenarios 

with severe occlusions. In order to overcome overlaps and occlusions, Sun, He [101] 

developed a detection method based on Convolutional Neural Network (CNN), more 

Figure 17 | The great colour correlation between the green tomatoes and the background, which makes their detection 
and subsequent harvesting very difficult. 
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specifically the Feature Pyramid Network (FPN) method. The proposed method has 

improved the detection rate from 90.7% to 99.5% by comparing this method with 

traditional Faster R-CNN models. Mu, Chen [102] built a tomato detection model capable 

of detecting green tomatoes in greenhouses, regardless of possible occlusions. The 

model uses a pre-trained Faster R-CNN structure with the deep CNN Resnet-101 based 

on the Common Objects in Context (COCO) dataset, which was then fine-tunned for 

tomato detection, reaching an accuracy of 87.83%. 

As mentioned before, the SSD model promises a substantial improvement in fruit 

detection and therefore has been increasingly studied, since it can capture the 

information of an object and its anti-interference and directly complete the localization 

and the classification task in just one step. This improvement is demonstrated by de 

Luna, Dadios [103], who designed a computer visualization system to evaluate the 

growth of tomato plants through the detection of fruits and flowers. Two DL models were 

used: R-CNN and SSD. The fruit detection accuracy of the R-CNN model was only 

19.48%, while the SSD model showed a much higher detection rate of 95.99%. Yuan, 

Lv [21] developed an SSD-based algorithm to detect cherry tomatoes in greenhouses, 

whether riped, green or intermediate. After creating the datasets, they were used to train 

and develop network models. To study the effect of the base network, one of the 

experiments was tested on different networks, such as VGG16, MobileNet, Inception V2. 

The results indicated that the Inception V2 network obtained the best performance with 

an accuracy of 98.85%. 
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Table 1 | Algorithms, methods and techniques proposed by different authors regarding tomato detection at different 
ripeness levels. 

RGB color space images into a 

HIS color model

SSD network models such as 

VGG16, MobileNet, Inception V2

Haar-like features of gray scale 

image and AdaBoost classifier

Histograms of Oriented 

Gradients and Support Vector 

Machine

Selection of multiple features; 

Relevance Vector Machine and 

bi-layer classification strategy

Otsu segmentation algorithm

Improved YOLOv3-tiny method

YOLOv3 detection model to 

create the proposed YOLO-

Tomato model

Authors

Yin, Chai [82]

 Feature Pyramid Network

Faster R-CNN structure with the 

deep convolutional neutral 

network Resnet-101

Comparation: R-CNN vs SSD

RGB color space into an HSI 

color space, treshhold method 

and Cany operator

R component of the RGB images 

and Sobel operator

HSV color space and Watershed 

segmentation method

Mathematical morphology and 

Fuzzy C-Means base method

Mathematical morphology, 

Normalized color difference and 

Iterative erosion course

Pixel-based segmentation, Blob-

based segmentation and X-

means clustering

Method

L*a*b* color space and K-means 

clustering

L*a*b color space and Bi-level 

partition fuzzy logic entropy

L*a*b color space and Threshold 

algorithm

RGB, HSI, and YIQ color spaces 

and Morphological 

characteristics

Tomato 

Ripeness

Ripe

Ripe

Green, Intermediate 

and Ripe

Inference time (s) or 

Accuracy (%)

10.14 s

—

93%

Ripe

Ripe

Ripe

Ripe

Ripe

Green, Intermediate 

and Ripe

Green, Intermediate 

and Ripe

Ripe

Green, Intermediate 

and Ripe

Ripe

Ripe

Ripe

Ripe

—

Ripe

Green, Intermediate 

and Ripe

Green, Intermediate 

and Ripe

Green

Ripe

96.36%

4 s and 83.90%

—

Clustred tomatoes - 87.50%                                

Beef tomatoes - 80.80%

81.60%

Best performance: Inception 

V2 network with 98.85% 

At 500 mm distance - 87.50%              

Between 300 and 700 mm - 

58.40%    

88%

96%

94.41%

94.90%

99.30%

91.92% (F1 score)

94.58%

99.50%

87.83%

R-CNN: 19.48%                                                 

SSD: 95.99%

Liu, Mao [96]

Huang, Yang [83]

Zhao, Gong [84]

Arefi, Motlagh [85]

Qingchun, Wang [86]

Zhang [87]

Benavides, Cantón-

Garbín [89]

Malik, Zhang [91]

Zhu, Yang [92]

Xiang, Ying [93]

Yamamoto, Guo [94]

Zhao, Gong [95]

de Luna, Dadios [103]

Yuan, Lv [21]

Wu, Zhang [97]

Wang, Zhao [48]

Xu, Jia [99]

Liu, Nouaze [100]

Sun, He [101]

Mu, Chen [102]



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

36 

 
 

3. Materials and Methods 

3.1 Harvesting robots in protected horticulture: Systematic Review 

A systematic review is presented to answer the following research question: What is 

the academic overview of the advances in automated harvesting, in the protected 

horticulture sector? 

Harvesting robots can be divided into two types: bulk harvesting (all fruits/vegetables 

are harvested) or selective harvesting (only riped or ready-to-harvest fruits are collected) 

[7]. This review focuses mainly on robots for selective harvesting, as they are of greater 

interest in the research world. The publications concerning this type of robots may cover 

complete systems, i.e., the development of an entire robot, or support tasks in the robotic 

harvesting aid, such as fruit detection or manipulation, system localization and 

navigation. 

Therefore, the following specific questions were answered to answer the above 

question: i) How is the distribution of publications by crop? ii) From which countries are 

the authors that publish the most about robotic harvesting? iii) Are the articles related to 

complete systems or to support tasks? Furthermore, iv) What are the main support 

tasks? 

The Web of Science database, “Principle Collection”, was used to access 

bibliographic records around the theme "harvesting robots in the protected horticulture" 

from 1990-2021. The Web of Science tool was used because its citation analysis 

provides better graphs and is more detailed than the citation analysis of the Scopus tool 

[104]. Also, it does not present results of inconsistent accuracy, as happens with Google 

Scholar [105]. 

In order to identify relevant publications on the subject, the following keywords were 

chosen in the search fields combining title, abstract and the author's keywords: "Robo* 

harv* OR Mechanic* harv*" AND "Greenhouse OR Greenhouse horticulture". The key: 

“AND Tomato*" was added to focus the research on the tomato crop. It is important to 

note that, due to the limitations of these databases, some sources with adherence to the 

theme may be missing in the results obtained. 
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This review will enable researchers to identify niches of opportunity to do research, 

and know the main topics and the emerging issues of harvesting automatization in a 

greenhouse environment, so that it can be fully achieved in the near future. 

 

3.2 Dataset Acquisition  

Recently, there has been an increasing proliferation of public datasets containing 

large amounts of annotated images, such as the COCO [106], PASCAL VOC [107] or 

Open Image (OID) [108] datasets. However, the nature of the images that compose them 

cannot directly translate to Precision Agriculture (PA) applications. 

This can be evidenced by one of the papers developed in parallel with this 

dissertation, where the OIDv6 dataset was benchmarked against an acquired dataset 

inside greenhouse for tomato detection, using four DL object detectors [109]. The results 

highlight the benefit of using self-acquired datasets to detect tomatoes because the 

state-of-the-art datasets lack some relevant features of the fruits in the agricultural 

environment, such as the shape or colour. Most of these datasets have few annotations 

per image and the tomato is generally riped. 

Thus, specialized datasets for PA tasks have emerged as Lu and Young [78] survey 

shows. However, despite the datasets reviewed targeting fruit detection, none of them 

represents the type of data intended to be detected and classified in this study, as they 

all lack images of tomatoes, specifically in a greenhouse environment. 

To overcome this bottleneck, two image datasets of tomatoes of the “Plum” variety at 

different ripeness stages were collected in greenhouses. Both datasets were made 

publicly available at the open-access digital repository Zenodo: 

• AgRobTomato Dataset [110]; 

 

• RpiTomato Dataset [111]. 

 

AgRobTomato Dataset images were collected on two different days (August 6 and 8, 

2020) at a greenhouse in Barroselas, Viana do Castelo, Portugal (Fig. 18 a). To increase 

the representativeness of the data, the mobile robot AgRob v16 (Fig. 18 b), controlled 

by a human operator, was guided through the greenhouse inter-rows and captured RGB 
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images of the tomato plants using a ZED camera2, recording them as a video in a single 

ROSBag file. The camera was mounted on an anthropomorphic manipulator, which 

remained in the rest position, looking sideward, towards the tomato plants, during the 

whole acquisition process. The video was converted into images by sampling a frame 

every 3 seconds to reduce the correlation between images, ensuring an overlapping ratio 

of about 60%. The images collected on the two days were merged, resulting in a dataset 

of 449 images with a resolution of 1280x720 px each. 

 

 

 

 

 

 

 

 

 

 

 

To collect more information from the fruits, namely the Brix degree as presented in 

section 3.4.1, a total of 60 tomatoes from the same variety were collected from a different 

greenhouse located in Amorosa, Viana do Castelo, Portugal, on June 15, 2021 (Fig. 19 

a). Before being collected, RGB images of each fruit were captured from different 

perspectives. The images were taken with a Raspberry Pi Computer Model B3 with 4GB 

RAM, connected to a Raspberry Pi High Quality Camera4 (12.3 MP and 7.9 mm diagonal 

image size) with a 6 mm (wide angle) CS-mount lens with 3 MP (Fig. 19 b). A total of 258 

images were obtained, which made the RpiTomato Dataset. 

 
2 ZED Dual Camera (https://www.stereolabs.com/zed/). Last accessed: 15 August 2021 
3 Raspberry Pi Computer Model B (https://www.raspberrypi.com/products/raspberry-pi-4-model-b/). Last accessed: 15 
August 2021 
4 Raspberry Pi High Quality Camera (https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/). Last 
accessed: 15 August 2021 

(a) (b) 

Figure 18 | Barroselas Greenhouse configuration (a) and the AgRob v16 robot used for image collection (b). Source: 
INESC TEC. 

https://www.stereolabs.com/zed/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
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3.3 Tomato Detection and Classification 

3.3.1 Classes 

The general focus of the ML field is to predict an outcome using the available data. 

The prediction task can be called a "detection problem" when the outcome represents a 

single class. On the other hand, if the outcome represents different classes, it means a 

"classification problem". Through the acquired datasets, two one-stage object detection 

frameworks (SSD and YOLO) were evaluated in tomato detection and compared with a 

novel HSV Colour Space model in tomato classification. 

When it comes to classification, this study aims to differentiate the fruits according to 

their ripeness stage. Considering the colected images, 4 classes were defined based on 

the USDA colour chart for fresh tomatoes [112] (Fig. 20): 

• Green (a) – More than 90% of the surface is green; 

 

• Turning (b) – 10 to 30% of the surface is yellow; 

 

• Light Red (c) – Between 60 to 90% of the surface is red; 

 

• Red (d) – 90 to 100% surface is red. 

Figure 19 | Amorosa Greenhouse configuration (a) and the Raspberry Pi high quality camera attached to a Raspberry Pi 
Computer Model B used for image collection (b). 

(a) (b) 
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3.3.2 Data Processing 

Since it involves supervised learning, the models need to be provided with an 

annotated dataset. Thus, the images from the AgRob Dataset were manually annotated 

using the open-source annotation tool CVAT5 [113], indicating by rectangular bounding 

boxes the position and class of each plant (Fig. 21). Regarding the detection, the images 

were annotated considering only the class "tomato", as the goal is that the fruits are 

detected regardless of their ripeness. For the classification, the images were annotated 

with the 4 chosen maturity classes. In essence, two independent annotated datasets 

were obtained, one to train and evaluate the models for tomato detection and the other 

for tomato classification. 

 

 
5 Computer Vision Annotation Tool (CVAT) (https://cvat.org). Last accessed: 22 October 2021 

Figure 20 | Classification classes defined according to the colour of a tomato during ripening: Green (a); Turning (b); 
Light Red (c); Red (d). 

https://cvat.org/tasks
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After annotating, the images of both datasets were exported under the Pascal VOC 

format [107] and the YOLO format to train the SSD and YOLO frameworks, respectively. 

The Pascal VOC format resumes the annotations for each image in a single .xml file. 

Each annotation identifies its class, size and position, and include some additional 

features of the annotations as whether the target object is difficult to detect, occluded or 

truncated. On the other hand, the YOLO format comprises a .txt file where each line 

represents an annotation and, besides the numerical identifier of the corresponding 

class, it contains the coordinates of the bounding box. This format requires an additional 

file where each numerical identifier corresponds to a class [114]. 

High-resolution DL models are time and computationally consuming and cannot 

process full-sized images, considering the input of square images, thus rescaling them 

before processing. For this reason, to avoid distortion, the original images were split into 

images with a resolution of 720x720 px. Thus, the number of images in the datasets was 

doubled to 898 images. Yet, some images contained few annotations, and the splitting 

resulted in non-annotated images. These images were then removed from the datasets, 

being left with 849 images. 

 

Figure 21 | Image annotation performed through the CVAT tool. 
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To train and validate the different models, the datasets were divided into 3 sets: 

• Training set (60% of the data); 

 

• Validation set (20% of the data); 

 

• Test set (20% of the data). 

 

Some studies reported the use of data augmentation techniques. Data augmentation 

can artificially increase the dataset, improving the overall learning procedure and 

performance by inputting varied data into the model [80]. In this case, transformations 

were only applied to the training and validation sets. The transformations were carefully 

chosen, applying those that could happen in an actual situation, that is, the ones that the 

robot's vision could be confronted with when performing the harvesting task in a 

greenhouse environment. The transformations were applied with a random factor and 

are as displayed in Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data augmentation led to 7,608 annotated images. The training and validation 

sets contained 5,590 and 1,849 images respectively, while the test set was composed 

of 169 images. 

Figure 22 | Different types of transformation applied to the AgRob Dataset images: Rotation (a); Scale (b); Translate (c); 
Flip (d); Multiply (e); Blur (f); Noise (g); Combination1 (h) and Combination3 (i), which are a random combination of 1 or 
3 of the previous transformations. 
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3.3.3 Deep Learning Models Training 

The literature refers to several ML frameworks, an interface, library, or tool that easily 

creates ML models [65]. Since it is desired that the robot uses a TPU (Tensor Processing 

Unit), the choice of framework falls on TensorFlow6 [115], an open source easily scalable 

ML library developed by Google, which provides a collection of workflows to develop and 

train models using Python, C++, JavaScript, or Java. 

By the time all these processes had been performed, only TensorFlow 1 had fully 

compatible tools to train and compile the models to the TPU. Then, TensorFLow r.1.15.0 

was used for the training and inference scripts, which run on Google Collaboratory 

(Colab) notebooks7 that give free access to powerful GPU's (Graphics Processing Unit) 

and TPU's to develop DL models. Although the GPU's available may vary for each Colab 

session, in general an NVIDIA Tesla T4 with a VRAM of 12 GB and a computation 

capability between 3.5 and 7.5 was assigned to all sessions. 

Based on the additional contribution in two scientific articles [116] [109], the best 

performing models of each article were chosen for benchmarking purposes. Therefore, 

one pre-trained SSD MobileNet v2 model from the TensorFlow database8 and one 

YOLOv4 model from the Darknet database9 were considered. Both models were pre-

trained with Google’s COCO dataset10 [106] with an input size of 640x640 px (SSD 

MobileNet v2) and 416x416 px (YOLOv4).  

Through transfer learning, a fine-tune was performed to the pre-trained models to 

detect and classify tomatoes. Slight changes to the default training pipeline were made, 

such as adjusting the batch size for each model (24 to the SSD MobileNet v2 model and 

64 to the YOLOv4 model) and removing data augmentation from the pipeline. The SSD 

MobileNetv2 model training sessions ran for 50 000 epochs, while the YOLOv4 model 

training was much faster, requiring only 10 000 epochs. The number of epochs may vary 

from model to model, but in this case was chosen based on the suggestion given by the 

literature, but mainly taking into account the "average loss" training metric, selecting the 

number of epochs that would be sufficient to converge. As far as the MobileNet v2 SSD 

 
6 TensorFlow (https://www.tensorflow.org/). Last accessed: 3 November 2021 
7 Google Colab (https://colab.research.google.com/). Last accessed: 25 September 2021 
8 SSD MobileNet v2 model 
(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md). Last 
accessed: 3 November 2021 
9 YOLOv4 model (https://github.com/zauberzeug/darknet_alexeyAB). Last accessed: 3 November 2021 
10 COCO Dataset (https://cocodataset.org/#home). Last accessed: 3 November 2021 

https://www.tensorflow.org/
https://colab.research.google.com/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/zauberzeug/darknet_alexeyAB
https://cocodataset.org/#home
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model is concerned, an evaluation session occurred at every 50 epochs, following the 

standard value used by the pre-trained models. Since Darknet had no available 

validation sessions, it was not considered for the YOLOv4 model. These evaluation 

sessions are quite useful, since they allow monitoring the evolution of the training, 

meaning if the evaluation loss started to increase while the training loss decreased or 

remained constant, the deep learning model was over-fit to the training data. 

Figure 23 reports an overview of all the required steps used to reach the trained DL. 
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Figure 23 | Workflow of the performed methods to reach the trained DL models. 
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3.3.4 HSV Colour Space Model Development 

An approach based on histograms from the HSV color space was developed as an 

alternative to DL models for tomato classification. All the scripts used throughout this 

process are authorship and were created from scratch through Spyder11, an open-source 

cross-platform integrated development environment for scientific computing in the 

Python language, provided by Anaconda software12. The final HSV Colour Space model 

and the scripts can be found in the following GitHub repository:  

https://github.com/gerfsm/HSV_Colour_Space_Model 

In order to build the model, images of 10 tomatoes from each ripeness class were 

selected. To add some variability, half of the images come from the AgRobTomato 

Dataset and the other from the RpiTomato Dataset, as they present different 

perspectives of the fruits. The AgRobTomato Dataset offers a farther perspective, while 

in the RpiTomato Dataset the fruits are closer. 

The first step was to extract the RoI from the images13. All the images were labelled 

using the annotation tool CVAT and the coordinates of the annotation bounding box were 

used to segment the image and extract the RoI (Fig. 24). 

 

 

 

 

 

 

 

 

 

 

 
11 Spyder (https://www.spyder-ide.org/). Last accessed: 25 October 2021 
12 Anaconda (https://www.anaconda.com/). Last accessed: 25 October 2021 
13 Script: ROI’s_crops.py (https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/ROI's_crops.py). Last 
accessed: 12 June 2021 

Figure 24 | Segmentation of the image RoI to be classified via the coordinates of the annotation bounding box. 

https://github.com/gerfsm/HSV_Colour_Space_Model
https://www.spyder-ide.org/
https://www.anaconda.com/
https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/ROI's_crops.py
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The next step was to convert the RoI images from RGB to HSV colour space14. The 

RGB colour information is usually much noisier than the HSV information. Thus, using 

only the Hue channel makes a computer vision algorithm less sensitive, if not invariant, 

to problems like lighting variations. For example, a green tomato can be exposed to 

different lighting conditions; in both conditions the tomato has exactly the same Hue 

value, but widely different RGB values. 

The image’s colour space conversion (Fig. 25) was performed through the function 

“cv.cvtColor()”15 from OpenCV, a real-time optimized Computer Vision library [117].  

 

 

 

 

 

 

 

 

 

 

 

 

For each HSV image, a colour histogram was generated focusing only on the Hue 

channel16. OpenCV was used to extract the colorimetric data from the RoI. Different 

applications use different scales to represent the HSV colour space. For the Hue values, 

OpenCV uses a scale ranging between 0-179. Since the interest is focused on analyzing 

the region of colours that a tomato can display, the entire colour spectrum is 

unnecessary. Therefore, the location of the origin for the Hue parameter was changed, 

giving the histogram a normal distribution. 

 
14 Script: RGB_to_HSV.py (https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/RGB_to_HSV.py). Last 
accessed: 13 June 2021 
15 Changing Colorspaces – cv.cvtColor() (https://docs.opencv.org/4.5.2/df/d9d/tutorial_py_colorspaces.html). Last 
accessed: 13 June 2021 
16 Script: HSV_Histogram.py (https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/HSV_Histogram.py). 
Last accessed: 22 July 2021 

Figure 25 | Conversion of a RoI's RGB colour space to HSV colour space. 

https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/RGB_to_HSV.py
https://docs.opencv.org/4.5.2/df/d9d/tutorial_py_colorspaces.html
https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/HSV_Histogram.py
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Through Matplotlib [118], a comprehensive library for creating static, animated, and 

interactive visualizations in Python, the function “matplotlib.pyplot.hist”17 was used to plot 

the histogram (Fig. 26). In this case, the function parameter "density" was set to "True", 

which causes a probability density to be drawn and returned. It was preferred to use all 

the bins in the range to get as accurate a model as possible. Each bin displays the bin's 

raw count divided by the total number of counts and the bin width, so that the area under 

the histogram integrates to 1. 

 

 

 

 

 

 

 

 

 

Although the segmentation technique used is faster and easier to implement, it can 

be noted that the RoI covers the object to be classified and some of the background, 

which slightly affects the results obtained. In some cases, the background makes the 

data look multimodal (Fig. 27), i.e. there is more than one "peak" data distribution. Trying 

to fit a multimodal distribution with a unimodal (one "peak") model will generally give a 

poor fit and lead to incorrect classifications. 

 

 

 

 

 

 
17 Plot a histogram – matplotlib.pyplot.hist (https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html). Last 
accessed: 22 July 2021 

Figure 26 | Example of the histogram plot with normal distribution, based on the Hue values of the HSV colour space of 
a Red tomato. 

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html
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A Gaussian mixture model was used to overcome this problem. This function is a 

probabilistic model for representing normally distributed subpopulations within an overall 

population (Fig. 28) and was applied to the data using the function 

"sklearn.mixture.GaussianMixture"18, from the module sklearn.mixture that implements 

mixture modeling algorithms. Sklearn (or scikit-learn) [119] is a useful library for ML in 

Python, which contains a lot of efficient tools for statistical modelling. 

 

 

 

 

 

 

 

 

 

 
18 Gaussian Mixture – sklearn.mixture.GaussianMixture (https://scikit-
learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html). Last accessed: 29 July 2021 

Figure 27 | Histogram affected by background colorimetric information. The green colour of the tomatoes in the 
background is displayed in the histogram and makes the data distribution bimodal. 

Figure 28 | Representation of a Gaussian mixture model probability distribution. 

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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The next step was to choose the Gaussian with the highest peak19, which corresponds 

to the RoI, and ignore the rest (Fig. 29 a). The curve was selected according to the 

Gaussian mixture weights. These weights are normalized to 1, motivated by the 

assumption that the model must explain all the data, then using the law of total 

probability. So, in that sense, they are the probabilities of the point being part of the 

cluster. In other words, the weights are the estimated probability of a draw (i.e distribution 

curve) belonging to each respective normal distribution. Even with the background noise, 

the data distribution in the RoI zone is well defined. The probability that this region is a 

normal distribution is much higher, meaning that the weight is higher. Selecting the 

higher weights leads to the RoI Gaussian. 

For a more careful analysis, a boxplot was also generated for each RoI, through the 

function “matplotlib.pyplot.boxplot”20. The boxplots represent the values within 3 

standard deviations of the mean, corresponding to 99.7% of the Gaussian (Fig. 30 b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
19 Scripts: HSV_Histogram_GaussianMix.py 
(https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/HSV_Histogram_GaussianMix.py). Last accessed: 
29 July 2021 
20 Box and whisker plot – matplotlib.pyplot.boxplot 
(https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html). Last accessed: 29 July 2021 

Figure 29 | Final representation of the histogram with the Gaussian corresponding to the fruit to be classified (a) and its 
boxplot (b). 

https://github.com/gerfsm/HSV_Colour_Space_Model/blob/Scripts/HSV_Histogram_GaussianMix.py
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
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Based on the results obtained, correlating the mean histogram of each sample with 

its respective class, a statistical classifier was reached. These results will be presented 

and exploited later in the respective Results and Discussion section.  

Achieving the classifier culminated in the ultimate model.  For a specific image, given 

the bounding boxes coordinates of the fruits to be classified (input), in a single pass, the 

HSV Colour Space model segments the RoI’s, converts them to the HSV colour space, 

through the colorimetric information. Also, the Gaussian Mixture probabilistic model 

generates a histogram and calculates it’s mean that through the statistical classifier 

generates an output. The model returns the class to which that fruit belongs. 

Figure 30 reports an overview of all the required steps used to reach the HSV Colour 

Space model. 
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Figure 30 | Workflow of the performed methods to reach the developed and evaluated HSV Colour Space model. 
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3.3.5 Evaluation Metrics 

All models used were evaluated with the images from the AgRobTomato Dataset. DL 

models trained with a single class were logically evaluated on the detection problem. 

However, the DL models trained with all 4 ripeness classes in addition to the 

classification were also evaluated on the detection problem, as it is still necessary to 

compare the detection ability of models trained with a single class with models trained 

with multiple classes. For this purpose, the 4 classes were considered as one. The HSV 

Colour Space model was only evaluated for the classification problem. 

A “correct detection” is commonly established through the Intersection over Union 

(IoU) metric when it comes to the detection problem. The IoU measures the overlapping 

area between the predicted bounding box (Bp) and the groundtruth bounding box (Bgt) 

divided by the area of union between them (eq. 1), as illustrated in Figure 31. In this 

case, a correct detection was considered if IoU ≥ 50%. 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 (𝐵𝑝  ∩  𝐵𝑔)

𝐴𝑟𝑒𝑎 (𝐵𝑝  ∪  𝐵𝑔)
  

 

 

 

 

 

 

To better benchmark the two DL models, the metrics used by the Pascal VOC 

challenge [107] (Precision x Recall curve and Mean Average Precision) were chosen, 

with the addition of the following metrics: 

• Recall; 

 

• Precision; 

 

• F1-Score. 

(1) 

Figure 31 | Representation of the Intersection Over Union (IoU) metric. 
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Recall (eq. 1) is the ability of the model to detect all the relevant objects (i.e all 

groundtruth bounding boxes). Precision (eq. 2) is the ability to identify only the relevant 

objects and the F1-Score (eq. 3) is the first harmonic mean between Recall and 

Precision. The number of groundtruths (relevant objects) can be computed by the sum 

of the True Positives and False Negatives (TP+FN) and the number of detections is the 

sum of the TP’s and False Positives (TP+FP). TP are the correct detections of the 

groundtruths, FP are improperly detected objects and FN are undetected. 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 =  

𝑇𝑃

𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑠
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 =  

𝑇𝑃

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝐹1‑𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

All the detections performed by a DL model have a confidence rate associated with 

them. It is a value that features the certainty in the performed prediction (i.e. a confidence 

rate of 50 % determines that the network is 50% sure of the detected or classified object). 

Graphically representing the ratio between Precision and Recall (Precision x Recall 

curve) can be seen as a trade-off between Precision and Recall for different confidence 

values associated with the bounding boxes generated by a detector. The higher the 

confidence, the higher the Precision of the model (low FP’s). However, many 

groundtruths may be missed, yielding high FN’s, and thus a low Recall rate. A great 

object detector is one that keeps its Precision rates high, while its Recall increase. Thus, 

a high Area Under the Curve (AUC) tends to indicate both high Precision and Recall. 

However, it is difficult to accurately measure the AUC, as the Precision x Recall curve 

is often a zigzag-like curve. To overcome this problem is often calculated the Average 

Precision (AP) metric. Since the Pascal VOC challenge metrics [107] are considered in 

this study, AP was calculated by the all-point interpolation approach. In this case, the AP 

(1) 

(2) 

(3) 
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(eq. 4) is obtained by interpolating the Precision at each level, taking the maximum 

Precision (𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅)) whose Recall value is greater or equal than 𝑅𝑛+1.  

 

𝐴𝑃 =  ∑(𝑅𝑛+1 −  𝑅𝑛)𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1)

𝑛

 

 

If there is more than one class to detect, the Mean Average Precision (mAP) metric 

is used, simply the average AP over all classes (eq. 5). APi represents the AP of class i 

and NC is the number of classes evaluated. 

 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝑁𝐶
𝑖=1

𝑁𝐶
 

 

The final step of the inference was to optimize the confidence score, using the cross-

validation technique: AgRobTomato’s validation set augmentations were removed, and 

the F1-Score was computed for all the confidence thresholds from 0% to 100%, into 

steps of 1%.  The confidence threshold that optimises the F1-Score was selected for the 

model’s normal operation. The AgRobTomato’s test set was used to evaluate both 

models, and the whole inference process occurred on the Google Colab server, using a 

Tesla T4 GPU. 

To assess the classification ability, based on an overview by Grandini, Bagli [120], the 

main evaluation metric chosen was a confusion matrix, along with the Precision and 

Recall for each class that will act as building blocks for the Macro F1-Score and Balanced 

Accuracy metrics. 

A confusion matrix (Fig. 32) gives a simple yet efficient performance measures for a 

classification model. Each entry denotes the number of predictions made by the model 

where it classified the classes correctly or incorrectly. The rows allow inferring about the 

Precision and the columns about the Recall of each class. Along with the TP's, FP's and 

FN's, the True Negatives (TN) are also considered, referring to the number of predictions 

where the classifier correctly predicts the negative class as negative. In this case the 

number of groundtruths becomes the sum of these four indicators. 

(4) 

(5) 
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The choice of using Macro F1-Score and Balanced Accuracy, instead of single F1-

Score and Accuracy, comes from the fact that the test set, and the whole dataset, are 

quite unbalanced. The test set contains a lot of green tomatoes (over 1000 samples), 

unlike the other classes, where the Red class has the poorest representation, with only 

4 tomatoes. The Balanced Accuracy metric is a simple arithmetic mean of Recall of each 

class, so every class has the same weight and importance, therefore being balanced 

(eq. 6). To achieve the Macro F1-Score, it is necessary to compute Macro-Precision and 

Macro-Recall, computed as the arithmetic means of the metrics for single classes. Again, 

each class has the same weight in the average, so that there is no distinction between 

highly and poorly populated classes. Macro F1-Score is the harmonic mean of Macro-

Precision and Macro-Recall (eq. 7). 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑

𝑇𝑃
𝑇𝑜𝑡𝑎𝑙 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑠

𝑁𝑜.𝐶𝑙𝑎𝑠𝑠𝑒𝑠
1

𝑁𝑜. 𝐶𝑙𝑎𝑠𝑠𝑒𝑠
 

 

𝑀𝑎𝑐𝑟𝑜 𝐹1‑𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑀𝑎𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑀𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑀𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

Figure 32 | Example of a confusion matrix for Binary Classification 

(6) 

(7) 



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

57 

 
 

3.4 Tomato Phenotyping 

 

3.4.1 Brix Degree Measurement and Prediction 

 

Assessing the fruit quality for fresh consumption includes different aspects, which can 

also help establish the harvesting moment. One of the methods used is the approximate 

measurement of the fruit's sugar content, through the Brix degree (Brixº). Brixº values 

are important because they can be measured objectively and they relate to a subjective 

criterion that consumers use to assess fruit quality: flavor or sweetness.  

Still, it is rarely used before harvesting because it is a destructive method. The ability 

to extract other relevant information, in addition to detecting and classifying, could 

increase the quality of automated harvesting, making it more selective and adaptable. 

Taking this into consideration, one of this study's goals is to understand if there is any 

relationship between fruit colour (ripeness stage) and the Soluble Solids Content (SSC), 

so that it can be estimated in a simple and non-destructive way. 

The SSC of the 60 tomato samples was measured by a handheld Milwaukee 

MR32ATC refractometer (Milwaukee, USA), inside the greenhouse on the same day the 

fruits were collected. The tomatoes were cut in half, and a few drops were squeezed into 

the detection window to record the data. The average value of each sample repeated 3 

times was the final SSC value of the sample. 

The correlation between fruit colour and SSC was performed by averaging the results 

obtained for each class and comparing them. However, since assigning a class to a fruit 

based on human visual perception is an empirical and somewhat subjective task, another 

way to understand the colour-Brix correlation was to use the HSV Colour Space model. 

The model assigns a "value" to the colour, making interpretations more reliable and 

accurate. 

As previously mentioned, some samples used to construct the HSV Colour Space 

model came from the Raspberry Dataset, collected during the Brix measurement. HSV 

histograms were generated for these samples and the average of each was compared 

with its measured SSC value. 
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4. Results & Discussion 

4.1 Meta-analysis: Harvesting robots in protected horticulture 

 Table 2 compiles all the results obtained, presenting them by crop and type of robot 

system (harvesting robot or support task), describing and associating them with the 

respective authors and countries of origin. Note that some articles refer to the same 

project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 | Description of harvesting robots and support tasks applied in protected horticulture, based on the crops, authors 
and countries of origin. 

Country

Asparagus Harvesting Robot
Harvesting robot coordinated with 3D 

vision sensor
Irie, Taguchi [142] Japan

Cucumber Harvesting Robot 
1 Modular harvesting robot

Van Henten, Hemming 

[160]

The 

Netherlands

Cucumber Support Task
Detection: Dynamic threshold 

segmentation algorithm
Qi, Yang [155] China

Cucumber Support Task

Detection: Fusion method (colour and 

texture features) based on HIS, MSER 

and HOG

Li, Zhao [149] China

Cucumber Support Task
Detection: Image segmentation algorithm 

based on rough set theory
Qing‑Hua, Li‑Yong [156] China

Cucumber Support Task
Detection: Machine vision algorithm 

based on near-infrared spectral imaging
Yuan, Xu [166] China

Cucumber Support Task 
1

Manipulation: Kinematic 

structure of a manipulator (four link PPRR 

type)

Van Henten, Slot [162]
The 

Netherlands

Cucumber Support Task 
1 Manipulation: Inverse kinematics 

algorithm

Van Henten, Schenk 

[161]

The 

Netherlands

Green Perilla Support Task
Detection: Leaf recognition method based 

on DNN techniques
Masuzawa, Miura [152] Japan

Pea Harvesting Robot

Harvesting robot based on VIS–NIR 

reflection analysis, global thresholding, 

texture and shape modelling

Tejada, Stoelen [159] Norway

Saffron Harvesting Robot
Harvesting robot developed using 

scalability properties and computer vision

Perez-Vidal and Gracia 

[154]
Spain

Strawberry Harvesting Robot
Harvesting robot mounted on a travel 

platform

Hayashi, Yamamoto 

[138]
Japan

Strawberry Harvesting Robot
Harvesting robot based on 3D vision due 

to three RGB cameras

De Preter, Anthonis 

[133]
Belgium

Strawberry Support Task
Manipulation: End-effector for application 

to an elevated-substrate culture

Yamamoto, Hayashi 

[163]
Japan

Crop System Description Author
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(Cont.) 

Sweet 

Pepper
Harvesting Robot 

2

Harvesting robot with 6 DOF, custom 

designed end effector and a RGB‑D 

camera

Arad, Balendonck [121]
The 

Netherlands

Sweet 

Pepper
Harvesting Robot

Harvesting robot with 3 DOF, cylindrical 

end effector and three color CCD 

cameras

Lee, Kam [148] South Korea

Sweet 

Pepper
Harvesting Robot 

3 Harvesting robot with 9 DOF,  color 

cameras and a ToF camera
Bac, Hemming [123]

The 

Netherlands

Sweet 

Pepper
Support Task 

Detection: 3D pose estimation using a 

model matching algorithm
Eizentals and Oka [134] Japan

Sweet 

Pepper
Support Task 

2

Detection: Adaptive image-dependent 

thresholding method using reinforcement 

learning

Ostovar, Ringdahl [153] Sweden

Sweet 

Pepper
Support Task 

2

Detection: Flash-no-Flash approach 

comparing a simple detection algorithm 

and a deep learning model

Arad, Kurtser [122]
The 

Netherlands

Sweet 

Pepper
Support Task 

2

Detection: Large-scale semantic image 

segmentation datasets based on 

empirical data

Barth, Ijsselmuiden [127]
The 

Netherlands

Sweet 

Pepper
Support Task 

2

Detection: Modular software framework 

design to implement an eye-in-hand 

sensing and motion control

Barth, Hemming [126]
The 

Netherlands

Sweet 

Pepper
Support Task 

2 Detection: Statistical models for fruit 

detectability
Kurtser and Edan [146]

The 

Netherlands

Sweet 

Pepper
Support Task 

2 Detection: Dynamic sensing algorithm to 

select the best-fit viewpoint location
Kurtser and Edan [147]

The 

Netherlands

Sweet 

Pepper
Support Task 

3

Detection: Effect of multiple camera 

positions and viewing angles on fruit 

detectability

Hemming, Ruizendaal 

[139]

The 

Netherlands

Sweet 

Pepper
Support Task 

3

Detection: Stem localization with a 

developed algorithm using a support wire 

as a visual cue and stereo-images

Bac, Hemming [124]
The 

Netherlands

Sweet 

Pepper
Support Task Detection: CDD LED lighting system Kitamura and Oka [144] Japan

Sweet 

Pepper
Support Task

Detection: Multi-target positioning 

approach based on deep CNN
Chen, Li [130] China

Sweet 

Pepper
Support Task

Detection: Least-squares SMV optimized 

by the improved particle swarm 

optimization (IPSO-LSSVM)

Ji, Chen [143] China

Sweet 

Pepper
Support Task 

3

Manipulation: Azimuth angle of the end-

effector and sensitivity analysis for five 

paremeters

Bac, Roorda [125]
The 

Netherlands

Sweet 

Pepper
Support Task 

3

Manipulation: Efficient two-stage 

trajectory planning approach for a 

redundant harvesting manipulator

Schuetz, Baur [157] Germany

Sweet 

Pepper
Support Task 

3 Manipulation: Design and testing of two 

end-effectors (Fin Ray and Lip type)

Hemming, van Tuijl 

[140]

The 

Netherlands

Sweet 

Pepper
Support Task 

2

Phenotyping: Camera viewpoint and fruit 

orientation on the performance of a 

maturity level classification algorithm

Harel, van Essen [137]
The 

Netherlands

Tomato Harvesting Robot

Truss tomato harvesting robot and two 

key technologies of picking-point 

recognition and end-effector design

Ji, Zhang [43] China

Tomato Harvesting Robot 
4 Dual-arm harvesting robot with two 3 

DOF manipulators
Zhao, Gong [44] China



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

60 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tomato Harvesting Robot

Cherry tomato harvesting robot 

composed by a IR reflective sensor and a 

Pixy camera

Taqi, Al-Langawi [158] Kuwait

Tomato Harvesting Robot 
5 Harvesting robot using infrared image 

and specular reflection
Yasukawa, Li [164] Japan

Tomato Harvesting Robot
Harvesting robot with 5 DOF and a 

binocular stereo vision system
Wang, Zhao [48] China

Tomato Harvesting Robot
Harvesting robot with 3 DOF (Analysis of 

workspace and kinematics)
Li, Liu [42] China

Tomato Support Task
Detection: K-means clustering using the 

L*a*b* color space
Yin, Chai [165] China

Tomato Support Task
Detection: RGB, HSI, and YIQ colour 

spaces and morphological characteristics
Arefi, Motlagh [85] Iran

Tomato Support Task
Detection: Fuzzy C-Means based method 

combined with mathematical morphology
Zhu, Yang [92] China

Tomato Support Task
Detection: L*a*b colour space and Bi-

level partition fuzzy logic entropy
Huang, Yang [83] China

Tomato Support Task 
4 Detection: Haar-like features of gray 

scale image and AdaBoost classifier
Zhao, Gong [95] China

Tomato Support Task 
5 Detection: Machine learning using 

infrared image and specular reflection

Fujinaga, Yasukawa 

[136]
Japan

Tomato Support Task
Detection: Histograms of Oriented 

Gradients and SVM
Liu, Mao [151] South Korea

Tomato Support Task

Detection: Faster R-CNN structure with 

the deep CNN Resnet 101, Resnet 50 

and Inception-Resnet v2

Mu, Chen [102] Japan

Tomato Support Task

Detection: SSD-based algorithm to train 

and develop network models such as 

VGG16, MobileNet, Inception V2

Yuan, Lv [21] China

Tomato Support Task
Detection: R component of the RGB 

images and Sobel operator

Benavides, Cantón-

Garbín [89]
Spain

Tomato Support Task
Manipulation: Two end-effectors for petty-

tomato developed using a pneumatic tube
Kondo, Shibano [145] Japan

Tomato Support Task

Manipulation: Design of an end-effector 

with 4 DOF and his workspace through 

the Monte Carlo method

Cui, Hua [132] China

Tomato Support Task

Manipulation: End effector with four 

fingers and a centrally located fruit 

suction device

Chiu, Yang [131] Taiwan

Tomato Support Task

Manipulation: PR-APT method for 

planning a trajectory of the manipulator 

end-effector

Boryga, Graboś [129] Poland

Tomato Support Task
Manipulation: Dual-arm cooperative 

approach using a binocular vision sensor
Ling, Zhao [150] China

Tomato Support Task 
5 Phenotyping: method of generating a 

map of the tomato growth states

Fujinaga, Yasukawa 

[135]
Japan

Watermelon Harvesting Robot
Multi-functional tele-operative modular 

robotic system
Heon and Si-Chan [141] South Korea

(Cont.) 
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In total, 56 articles were obtained [21, 42-44, 48, 83, 85, 92, 95, 102, 121-166] and 

Figure 33 shows the main crops studied. It can be seen that harvest robotisation is a 

studied and sought-after topic in several crops, however, crops such as tomato (22 

articles) or sweet-pepper (19 articles) appear at the leading edge when it comes to 

research, representing about 73% of the results obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the countries, China (17 articles; 30%), the Netherlands (15 articles; 27%) 

and Japan (11 articles; 20%) are the ones leading (77%) the research on harvesting 

robots (Fig. 34). Although it presents 15 articles, roughly half of the Dutch articles belong 

to a single project - SWEEPER, a European Union project to create a greenhouse pepper 

harvesting robot, which ended in the year 2018 [121]. Generally speaking, Asian 

countries have a slight advantage over European ones. 

 

 

 

 

 

 

Figure 33 | The main crops studied in robotic harvesting for protected horticulture based on the number of published 
articles. 
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Despite the high number of results, only 16 articles (28%) are related to complete 

systems, with emphasis on tomato (6 articles), strawberry (3 articles) and sweet-pepper 

(2 articles) crops.  The remaining projects are related to support tasks (Fig. 35), which 

corroborates why few solutions have reached commercialisation phases and how difficult 

it is to design these systems. A robot, for whatever operation, is composed of different 

support tasks. All of them need to be robust and efficient enough for the system to work 

perfectly. With high performance levels, justifying its acquisition and consequent use - 

for example, the fruit detection can be highly precise and exact in a harvesting robot. 

Still, suppose the manipulator does not correspond and fails to pick the fruit from the 

plant or causes damage to it. In that case, the system as a whole automatically ceases 

to have any relevance, being unable to perform the task at hand, in this case, the fruit 

harvesting.  

For all this, it is clear that the research is in a development phase in the attempt to 

improve the support tasks so that, in the future, a complete solution can be reached more 

quickly. 

 

 

Figure 34 | Countries with most published articles on robotic harvesting in protected horticulture. 
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Among the support tasks, detection stands out (27 articles), followed by manipulation 

(11 articles) and phenotyping (2 articles) (Fig. 36). The large number of studies directed 

towards fruit detection is, to some extent, easy to explain as it is essential to obtain a 

robotic harvest. Logically, the fruit will only be harvested or even phenotyped, if detected, 

showing that detection is one of the first steps to be taken towards automating the 

harvesting task. 

 

 

 

 

 

 

 

 

 

 

Figure 35 | Percentage of articles related to support tasks and harvesting robots according to the crops for which they 
were developed. Abbreviations: HR = Harvesting Robot. 

Figure 36 | Percentage of articles assigned to different support tasks. 
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Overall, the performance of harvesting robots is far from being on par with the human 

workforce. From the results, the detection of the objects to be harvested and their 

manipulation are the two major obstacles on the path to automation. The first is related 

to the unstructured environment, where light conditions and obstructions by different 

plant parts (leaves, stems or even other fruits by overlapping) make the robot's vision 

extremely difficult. The second is due to the sensitive nature of agricultural products, 

which require careful handling. Developing and optimising these systems becomes vital, 

as they should be equipped with better software and hardware. Software to deal with 

problems associated with detection and the robot’s visual perception and hardware to 

ensure that harvesting is done safely without damaging fruits and plants [7]. 

 

4.2 Single Class Tomato Detection 

As mentioned, the models required defining the best confidence threshold before 

proceeding to evaluate their performance. Table 3 indicates the value of the confidence 

threshold that maximises the F1-Score for each model, finding the best balance between 

the Precision and Recall, optimising the number of TP’s while avoiding the FP’s and 

FN’s. Both models found their best F1-Score at similar confidence thresholds, however 

the YOLOv4 model achieved a better F1-Score of about 87%.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 | Confidence threshold for each DL model (1 class) that optimises the F1-score metric. 

YOLOv4 65% 87.23%

SSD MobileNet v2 63% 76.23%

DL Model Confidence Threshold ≥ F1-Score
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Figure 37 reports the evolution of the F1-score with the variation of the confidence 

threshold for cross-validation. It is possible to infer that the models behave slightly 

different. Models with flattened curves indicate higher confidence in their predictions and 

a low amount of FPs and FNs. Such is the case with the SSD MobileNet v2 model, which 

despite having a lower F1-Score, is more consistent, as it can maintain essentially the 

same F1-Score value over the threshold of confidence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 shows the number of TP’s, FP’s and FN’s across the confidence threshold 

for each model. Once again, it is possible to verify the consistency of the SSD MobileNet 

v2 model. Although the YOLOv4 model manages to have more TP's and less FN's, with 

the increase of the confidence threshold these values, tend to vary more than the values 

obtained by the SSD MobileNet v2 model (Fig. 38 a and Fig. 38 c). It is worth highlighting 

that the SSD MobileNet v2 model almost had no FP’s (Fig. 38 b). This is essential to 

avoid harvesting non-fruits and consequently damage the plants or the robot itself. 

 

 

 

Figure 37 | Evolution of the F1-score with the variation of the confidence threshold for both DL models (1 class) in the 
validation set without augmentation. 
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(a) 

(b) 

(c) 

Figure 38 | Evolution of the number of TP’s (a), FP’s (b), and FN’s (c) in both DL models (1 class) with the increase of 
the confidence threshold. 
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The previous analysis provided the benchmark in the validation set. The results 

presented below refer to the benchmarking of the test set that allows understanding the 

generalisation capacity of the trained DL models. 

Table 4 shows the results across the different metrics, considering all the predictions 

and the best-computed confidence threshold. Lower confidence rates tend to have lower 

Precision but a higher Recall rate. Hence, limiting the confidence threshold can become 

an advantage. This can be especially verified considering the results obtained by the 

YOLOv4 model. When the model has full freedom to make predictions (confidence 

threshold ≥ 0), it presents a Recall close to 100%, but an inferior Precision, only around 

10%, drastically affecting the F1-Score. However, by limiting the confidence threshold, 

the model could obtain a higher Precision without harming the Recall rate too much, thus 

obtaining an excellent F1-Score. 

 

 

 

 

 

 

 

 

Figure 39 shows a Precision x Recall curve that was built using all the predictions. 

This curve establishes the compromise between the Recall rate and the Precision rate, 

with the evolution of the prediction confidence score. The best performing model has the 

highest AUC [132], therefore the YOLOv4 model. However, the low Precision at higher 

Recall rates and the lower F1-Score indicates that the model has much prediction noise 

and false positives. Thus, considering all the model predictions, using the F1-score as a 

balanced metric between the Recall and Precision, SSD MobileNet v2 was the best 

performing model, with an F1-Score of 76.75%. 

 

 

Table 4 | Detection results of the DL models (1 class) over the evaluation metrics, considering all the predictions and the 
best computed confidence threshold. 

76.75%

19.92%

F1-Score

77.38%

86.95%

74.43%

11.07%

77.66%

87.92%

79.21%

99.56%

77.10%

86.00%

Precision RecallDL Model Confidence Threshold ≥

YOLOv4 65%

73.07%

94.48%

71.46%

84.36%

MobileNet v2 63%

MobileNet v2

YOLOv4

0%

0%

mAP
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Performing an additional filtering process on the predictions, the Precision increased 

considering the best-computed confidence threshold. The Recall x Precision curve was 

now transformed through a truncation process (Fig. 40). Both models had a Precision 

rate higher than 75%, with the YOLOv4 model almost achieving 88%. Recall and 

Precision rates were similar for both models, which shows that the models are well 

balanced. Also, the models had a high confidence rate in their predictions, with the 

YOLOv4 model standing out, reaching an F1-Score close to 87%, meaning that it 

possesses the ability to detect almost all groundtruths, without neglecting Precision, i.e. 

having few FP's. 

 

 

 

 

 

 

 

 

Figure 39 | Precision × Recall curve for both DL models (1 class) in the test set considering all the predictions. 
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Overall, both models were generic enough to characterise the class tomato to detect 

all the tomatoes successfully. The results were similar between the validation set and 

the test set, with the YOLOv4 model obtaining promising results, being the best 

performing model. Interestingly, the use of filtered results by a threshold was only 

significant to the YOLOv4 model. The SSD MobileNet v2 model obtained identical results 

regardless of the confidence threshold, which means that it can be used without any 

filtering process without compromising the results. This can be clearly understood from 

Figure 41. In the YOLOv4 model, using all predictions resulted in many FP's. 

 

 

 

 

 

 

 

Figure 40 | Precision × Recall curve for both DL models (1 class) in the test set using the calibrated confidence threshold. 
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Additionally, to better understand the capabilities of the models, situations of 

darkened and occluded/overlapped tomatoes were analysed, considering representative 

images from the dataset as presented in Figure 42. In poor lighting situations, both 

models performed well, showing robustness and capability to deal successfully with 

problems posed by different lighting conditions. In cases where tomatoes are occluded 

by branches, stems, leaves or other tomatoes (overlapped), the models showed a great 

performance.  An interesting detail is that, in both situations, the models were able to 

detect tomatoes that were not annotated as groundtruth correctly. This image analysis 

Figure 41 | Comparison between using unfiltered images (a and b) and filtered images through the best confidence 
threshold (c and d) for the DL models (1 class). Green bounding boxes = groundtruth annotations; Red bounding boxes 
= model detections. 



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

71 

 
 
is important because cases like these show that the models can be better than what the 

results indicate. Therefore re-annotating the dataset can be an advantage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned earlier, the use of DL models for tomato detection has grown. 

Comparing these results with different authors is essential to understand the relevance 

of the results obtained and potential aspects that could be improved. However, a robust 

comparison is often hindered due to several of factors such as: i) Most methodologies 

are applied to the detection of riped tomatoes, which is somewhat easier due to the 

higher colour contrast between the fruit and the background, thus leading to better 

results; ii) even though they are targeted for greenhouse crops, in some research 

Figure 42 | Result comparison for darkened (a and b) and occluded/overlaped images (c and d) for the DL models 
detection (1 class). Green bounding boxes = groundtruth annotations; Red bounding boxes = model detections. 
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studies, the DL models are trained and evaluated with a set of images taken in an artificial 

environment, with solid and stable background; iii) how these models are evaluated is 

not standardised, numerous metrics may vary from one paper to another. Most papers 

lack the F1-Score, often presenting the accuracy (same as Recall) or the AP/mAP of 

each model. Table 5 compiles the results of other authors, indicating the DL models used 

and considering the context in which they were applied: type of environment and fruit 

ripeness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 | Results of different papers regarding single class tomato detection through DL models. 

YOLOv4 (Best)                 

F1-Score: 61.16%

R-CNN with 

VGG16
Recall: 19.48% de Luna, Dadios [103]

Different ripeness stages          

Artificial environment

Mask-RCNN with 

ResNet50 and 

ResNet101

Different ripeness stages          

Artificial environment

mAP: 90.13% and 93.30% 

(ResNet50 and 

ResNet101)

Lee, Nazki [167]

Faster R-CNN with 

Resnet 101

4 SSD and 1 YOLO 

models

F1-Score: 83.67%

SSD MobileNet v2 (Best)   

F1-Score: 66.15 %

Mu, Chen [102]

Magalhães, Castro [116]

Padilha, Moreira [109]

3 SSD models

Improved YOLOv3

Improved YOLOv3

Green/Turning ripeness stages         

Greenhouse environment

Different ripeness stages          

Greenhouse environment

Different ripeness stages          

Greenhouse environment

Different ripeness stages                 

Greenhouse environment

Different ripeness stages                 

Greenhouse environment

Different ripeness stages                 

Greenhouse environment

3 SSD and 1 YOLO 

models

Yuan, Lv [21]

Chen, Wang [170]

Zhou, Xu [166]

Red ripeness stage                   

Greenhouse environment
Recall: 91.26% Liu, Pi [169]

SSD Inception v2 (Best)   

AP: 98.85%

F1-Score: 94.18%

mAP: 76.90% Zhang, Chen [172]

DL Model Method Results Author

Improved YOLOv3 

Tiny

Red ripeness stage                   

Greenhouse environment
F1-Score: 91.92% Xu, Jia [171]

YOLO-Tomato
Different ripeness stages                 

Greenhouse environment
F1-Score: 93.91% Liu, Nouaze [100]

TD-Net

Improved 

DenseNet

Different ripeness stages                 

Greenhouse environment
AP: 81.64%
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As they are one-stage detectors, the SSD MobileNetv2 and YOLOv4 models, 

although faster at detecting, could lack accuracy. This is not overly verified when 

compared to two-stage detection frameworks. Both models obtained an Recall well 

above the R-CNN used by de Luna, Dadios [103] and the YOLOv4 model achieved a 

higher F1-Score than the Faster R-CNN with ResNet 101 model implemented by Mu, 

Chen [102]. The Mask RCNN models with ResNet50 and ResNet101 used by  Lee, Nazki 

[167] obtained a higher mAP of 90.13% and 93.30%, respectively. However it is still 

important to note that the models were evaluated in a stable environment where the fruits 

were detached from the plant. 

As mentioned before, along with the DL models presented in this dissertation, other 

one-stage detection frameworks were trained – SSD Mobilenet v2, SSD Inception v2, 

SSD ResNet50, SSD ResNet101, YOLOv4 and YOLOv4 Tiny – and their benchmark 

can be accessed in the papers mentioned in the Additional Contributions section [109, 

116]. Both the SSD MobileNet v2 and YOLOv4 models outperformed all the frameworks 

used on those studies, which obtained quite high Precision rates but ended up failing in 

their ability to detect all relevant objects, causing the overall F1-Score to vary only 

between 50-60%.  

To detect cherry tomatoes, Yuan, Lv [21] evaluated 3 SSD models and the SSD 

Inception v2 model obtained an almost flawless AP of 98.85%. Still, in this case, the 

annotation was done by tomato clusters and not for each fruit, which may facilitate the 

detection and, consequently, high results. Zhou, Xu [168] developed TD-Net, a model 

derived from Fast R-CNN, and obtained a PA of 81.64%, still lower than that obtained 

by the YOLOv4 model. Liu, Pi [169] improved the DenseNet model in detecting riped 

tomatoes in different datasets. The dataset variation affected the Recall values, which 

found its best at 91.26% but its worst at 59.78%. 

It is worth noting that many papers report the modification and improvement of the 

YOLOv3 model [100, 170-172]. The YOLOv3 model improved by Zhang, Chen [172] 

obtained a mAP of 76.90%, below the YOLOv4 model. Still, the improvement performed 

by the remaining authors led to an F1-Score always higher than 90%, even when 

detecting tomatoes with different ripeness stages [100, 170, 171]. These results show 

that improving and specifying the state-of-the art DL models for a particular task can be 

a great advantage and lead to substantially better results. 
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Based on the literature reviewed, the SSD MobileNet v2 and YOLOv4 model results 

are still promising, taking into account that they were not fed with a well-balanced 

dataset, were lightly modified and were trained to detect any type of tomato in a real 

greenhouse environment. 

 

4.3 Multi-Class Tomato Detection 

In order to classify the tomatoes according to their ripeness, the DL models were 

trained with the 4 classes defined. First, the models were evaluated considering the 

detection problem to understand the difference between training with 1 or 4 classes. 

Through the cross-validation technique, the best confidence threshold was defined, 

as shown in Table 6. The F1-Score values were similar to those of the models trained 

with 1 class, but with a lower optimal confidence threshold, which means that the models 

are less confident in their predictions. 

 

 

 

 

 

 

 

The graphs obtained from the F1-Score along the confidence threshold (Fig. 43) were 

identical to the ones previously obtained. The SSD MobileNet v2 was again the best 

model, being more constant regarding the F1-Score value. 

 

 

 

 

 

 

Table 6 | Confidence threshold for each DL model (4 classes) that optimises the F1-score metric. 

52% 86.15%

Confidence Threshold ≥ F1-Score

YOLOv4

SSD MobileNet v2 34% 76.25%

DL Model
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As shown in Figure 44, the variation of TP's, FP's and FN's was also similar: very low 

amount of FP’s (Fig. 44 b) regarding the SSD MobileNet v2 model, in contrast to the 

higher, but more inconstant, TP's (Fig. 44 a) and FN's (Fig. 44 c) of the YOLOv4 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 43 | Evolution of the F1-score with the variation of the confidence threshold for both DL models (4 classes) in the 
validation set without augmentation. 
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As shown in Table 7, limiting the confidence threshold led to similar results regarding 

the F1-Score with the test set. 

 

 

 

 

 

 

 

(b) 

(c) 

 

Figure 44 | Evolution of the number of TP’s (a), FP’s (b), and FN’s (c) in both DL models (4 classes) with the increase of 
the confidence threshold. 

Table 7 | Detection results of the DL models (4 classes) over the evaluation metrics, considering all the predictions and 
the best computed confidence threshold. 

(Cont.) 

DL Model Confidence Threshold ≥

SSD MobileNet v2

YOLOv4

34%

52%

SSD MobileNet v2

YOLOv4

0%

0%

75.67%

96.29% 19.14%

64.25% 88.26% 66.23%

91.20% 10.62%

Recall F1-Score

75.60%

88.16%

63.92%

80.69%

88.73%

96.70%

65.85%

81.01%

mAP Precision
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Considering all predictions, the SSD MobileNet v2 model performed better, showing 

a higher balance between the Precision and Recall, despite the YOLOv4 model having 

a higher AUC, as Figure 45 shows. 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at the best threshold, the YOLOv4 model was again sensitive to the filtering 

process, becoming the model with the best performance with an F1-Score close to 90%. 

In both models, all the predictions had a Precision rate higher than 88%, but the Recall 

rates have fallen, by 15-20%, as illustrated in Figure 46. 

 

 

 

 

 

 

 

 

 

Figure 45 | Precision × Recall curve for both DL models (4 classes) in the test set considering all the predictions. 
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In the first impression, the models trained to detect a single tomato class, compared 

with those trained to detect 4 classes are identical, especially concerning the F1-Score. 

The critical difference lies in the Recall metric. Models trained with one class are 

considerably more balanced, presenting identical Precision and Recall values. By having 

more classes to detect, models need to be more precise, which ultimately affects Recall, 

i.e. their ability to detect all groundtruths. In practical terms, this can be a disadvantage 

for a harvesting robot, that besides being precise, it is desirable that it can detect as 

many tomatoes as possible. This problem is most evident in the SSD MobileNet v2 

model, which had a Precision of approximately 89%, but only detected 66% of the 

tomatoes. While in the YOLOv4 model, the Recall rate was above 80%, but still 

decreased compared to the same model trained with one class. 

Image analysis (Fig. 47) again demonstrates the importance of limiting predictions, 

especially in the YOLOv4 model. Beyond that, it can be seen that the frameworks can 

no longer detect as many tomatoes (low Recall rate). 

 

 

 

Figure 46 | Precision × Recall curve for both DL models (4 classes) in the test set using the calibrated confidence 
threshold. 
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Regarding occlusion/overlap and poor lighting situations, both models, achieved a 

solid performance despite being trained with more classes and their lower Recall rate 

(Fig. 48). 

 

 

 

Figure 47 | Comparison between using unfiltered images (a and b) and filtered images through the best confidence 
threshold (c and d) for the DL models (4 class). Green bounding boxes = groundtruth annotations; Red bounding boxes 
= model detections. 



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

80 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained are still interesting, especially considering that the models were 

trained to detect 4 classes. Most research works focuses on detecting 1 class and when 

several classes are employed, only 2 are usually considered just to distinguish unriped 

from riped tomatoes. Another major gap is that when analysing DL models trained with 

multiple classes, most authors rarely decompose their evaluation into a detection and 

classification problem, looking only at one of these two, mainly to the classification 

problem. Table 8 presents the results of other studies considering the DL models, the 

number of classes and the environment where they were applied. 

 

Figure 48 | Result comparison for darkened (a and b) and occluded/overlaped images (c and d) for the DL models 
detection (4 class). Green bounding boxes = groundtruth annotations; Red bounding boxes = model detections. 
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Afonso, Fonteijn [173] used the Mask-RCNN framework with different backbones and 

the Mask-RCNN with ResNext model obtained the best performance with an F1-Score 

of 80%, still lower than the one obtained by the YOLOv4 model and only 5% higher than 

the SSD MobileNetv2 model studied in this dissertation. Both models in this work 

outperformed the different YOLO architectures Ruparelia, Jethva [174] evaluated in 

detecting unriped and riped tomatoes, which had YOLOv4 as the best model with an F1-

Score of 66%. Still, in the detection of 2 classes, there are studies with excellent results 

and which surpass the ones presented in this dissertation. Lawal [175] proposed fusing 

YOLO-Tomato models with different activation functions, achieving an F1-Score of 

97.90% through the YOLO-Tomato-C framework. Some studies evaluate DL models in 

detecting more than two classes. These are the cases of Sun, He [101], who through a 

proposed Feature Pyramid Network model achieved an mAP of 99.50% in detecting 

flowers, green and red tomatoes and Tsironis, Bourou [176] who created a dataset with 

3 classes (unriped, semi-riped and fully-riped) and evaluated different DL models, but 

only two outperformed the SSD MobileNet v2 model and none outperformed the YOLOv4 

model, with the best result being obtained by the RetinaNet model with a mAP of 74.51%.  

Thus, considering the existing literature, especially the YOLOv4 model obtained 

excellent results considering that it was trained to detect 4 tomato classes, something 

not often studied. 

 

Table 8 | Results of different papers regarding multi-class tomato detection through DL models. 

Different YOLO 

architectures

Afonso, Fonteijn [173]

Ruparelia, Jethva [174]

DL Model Method Results Author

Mask-RCNN with 

ResNet50, ResNet101 and 

ResNext

F1-Score: 80.00%

YOLOv4 (Best)            

F1-Score: 66.00%

2 classes             

Greenhouse environment

2 classes            

Greenhouse environment

Modified YOLO-Tomato 

models

Feature Pyramid Network

Different DL models

2 classes            

Greenhouse environment

3 classes            

Greenhouse environment

3 classes            

Greenhouse environment

Lawal [175]

Sun, He [101]

Tsironis, Bourou [176]

YOLO-Tomato-C 

(Best)                            

F1-Score: 97.90%

mAP: 99.50%

RetinaNet (Best)     

mAP: 74.51%
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4.4 Tomato Classification Based on Ripeness Stage 

4.4.1 Deep Learning Models Approach 

Regarding the classification problem, Figure 49 and 50 represent the confusion matrix 

for the SSD MobileNet v2 and YOLOv4 models, respectively. As corroborated by the 

detection problem, the SSD MobileNet v2 model detected fewer tomatoes (1190) than 

the YOLOv4 model (1323) and, notably, the classification is unbalanced towards the 

Green class. Nevertheless, SSD MobileNet v2 model had an excellent performance, with 

a Precision higher than 86% in all classes. The YOLOv4 model had even better results 

for the Green class, but weaker results for the other classes (≤ 75%), failing even to 

detect, and therefore classify, any Red tomato. 

Looking at the Recall rates, it can be observed that the SSD MobileNet v2 model 

scored lowest in the Turning class due to some difficulty in distinguishing Green with 

Turning class tomatoes. The low Recall in the Red class may be misleading and 

somewhat inaccurate due to the low representativeness of the class, which means that 

no firm conclusions can be drawn about the performance of the model in classifying 

tomatoes of this class.  

The YOLOv4 model had a slight difficulty distinguishing Turning tomatoes from Light 

Red ones, but nothing that affects the Recall values to any great extent since it is greater 

than or equal to 80% for both classes. Both models had nearly the same occurrence of 

cases where they classified the background (leaves and stems) as an Green tomato, 

certainly to blame for the large colour correlation between them. 
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Table 9 provides a general and better understanding of the confusion matrix, through 

Macro F1-Score and Balanced Accuracy metrics. The Macro F1-Score metric implies 

that the most extensive classes have the same importance as small ones have. Thus, 

high Macro-F1 values indicate that the algorithm has good performance on all the 

classes, whereas low Macro F1-Score values refer to poorly predicted classes [120]. 

SSD MobileNet v2 model outperformed the YOLOv4 model with a Macro F1-Score of 

87.27%. The low value obtained by the YOLOv4 model was highly affected by its inability 

to classify any Red tomato. 

Figure 49 | Confusion matrix of the SSD MobileNet v2 model, providing the number of predictions made by the model 
where it classified the classes correctly or incorrectly and the Precision and Recall rates for each class. 

Figure 50 | Confusion matrix of the YOLOv4 model, providing the number of predictions made by the model where it 
classified the classes correctly or incorrectly and the Precision and Recall rates for each class. 
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Regarding the Balanced Accuracy, smaller classes eventually have a more than a 

proportional influence on the formula, although their size is reduced in terms of the 

number of units. The SSD MobileNet v2 model was much better at classifying the fruits, 

with 81.70% Balanced Accuracy. Although it succeeded in detecting more tomatoes, the 

YOLOv4 model had considerable difficulties when it comes to classifying, with a 

Balanced Accuracy of only 65.54%, again affected by the Red class. 

 

 

 

 

 

 

 

 

The sorting of fruits based on their ripeness stage is an operation much more 

associated with post-harvest. For this reason, in the overwhelming majority of studies, 

especially on DL models, the classification of fruits is done in a structured environment. 

This is similar to that found in processing industries after the fruits are harvested, which 

in a certain way makes this work groundbreaking, since it was carried out with images of 

a real environment in a greenhouse. Another critical factor refers to the metrics used to 

evaluate the models. Most authors only use the accuracy (average Recall of each class), 

which may not reflect the true quality of the models. Table 10 presents some of the works 

carried out in the tomato classification scope using DL models, concerning the number 

of classes, type of environment and results obtained. 

 

 

 

 

 

 

Table 9 | Classification results of the DL models (4 classes) over the evaluation metrics, considering the best computed 
confidence threshold. 

Balanced 

Accuracy
Macro F1-Score

YOLOv4 52%

34%SSD MobileNet v2 87.27% 81.70%

65.54%63.37%

Model
Confidence 

Threshold
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de Luna, Dadios [103] used an ANN to classify tomatoes into 3 distinct classes and 

obtained an accuracy of 99.32%. Both Zhang, Jia [177] and Toon, Zakaria [178] 

proposed CNN-based models to classify tomatoes into 5 and 2 ripeness classes, 

respectively, achieving an accuracy of 91.90% and 98.78%. Huynh, Vo [179] tested 

different CNN, with VGG19 getting the best result with an accuracy of 94.14% in 

classifying tomatoes into 3 ripeness classes. Also, for 3 classes, the AlexNet model 

evaluated by Das, Yadav [180] and the YOLOv3 model of Mutha, Shah [181], obtained 

an accuracy of 100% and 94.67%, respectively. Ko, Jang [182] developed a novel model 

called SDF-ConvNets that relies on multiple streams of CNN and stochastic decision 

fusion methodology, obtaining an F1-Score of 96.50%. 

All the studies mentioned obtained results far superior to those obtained by the DL 

models studied in this dissertation. Nevertheless, considering that they were trained with 

images from a greenhouse environment and that the dataset used is unbalanced, the 

results can certainly be improved. For instance, both models obtained excellent results 

in the Green tomato classification (Recall higher than 99%), so one can get identical 

results for the remaining classes by balancing the dataset. 

Table 10 | Results of different papers regarding tomato classification describing the DL models and methodology used. 

Ko, Jang [182]

Accuracy:  91.90%

Accuracy: 98.78%

VGG19 (Best) 

Accuracy: 94.14%

Accuracy: 100%

YOLOv3 (Best) 

Accuracy: 94.67%

F1-Score: 96.50%

Zhang, Jia [177]

Toon, Zakaria [178]

Huynh, Vo [179]

Das, Yadav [180]

Mutha, Shah [181]

5 classes                

Proposed 

classification model 

with CNN

Proposed 

classification model 

with CNN

VGG16,  VGG19,  

and  ResNet101

AlexNet

CNN and YOLOv3

SDF-ConvNets

5 classes                

2 classes                      

3 classes               

3 classes               

3 classes               

ANN 3 classes                Accuracy:  99.32% de Luna, Dadios [103]

DL Model No. Classes Results Author
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4.4.2 HSV Colour Space Model Approach 

Based on the Hue histogram mean of each sample used to build the model and its 

correlation with the respective class (Appendix D), a quadratic function was obtained as 

the statistical classifier (Figure 51). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to classify the tomatoes, it was necessary to define the thresholds for each 

class. By fine-tuning the equation, namely adding 0.25 to the independent term, the 

following was established: 

• Green: 

o y ≤ 1.5 

 

• Turning: 

o 1.5 < y ≤ 2.5 

 

• Light Red: 

o 2.5 < y ≤ 3.5 

 

• Red: 

o y > 3.5 

Figure 51 | Correlation between the Hue histograma Gaussian mean of each sample with its respective class, along with 
the plot of the tendency line, equation and R2 of the quadratic function obtain. 
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All groundtruths in the AgRob’s test set were used to benchmark the HSV colour 

space model. Figure 52 shows the model’s confusion matrix and the Precision and Recall 

rates for each class. The model achieved interesting results, beating the DL models in 

the classification of Green tomatoes and showing great Precision in the classification of 

Light Red tomatoes. The Recall values of the Light Red class and the Precision values 

of the Turning class were affected by the difficulty of the model to distinguish tomatoes 

from these two classes since roughly one-third of Light Red tomatoes were classified as 

Turning. 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to verify from Table 11 that, as far as the Macro F1-Score is concerned, 

the model performed better than the YOLOv4 model and only lagged behind the SSD 

MobileNet v2 model by around 10%, mainly due to the difficulty mentioned above. The 

value of the Balanced Accuracy confirms that the HSV Colour Space model 

outperformed the YOLOv4 model, achieving a similar result to the SSD MobileNet v2 

model.  

 

 

 

 

 

Figure 52 | Confusion matrix of the HSV Colour Space model, providing the number of predictions made by the model 
where it classified the classes correctly or incorrectly and the Precision and Recall rates for each of the classes. 

Table 11 | Classification results of the HSV Colour Space Model over the evaluation metrics. 
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Balanced 
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Macro F1-Score
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Overall, the YOLOv4 model, despite being able to detect more tomatoes, fell 

significantly short in the classification. In contrast, the SSD MobileNet v2 model had 

identical results to the proposed HSV colour space model, especially concerning 

Balanced Accuracy. 

Before the emergence and application of DL models, the classification of fruits 

according to their ripeness stage was already studied through more elementary image 

processing techniques. Most of these techniques rely on the analysis and thresholding 

of several colour spaces. However, similarly to DL models, the studies very rarely 

consider the problems imposed by the agricultural environment. Besides being done in 

a controlled environment, to obtain better results are often applied segmentation 

techniques and algorithms to remove the background. In addition, testing is often done 

with a small number of samples. Table 12 presents some of these studies, indicating the 

techniques and number of classes as well as the results obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed HSV colour space model achieved better results than the approach by 

Choi, Lee [183], which, through the aggregated percent surface area below certain Hue 

angles, achieved an accuracy of 77% when classifying tomatoes in 6 different ripening 

stages. Using the HSV colour space, Li, Cao [184] applied a dominant colour histogram 

Table 12 | Results of different papers regarding tomato classification describing the colour-based models and 
methodology used. 

HSV colour histogram matching

6 classes                          

5 classes                          

Accuracy: 77.00%

Accuracy: 97.20%

Model No. Classes Results Author

Aggregated percent surface 

area below certain Hue angles
Choi, Lee [183]

K-Nearest Neighbour based on 

GLCM and HSV colour space

Fuzzy Rule-Based classification 

based on RGB colour space

YCbCr colour histogram

Multiplication of V and Cb colour 

channel using Otsu thresholding

5 classes                          

6 classes                          

6 classes                          

6 classes                          

Li, Cao [184]

Indriani, Kusuma [185]

Goel and Sehgal [186]

Rupanagudi, Ranjani 

[187]

Sari, Adinugroho [188]

Accuracy: 100%

Accuracy: 94.29%

Accuracy: 98.00%

Mean Square Error: 

3.14
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matching method, achieving 97.20% accuracy. Indriani, Kusuma [185] combined the 

colour space with Gray Level Co-occurrence Matrix and K-Nearest Neighbour 

classification which led to a state-of-the art accuracy of 100%. Goel and Sehgal [186] 

applied Fuzzy Rule-Based classification through the RGB colour space obtaining an 

accuracy of 94.29%. Rupanagudi, Ranjani [187] classified tomatoes into 6 classes with 

an accuracy of 98.00% through histograms. Also through the YCbCr colour space, with 

addition of the YUV colour space, Sari, Adinugroho [188] multiplied the Cb and V 

channels and achieved a Mean Square Error of only 3.14 through the Otsu segmentation 

algorithm. 

 

4.5 Brix Degree Prediction 
 

Appendix E displays the results obtained from the SSC measurement for the 60 

samples collected. Brixº is one of the important fruit quality indicators and measures the 

total SSC present in the fruit, mainly organic sugars. It is often assumed that SSC 

increases as the fruits mature, but this is not always the case. As Dai, Wu [189] study 

indicates, unlike other fruits such as grapes, tomatoes have small sugar accumulation 

fluctuations and even decrease in soluble sugar concentration over fruit development. 

Figure 53 fully corroborates this fact, being possible to observe that SSC percentage 

does not vary significantly throughout the four classes. Even the Red class, as well as 

the other classes, on average, presented a lower SSC value than the Turning class. 

 

 

 

 

 

 

 

 

 

 
Figure 53 | Mean value and standard error of the SSC measured for each ripeness class. 
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Figure 54 allows a better insight into the subject. Through the Raspberry Dataset 

samples used for building the HSV Colour Space model and comparing the numerical 

value assigned to the colour of each sample with its measured SSC, it can be observed 

that there is no straightforward relationship between colour (ripeness) and SSC. The 

results are very scattered, most of the Red tomatoes analysed have the same SSC as 

the Green tomatoes and tomatoes with roughly the same histogram mean have different 

SSC. The results show that it is not possible to predict Brix by colour information alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54 | Correlation between the Hue histogram average of each sample with its measured SSC. Different colours 
represent the class to which each sample belongs. 
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Conclusions 

All the objectives proposed in this dissertation were accomplished. Through the 

results obtained by the meta-analysis, it is noticeable that there are very few robots 

developed for protected crops. Most of the reviewed articles are directed to support 

tasks, mainly about crop detection and classification (67%), where tomato and pepper 

crops stand out. The great need for research on this topic shows why this is one of the 

biggest gaps and obstacles in developing robots. More research needs to be done to 

overcome the immaturity of machine vision and image analysis algorithms. 

To answer this problem, two DL models were trained and evaluated for tomato 

detection and classification. In detecting tomatoes regardless of their ripeness both DL 

assessed models had a very balanced performance, regarding Precision and Recall 

rates. The best performing model was the YOLOv4 model, obtaining a strong F1-Score 

of about 87%. The results also showed that some models, in this case the YOLOv4 

model, perform better by tuning the confidence threshold. 

In the case of tomato classification according to ripeness based on colour, the models 

need to be evaluated for their classification and detection performance. Regarding the 

detection problem, the DL models obtained similar results. The big difference comes with 

the Recall rate. The fact that they are trained with multiple classes means that the models 

have to be more specific and accurate, which affects their ability to detect all the 

groundrtuth tomatoes (Recall). Both models achieved high Precision rates, over 88%, 

but the Recall rate dropped, especially in the SSD MobileNet v2 model, only 65%. In 

practical cases, this can be a problem when developing a harvesting robot. A robot that 

detects a few tomatoes, no matter how precise, will not help and benefit the harvesting 

operation. Therefore, it can be concluded that training DL models with more than one 

class can lead to an unbalance performance, particularly concerning their Precision and 

Recall rates. The more precise a DL model, the less effective it will be in detecting all 

groundtruths. 

When it comes to the ability to classify, the models behaved quite differently. If it was 

the worst at detecting, the SSD MobileNet v2 model was the best at classifying, achieving 

a Macro F1-Score of about 87% and a Balanced Accuracy of almost 82%. The YOLOv4 

model had disappointing results, having the most difficulty distinguishing between 

Turning and Light Red tomatoes and was unable to detect any Red tomatoes, getting 
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results of approximately 63% and 65% on the Macro F1-Score and Balanced Accuracy 

metrics, respectively. The classification results allow concluding that none of the two 

models were good at both detecting and classifying tomatoes. The YOLOv4 model 

correctly detected more tomatoes, but the classification was poor, while the SSD 

MobileNet v2 model detected fewer tomatoes but was more accurate in classification. 

The results obtained by the YOLOv4 model in the classification of Red class tomatoes 

suggest that when dealing with multi-classes, this model needs to be fed with a more 

balanced dataset, unlike the SSD MobileNet v2 model, which, despite the unbalanced 

dataset, was able to classify Red tomatoes, even with an Precision rate of 100%. 

As an alternative in classification, an HSV Colour Space model was proposed. The 

model achieved great results in the Green tomatoes classification but struggled to 

distinguish tomatoes from the Turning class with the Light Red class. Still, it 

outperformed the YOLOv4 model with distinction, and came close to the SSD MobileNet 

v2 model, especially regarding the Balanced Accuracy, around 80%. The results become 

more interesting when one realises that to achieve these results, the DL models had to 

be trained with a large number of images, specifically 511 images. In contrast, the HSV 

Colour Space model was developed and trained with only 40 images (10 from each 

class). On a theoretical basis, increasing the number of images to train and test the HSV 

Colour Space model, the results could be even better, outperforming both DL models. 

Another advantage of the proposed model is its simplicity, making it more intuitive and 

accepted: adjusting the number of classes required and changing the confidence 

thresholds for each class.  

According to the results of the multi-class detection and classification problems, the 

solution may involve the use of DL models just to detect tomatoes regardless of their 

ripeness stage, since they are more balanced and show a good compromise between 

the Precision and Recall rates. The classification task can be performed by the HSV 

Colour Space model, since it obtained similar results as the DL models, especially 

regarding the Balanced Accuracy. Getting the best out of each model, by modifying and 

fusing a DL model with the proposed HSV Colour Space model, it is possible to create a 

framework capable of detecting a greater number of fruits, and classify them correctly 

without much loss in both moments. 

At the phenotyping level, through the Brix degree data collected, and with the help of 

the HSV Colour Space model, it is possible to conclude that the SSC of the tomatoes 

can not be estimated only through their colour information. 
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In perspective, putative future work should go through: 

• Enlarge the dataset, balancing it with more images with Red tomatoes; 

 

• Evaluating the performance of these models in on-time conditions, inside the 

greenhouses; 

 

• Modify and improve DL models for the detection and classification of tomatoes 

in specific; 

 

• Improve the HSV Color Space Model by testing with more images; 

 

• Seek to develop techniques to extract other relevant information from the fruit 

to achieve an automated and differentiated harvest. 
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Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Cont.) 

Hyperspectral 

Imaging

Monocular 

vision

Consists of a standard BW (Black and 

White) or colour camera and a CCD 

(Charge Coupled Device) or a CMOS 

(Complementary Metal Oxide 

Semiconductor)

Simplest and lowest cost system, 

but only provides 2D information; 

Problems like light change can 

influence the imaging results

Binocular    

Vision

Two cameras separated in a certain 

distance with a specific angle that allows, 

through triangulation, to obtain depth 

information

Most common approach to obtain 

the 3D position of detected fruit; 

Image matching is time consuming 

and the cameras need calibration

Vision and 

Range Sensors

Spectral    

Imaging

To acquire depth information in a more 

direct way, sensors that measure depth, 

such as LiDAR or RGB-D cameras, can 

be attached to the cameras

Alternative to obtain the 3D position 

in the condition of light changing 

and background clustering; The 

imaging processing is also a 

challenge

Recognition of objects based on their 

different reflectance

in selected wavelengths using spectral 

cameras, that integrates both 

spectroscopic and imaging techniques

Great advantage when the target 

and background have the same 

colors; Imaging processing is very 

time consuming and the sensor 

cost is high

Emerging technology that provides the 

complete spectral signature for each 

pixel in the visual field of the camera

Brings an overwhelming amount of 

additional information that leads to 

better decisions; Costly price, both 

in acquisition and processing time

Imaging Sensors

Principles Pros & Cons

Table A1 | Imaging sensors, visual features and image analysis methods and techniques that can be used to develop a 
computer vision system. 
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(Cont.) 

Multi-Feature 

fusion

A single feature rarely represents the 

target object in a satisfactory manner so 

it is reasonable to think that one visual 

feature could compensate for the 

limitations of the others. Hence, multi-

features may provide increased 

performance

Can improve the recognition rate of 

uneven illumination conditions, 

partially occluded surfaces, and 

similar background features; Still 

prone to light changes

Spectral         

reflectance

Spectral reflectance signatures result 

from the presence or absence, as well as 

the position and shape of specific 

absorption features, of the surface

Effective discriminatory factor when 

fruits and background have the 

same color; Sensitive to 

illumination and cannot resolve 

issues like occlusions

Thermal        

response

Thermal response of objects is related to 

their emitted radiation in the infrared 

range where it is strongly affected by 

both the temperature and the emissivity 

of materials

Usually the background 

accumulate significantly less heat 

and emit it for a shorter time, 

making thermography an excellent 

approach; Sensitive to the 

illumination and heat accumulation

Texture
Texture is perhaps the first visual feature 

that goes beyond purely local features, 

like color or spectral reflectance

Effective feature when colour is not 

discriminatory enough, and it is 

usually more stable than reflective 

properties under illumination 

variations

Shape

Shape implies a particular spatial 

relationship between the geometrical 

atoms like points, occluding contours and 

surfaces that make up a coherent 

physical object

Shape-based analysis approach is 

not affected by varying 

illuminations; Computationally 

demanding to extract and analyse

Color

The most significant visual feature used 

in harvesting robots, mainly in the RGB 

representation. Other color spaces such 

as HIS, HSV, CIE or L*a*b are also used

Good performance on invariance of 

size and view point change; 

Vulnerable to illumination change 

and color correlation between the 

fruit and the background

Principles Pros & Cons

Visual Features
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Machine/Deep

Learning

Design and analysis of algorithms that 

improve their performance based on 

observable data. Main models used: 

Artificial Neural Networks or Support 

Vector Machines

Promising technique that can 

produce a higher fruit recognition 

rates; Requires a longer training 

time and may not deal well with 

scenarios that are too complex

3D 

Reconstruction

Establishment of a mathematical model 

suitable for computer representation and 

processing of spatial objects. Process of 

reversing the 3D information collected by 

visual sensors

Technique able to gather more 

information; Often requires the use 

of empirical knowledge that can 

lead to unsatisfactory results; 

Sensitive to changes in illumination 

and some parts of the background

Template

matching

Technique for recognising portions of a 

given image that match with a specific 

template pattern. Based on similarity 

measures such as cross-correlation and 

sum of squared differences

Useful in contexts where the 

diversity of the target object is 

small enough; It does not work as 

well on harvesting robots because 

the agricultural environment is 

extremely variable

Voting

Computational technique in which each 

local visual evidence in the image votes 

for all possible global interpretations it 

could arise from. Two of the most 

poupular models used are Hough 

transform and circular Hough transform

Good technique for detecting 

shapes and patterns; Expensive in 

computation

Elementary 

methods

Approaching the problem via 

thresholding the visual feature

Simpler and easier to process 

models; Less robust, as the high 

variance of the environments 

makes algorithms little more than 

coarse and inaccurate 

segmentation

Principles Pros & Cons

Clustering

Form of unsupervised learning approach 

to partition the image into targets (fruits) 

and background. Some of the most 

clustering methods used are the K-

means clustering, X-means clustering or 

Fuzzy Cmeans

Useful when multiple visual cues 

are merged; Exhibits similar 

drawbacks as the elementary 

methods: sensitive to illumination 

conditions and needs to cope with 

feature points that do not separate 

well into clusters

Shape     

inference

Method of finding a shape that best fits 

the geometric evidence

measured from the image. Inference 

process can involve a variety of 

mechanisms such as voting, statistical 

inference, or optimisation

Works better with spherical fruits; It 

is not easy to build good models 

and some suffer from the 

computational cost

Image Analysis

(Cont.) 
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Appendix B 

Convolutional Neural Networks Architecture 

CNN can be defined as "deeper" ANNs that, unlike conventional ones, are faster at 

learning and interpreting complex, large-scale problems due to the sharing of weights 

and the use of more sophisticated models that allow immense parallelisation [68]. Figure 

B1 illustrates the architecture of CNNs that may include several convolution stages 

composed of 4 main componentes [65]: 

• Kernels (filter bank); 

 

• Convolution layer; 

 

• Non-linear activation function; 

 

• Pooling layer. 

 

 

 

 

 

 

 

Given a certain input image, kernels are responsible for detecting particular features 

at each point of that input, and thus its spatial translation will be transferred to the next 

layer without being altered. In the convolution layer, the 2D matrix representing the image 

undergoes a convolution, resulting in a smaller 2D kernel matrix. In this process a small 

filter operates from left to right in the image, from the top to the bottom, where at each 

location the sum of the products between each kernel and its input element is computed 

(Fig. B2) [65, 190]. The process is repeated using different kernel filters to obtain as 

many output feature maps as desired [191]. 

Figure B1 | Architecture and the main components that make up a CNN. Adapted from: Naranjo Torres, Mora [64]. 
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Then, an activation function is applied to the output generated by the kernel filter, 

which determines the behaviour of the output neuron. In CNNs, the most commonly used 

activation functions are: Rectified linear unit (ReLu), sigmoid and hyperbolic tangent [65]. 

The pooling layer, on the other hand, lowers the number of network parameters, reducing 

the spatial size of the convolution outputs. Two types of pooling can be used for this 

purpose: max pooling, which calculates the maximum value of each input field, or 

average pooling, which calculates the average (Fig. B3) [192, 193].  

 

 

 

 

 

 

 

Finally, the final output of all these convolution processes is converted to a 1D matrix 

and the fully connected layer uses them to classify the input image, just like a traditional 

ANN [65].

Figure B2 | Convolution operation with an input image (4x4) and a 3x3 kernel. Adapted from: Naranjo Torres, Mora [64]. 

Figure B3 | Pooling operations by using a 2x2 filters applied with a stride of 2. 
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Appendix C 

 

One-Stage Object Detectors 

 

Single Shot Multibox Detector 

The SSD approach is much faster than Faster-RCNN because it can simultaneously 

predict the object class and its bounding box. The input image goes through a series of 

convolution and pooling layers to generate feature maps at different scales. A 3x3 

convolution window evaluates, at each location of the feature maps, a small predefined 

set of anchor boxes, with different aspect ratios and scales, for which the model 

simultaneously predicts the probabilities of the class and the boundaries of the bounding 

boxes for different scales [66, 194] (Fig. C1). 

 

 

 

 

 

 

 

 

 

 

 

Figure C1 | SSD architecture, composed of a CNN as backbone and the convolution layers as head. 



 
FCUP 

Tomato robotic harvesting in protected horticulture: Machine Learning techniques for fruit 
detection and classification 

117 

 
 

You Only Look Once 

For YOLO framework, a CNN converts the input image into a dimensional data 

structure (tensor) of scores for object detection. The image is divided into a grid of cells 

(each cell has 1/32 of the resolution of the network input) and each cell is responsible for 

object detection [66] (Fig. C2). YOLO models have evolved over time and are now in 

their fifth documented version, the YOLOv521. The backbone used in these models 

belongs to Darknet, an open-source neural network [195]. In its first version (YOLOv1), 

unlike the SSD framework, no bounding boxes are used. Instead, the model directly 

predicts two bounding boxes and one class per grid cell [66]. The following versions 

underwent slight modifications, such as the implementation of anchor boxes (YOLOv2 

[196]), the addition of more convolution layers to the backbone or modifications at the 

head level, such as the multi-scale detector present in the YOLOv3 model [197], making 

the YOLO approach increasingly fast, accurate and robust to problems such as small 

object detection. 

 

 

 

 
21 YOLOv5 open source code (https://github.com/ultralytics/yolov5). Last accessed: 3 November 2021 

Figure C2 | YOLO architecture, composed by a Darknet neural network as backbone and the predicted tensor as head. 

https://github.com/ultralytics/yolov5
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Appendix D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D1 | Hue histogram mean of each sample used to build the model and its correlation with the respective class 

Class Sample Gaussian Mean

1 80.9

2 81.8

3 81.9

4 82.9

5 82.1

6 82.9

7 85.1

8 83.7

9 82.4

10 78.7

G
re

en

1 70.9

2 63.2

3 65.4

4 67.9

5 60.4

6 64.5

7 70.1

8 68

9 65.7

10 67.7

Tu
rn

in
g

1 59.7

2 56.8

3 53.8

4 53.8

5 57.8

6 58.7

7 59.9

8 56.1

9 58.2

10 54.8

Li
gh

t R
ed

1 50.6

2 48

3 49.9

4 51.7

5 44.3

6 46.6

7 50.4

8 51

9 47

10 51.4

R
ed

Hue Mean 
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Appendix E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E1 | SSC measurement for the 60 tomato samples collected. 

3.5 3.9

4 4

4 4

3.8 6

4 6.1

4.1 6

4.1 5.8

4.2 5.9

4.1 5.8

4.2 4.6

4 4.5

4.3 5

4 4

4.3 4

4.5 3.9

3.9 5

4 5.1

4 5

4 4.5

4 4.2

4.2 4.3

4 4.5

4 4.7

4.1 4.8

4 3.9

4.1 4.1

4 4.3

4.1 5

4.1 5

4.1 5

4.5 4.5

4.3 4.2

4.5 4.3

4.4 4.5

4.3 4.6

4.5 4.9

4.5 5.8

4.5 5.7

4.3 5.6

4.2 5

4.4 4.9

4.5 5

4.2 4.8

4.4 4.7

4 4.7

4.67

5.70

4.97

4.73

5.03

4.33

4.67

4.10

5.00

4.334.43

4.40

4.43

4.37

4.20

3.97

6.03

5.83

4.70

3.974.27

3.97

4.07

4.03

4.03

4.10

30 Turning

25 Turning

26 Turning

27 Turning

% Brix 

Mean

% Brix 

Mean

3.83

3.97

4.13

4.17

28 Turning

29 Turning

22 Turning

23 Turning

24 Turning

19 Turning

20 Turning

21 Turning

% Brix

Turning

17 Turning

18 Turning

% Brix Sample Class

16

14 Green

15 Green

10 Green

11 Green

12 Green

1 Green

2 Green

3 Green

Sample Class

13 Green

7 Green

8 Green

9 Green

4 Green

5 Green

6 Green
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(Cont.) 

4.8 4.5

4.3 4.9

5 4.9

4.2 5

4.5 5

4.8 5

4 4.9

4.5 4.5

4.2 4.6

4.2 4.4

4.8 4.5

4.4 4.5

5 6.2

4.6 6.1

4.9 6.3

4.5 4.2

4.6 4.1

4.9 4.1

5.7 5

5.8 5

5.8 5

4.3 4.3

4.6 4.3

4.7 4.3

4.6 5

4.7 5

4.1 5.2

4 4

4 4

4.4 3.9

4 4

4 4.2

4.2 4.1

3.9 3.9

4.1 3.9

4 4

4.5 4

4.1 3.9

4 4.1

4.6 4.4

5 4.2

5 4.5

3.8 7.1

4.2 7

4 7.2

3.97

4.10

3.93

4.00

4.37

7.10

4.77

5.00

4.67

4.47

6.20

4.13

5.00

4.30

5.07

4.07

4.00

4.20

4.87

4.00

4.70

4.50

4.23

4.47

4.83

4.67

60 Red

% Brix 

Mean

59 Red

Red

50 Red

Sample Class

31 Light Red

32 Light Red

% Brix 

Mean

5.77

4.53

4.47

4.13

57 Red

58 Red

54 Red

55 Red

56 Red

51 Red

52 Red

53 Red

48 Red

49

% Brix

46 Red

47 Red

45 Light Red

36 Light Red

37 Light Red

38 Light Red

33 Light Red

34 Light Red

35 Light Red

Sample Class % Brix

42 Light Red

43 Light Red

44 Light Red

39 Light Red

40 Light Red

41 Light Red


