18 research outputs found

    DETC2005-85594 DESIGN OPTIMISATION THROUGH FEATURE MAPPING FOR HIGH VALUE ADDED COMPONENTS: MANUFACTURING PERSPECTIVE

    Get PDF
    ABSTRACT In high value added component machining, achieving the required quality and cost is ensured by performing all machining quality critical operations in a single setting-up. It is paramount for the design to be checked for its manufacturability with the available manufacturing resources, tooling operations and quality critical machining carried out with minimum number of setting. The hypothesis of this paper is that a higher level mapping between the designs and manufacturing features of the component in question at design stage can pave the way for ensuring that the above requirement is met. This paper establishes the need for such a mapping and details the requirement and specifications of such a mapping

    A Divide-and-Conquer Algorithm for Machining Feature Recognition over Network

    Get PDF
    In this paper, a divide-and-conquer algorithm for machining feature recognition over network is presented. The algorithm consists of three steps. First, decompose the part and its stock into a number of sub-objects in the client and transfer the sub-objects to the server one by one. Meanwhile, perform machining feature recognition on each sub-object using the MCSG based approach in the server in parallel. Finally, generate the machining feature model of the part by synthesizing all the machining features including decomposed features recognized from all the sub-objects and send it back to the client. With divide-and-conquer and parallel computing, the algorithm is able to decrease the delay of transferring a complex CAD model over network and improve the capability of handling complex parts. Implementation details are included and some test results are given

    Auto-Recognition of Chamfer Features by Rule Based Method and Auto-Generation of Delta Volume

    Get PDF
    Integration of computer aided process planning (CAPP) in CAD/CAM contributes to a successful product manufacturing and to achieve an automated process planning, auto-recognition of chamfer features of a product is necessary. An effort has been made (i) to automatically recognize the chamfer features of regular form and freeform computer aided design (CAD) models using rule based method and (ii) to auto-generate delta volume (DV) from stock model. Based on the conditions described the chamfer features of an input CAD model are successfully recognized and delta volume required to be machined in chamfering process is obtained from stock model

    Extraction of generative processes from B-Rep shapes and application to idealization transformations

    Get PDF
    International audienceA construction tree is a set of shape generation processes commonly produced with CAD modelers during a design process of B-Rep objects. However, a construction tree does not bring all the desired properties in many configurations: dimension modifications, idealization processes, etc. Generating a non trivial set of generative processes, possibly forming a construction graph, can significantly improve the adequacy of some of these generative processes to meet user's application needs. This paper proposes to extract generative processes from a given B-rep shape as a high-level shape description. To evaluate the usefulness of this description, finite element analyses (FEA) and particularly idealizations are the applications selected to evaluate the adequacy of additive generative processes. Non trivial construction trees containing generic extrusion and revolution primitives behave like well established CSG trees. Advantageously, the proposed approach is primitive-based, which ensures that any generative process of the construction graph does preserve the realizability of the corresponding volume. In the context of FEA, connections between idealized primitives of a construction graph can be efficiently performed using their interfaces. Consequently, generative processes of a construction graph become a high-level object structure that can be tailored to idealizations of primitives and robust connections between them

    Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in CAD Models

    Get PDF
    This research presents a feature recognition algorithm for the automated identification of duplicate geometries in the CAD assembly. The duplicate geometry is one of the seven indicators of the lazy parts mass reduction method. The lazy parts method is a light weight engineering method that is used for analyzing parts with the mass reduction potential. The duplicate geometry is defined as any geometries lying equal to or within the threshold distance with the user-defined orientation between them and have the percentage similarity that is equal to or greater than the threshold value. The feature recognition system developed in this research for the identification of duplicate geometries is also extended to retrieve the weighted bipartite graph of part connections for the assembly time estimation. The weighted bipartite graph is used as input for the part connectivity based assembly time estimation method. The SolidWorks API software development kit is used in this research to develop a feature recognition system in SolidWorks CAD software package using C++ programming language. The feature recognition system built in the SolidWorks CAD software uses a combination of topology and geometric data for the evaluation of duplicate geometry. The measurement of distances between the sampling points strategy is used for the duplicate geometry feature recognition. The feature recognition algorithm has three phases of evaluation: first, is the evaluation for threshold distance condition of parts in the CAD assembly. Second, the part pairs that have satisfied the threshold distance condition are evaluated for the orientation condition. The threshold distance and orientation are the necessary but not the sufficient conditions for duplicate geometries. In the third phase, the geometries that have satisfied orientation condition are evaluated for the percentage similarity condition. The geometries that satisfy the percentage similarity condition are highlighted in order to help designers review the results of the duplicate geometry analysis. The test cases are used to validate the algorithm against the requirements list. The test cases are designed to check the performance of the algorithm for the evaluation of the threshold distance, orientation, and percentage similarity condition. The results indicate that the duplicate geometry algorithm is able to successfully conduct all the three phases of evaluation. The algorithm is independent of the geometric type and is able to analyze planar, cylindrical, conical, spherical, freeform, and toroidal shapes. The number of sampling points generated on the faces of parts for the orientation and percentage similarity evaluation has the significant effect on the analysis time. The worst case complexity of the algorithm is the big O (nC2x m12 x m22x p4), where n = the number of parts in the assembly m1 = the number of faces in the parts that meet the threshold distance condition m2 = the number of faces that meet the orientation condition p = the number of sampling points on the face The duplicate geometry feature recognition approach is used to demonstrate the applicability in the extraction of assembly relations for the part connectivity based assembly time estimation method. The algorithm is also able to extract part connectivity information for the patterns. Further research is required to automate the identification of other laziness indicators in order to make the lazy parts method a completely automated tool. With regards to the complete automation of part connectivity based assembly time estimation method, the duplicate geometry feature recognition system needs integration with the algorithm for the computation of bipartite graph of part connections for the prediction of assembly time

    Manufacturing Feature Recognition With 2D Convolutional Neural Networks

    Get PDF
    Feature recognition is a critical sub-discipline of CAD/CAM that focuses on the design and implementation of algorithms for automated identification of manufacturing features. The development of feature recognition methods has been active for more than two decades for academic research. However, in this domain, there are still many drawbacks that hinder its practical applications, such as lack of robustness, inability to learn, limited domain of features, and computational complexity. The most critical one is the difficulty of recognizing interacting features, which arises from the fact that feature interactions change the boundaries that are indispensable for characterizing a feature. This research presents a feature recognition method based on 2D convolutional neural networks (CNNs). First, a novel feature representation scheme based on heat kernel signature is developed. Heat Kernel Signature (HKS) is a concise and efficient pointwise shape descriptor. It can present both the topology and geometry characteristics of a 3D model. Besides informative and unambiguity, it also has advantages like robustness of topology and geometry variations, translation, rotation and scale invariance. To be inputted into CNNs, CAD models are discretized by tessellation. Then, its heat persistence map is transformed into 2D histograms by the percentage similarity clustering and node embedding techniques. A large dataset of CAD models is built by randomly sampling for training the CNN models and validating the idea. The dataset includes ten different types of isolated v features and fifteen pairs of interacting features. The results of recognizing isolated features have shown that our method has better performance than any existing ANN based approaches. Our feature recognition framework offers the advantages of learning and generalization. It is independent of feature selection and could be extended to various features without any need to redesign the algorithm. The results of recognizing interacting features indicate that the HKS feature representation scheme is effective in handling the boundary loss caused by feature interactions. The state-of-the-art performance of interacting features recognition has been improved

    Automated Volumetric Feature Extraction from the Machining Perspective

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore