
Clemson University
TigerPrints

All Theses Theses

12-2012

Development of Feature Recognition Algorithm
for Automated Identification of Duplicate
Geometries in CAD Models
Aravind Shanthakumar
Clemson University, ashanth@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Shanthakumar, Aravind, "Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in
CAD Models" (2012). All Theses. 1513.
https://tigerprints.clemson.edu/all_theses/1513

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1513?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DEVELOPMENT OF FEATURE RECOGNITION ALGORITHM FOR AUTOMATED

IDENTIFICATION OF DUPLICATE GEOMETRIES IN CAD MODELS

A Thesis

Presented to

The Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Aravind Shanthakumar

December 2012

Accepted by:

Dr. Joshua D. Summers, Committee Chair

Dr. Georges M. Fadel

Dr. Brian Malloy

 ii

ABSTRACT

This research presents a feature recognition algorithm for the automated

identification of duplicate geometries in the CAD assembly. The duplicate geometry is

one of the seven indicators of the lazy parts mass reduction method. The lazy parts

method is a light weight engineering method that is used for analyzing parts with the

mass reduction potential. The duplicate geometry is defined as any geometries lying

equal to or within the threshold distance with the user-defined orientation between them

and have the percentage similarity that is equal to or greater than the threshold value. The

feature recognition system developed in this research for the identification of duplicate

geometries is also extended to retrieve the weighted bipartite graph of part connections

for the assembly time estimation. The weighted bipartite graph is used as input for the

part connectivity based assembly time estimation method.

 The SolidWorks API software development kit is used in this research to

develop a feature recognition system in SolidWorks CAD software package using C++

programming language. The feature recognition system built in the SolidWorks CAD

software uses a combination of topology and geometric data for the evaluation of

duplicate geometry. The measurement of distances between the sampling points strategy

is used for the duplicate geometry feature recognition. The feature recognition algorithm

has three phases of evaluation: first, is the evaluation for threshold distance condition of

parts in the CAD assembly. Second, the part pairs that have satisfied the threshold

distance condition are evaluated for the orientation condition. The threshold distance and

 iii

orientation are the necessary but not the sufficient conditions for duplicate geometries. In

the third phase, the geometries that have satisfied orientation condition are evaluated for

the percentage similarity condition. The geometries that satisfy the percentage similarity

condition are highlighted in order to help designers review the results of the duplicate

geometry analysis.

 The test cases are used to validate the algorithm against the requirements

list. The test cases are designed to check the performance of the algorithm for the

evaluation of the threshold distance, orientation, and percentage similarity condition. The

results indicate that the duplicate geometry algorithm is able to successfully conduct all

the three phases of evaluation. The algorithm is independent of the geometric type and is

able to analyze planar, cylindrical, conical, spherical, freeform, and toroidal shapes. The

number of sampling points generated on the faces of parts for the orientation and

percentage similarity evaluation has the significant effect on the analysis time. The worst

case complexity of the algorithm is the big O (
n
C2x m1

2
x m2

2
x p

4
), where

n = the number of parts in the assembly

m1 = the number of faces in the parts that meet the threshold distance condition

m2 = the number of faces that meet the orientation condition

p = the number of sampling points on the face

The duplicate geometry feature recognition approach is used to demonstrate the

applicability in the extraction of assembly relations for the part connectivity based

assembly time estimation method. The algorithm is also able to extract part connectivity

 iv

information for the patterns. Further research is required to automate the identification of

other laziness indicators in order to make the lazy parts method a completely automated

tool. With regards to the complete automation of part connectivity based assembly time

estimation method, the duplicate geometry feature recognition system needs integration

with the algorithm for the computation of bipartite graph of part connections for the

prediction of assembly time.

 v

DEDICATION

To my parents Shanthakumar and Leela Shanthakumar, and my hometown

Bangalore.

 vi

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Joshua D. Summers for giving me an

opportunity to work on this research. I also thank him for his support and patience that

offered me confidence to do this research. He has provided me opportunities to work and

collaborate on different projects and technical papers for which I will remain grateful to

him.

I am equally thankful to Dr. Georges M. Fadel who had offered me financial

assistance and the opportunity to work on a research project. I also thank him for his

support and feedback on my research.

I am grateful to Dr. Brian Malloy who taught me C++ programming language

which was essential for this research. The programming courses I took with him provided

me the skill set to work on this research. I express my gratitude to Dr. Malloy for being

supportive and agreeing to be a part of the committee.

I thank the members of the CEDAR lab for all the help. I would specially like to

thank Eric Owensby, my research partner and a good friend. I would also like to thank

Dr. Chiradeep Sen for his guidance during difficult times.

 vii

TABLE OF CONTENTS

Abstract ... ii

Dedication ... v

Acknowledgments.. vi

List of Tables ... ix

List of Figures ... x

Chapter One : motivation - needs for duplicate geometry feature

recognition algorithm .. 1

1.1 Manual Identification of Lazy Parts Indicators Problem .. 1

1.2 Manual Retrieval of Physical Connections Problem for

Assembly Time Estimation ... 7

1.3 Inference - Necessity for a Duplicate Geometry Algorithm 18

1.4 Overview of Thesis ... 21

Chapter Two : literature Review of feature recognition algorithms 23

2.1 Graph-Based Method .. 24

2.2 Hint-Based Method ... 30

2.3 Convex Hull Decomposition Method ... 32

2.4 Cell Based Volumetric Decomposition Method ... 35

2.5 Hybrid Method .. 37

2.6 Comparison of Techniques ... 39

Chapter Three : Research objective .. 43

3.1 Definition of Duplicate Geometry .. 43

3.2 Thesis Objective ... 49

3.3 Establishing Requirements ... 50

Chapter Four : Design and implementation .. 54

4.1 System Architecture .. 54

4.2 Duplicate Geometry Recognition Approach ... 57

 viii

4.3 Implementation ... 60

Chapter Five : Validation .. 87

5.1 Test-Cases to Check for Threshold Distance Condition ... 87

5.2 Test-Cases to Check for Orientation Condition .. 91

5.3 Test-Cases to Check for Percentage Similarity between

Geometries .. 96

5.4 Highlight Duplicate Geometries ... 101

5.5 Effect of Geometric Types on the Evaluation .. 102

5.6 Effect of the Number of Parts on the Bounding-box

Algorithm .. 107

5.7 Effect of the Number of Sampling Points on the Percentage

Similarity Algorithm ... 108

5.8 Algorithm offers Extensibility to obtain Weighted Assembly

Relations ... 110

5.9 External Validation ... 113

Chapter Six : Future work and conclusion .. 124

6.1 Research Contribution .. 124

6.2 Future Work .. 126

6.3 Conclusion .. 128

Chapter Seven : references .. 132

Appendix A: Test Cases to Check Threshold Distance Condition 139

Appendix B: Test Cases to Check Orientation Condition .. 141

Appendix C: Test-Cases to Check for Percentage Similarity

between Geometries .. 145

 ix

LIST OF TABLES

Table 1-2: All mate types offered by SolidWorks software [4] .. 15

Table 2-1: Additional attributes of EAAG [31] .. 38

Table2-2: Comparison of feature recognition techniques ... 41

Table 3-1: Subjectivity in the old definition addressed in revised

definition ... 45

Table 4-1: Example list showing faces stored as pairs that have

orientation within the user-defined angle and tolerance ... 78

Table 5-1: Test cases for threshold distance ... 89

Table 5-2: Test cases used check for orientation between face pairs 93

Table 5-3: Test cases to check for percentage similarity .. 98

Table 5-4: Duplicate geometry analysis results for different

geometric types ... 103

Table 5-5: Input parameters for the algorithm .. 114

Table 5-6: Anticipated connections .. 114

Table 5-7: Input parameters for the caster assembly .. 118

Table 5-8: Anticipated part connections for caster assembly ... 118

Table 5-9: Input parameters for the punch assembly .. 122

Table 5-10: Anticipated part connections for punch assembly 122

Table 5-11: Assembly relations extracted for the punch assembly 122

 x

LIST OF FIGURES

Figure 1.1: Left – Section view of a fastener connection; Right –

Bi-partite graph showing connectivity between three parts .. 9

Figure 1.2: Part connections and relationships developed for an

automotive sub-assembly [18] .. 11

Figure 1.3: Hard drive packaging with foam [5] .. 16

Figure 1.4: Different 3D shapes in geometric modeling... 20

Figure 2.1: Interacting features; square pocket is split into two

halves by a slot .. 25

Figure 2.2: Cube with a pocket ... 26

Figure 2.3: AAG for the part in Figure 2.2 ... 27

Figure 2.4: Bi-connected and Tri-connected acyclic directed graph 28

Figure 2.5: Hints generated through ray-firing ... 32

Figure 2.6: Left: Part with a cylindrical protrusion; Right: Convex

hull for the part.. 34

Figure 2.7: (a) Part; (b)cell decomposition of the delta volume 36

Figure 2.8: Two distinct maximal volume interpretation ... 37

Figure 3.1: Cable Guide Attached to the Underside of the Battery

[2] .. 44

Figure 3.2: Geometries that are lying within or equal to threshold

distance are considered for duplicate geometry analysis .. 46

Figure 3.3: The angle between the outward normals from opposing

geometries need to be within the threshold tolerance ... 47

Figure 3.4: The distance measurements between the sampling

points ... 49

Figure 4.1: System Architecture ... 54

Figure 4.2: SolidWorks GUI showing Find Duplicate Geometries

button built on the panel and drop down menu... 55

Figure 4.3: High level description of the duplicate geometry

algorithm ... 59

Figure 4.4: Flowchart representing duplicate geometry algorithm 60

Figure 4.5: SolidWorks GUI with the duplicate geometry button 61

 xi

Figure 4.6: List of visible parts in the SolidWorks feature manager

tree for the motor assembly shown in the right... 62

Figure 4.7: Example of an axis aligned bounding box ... 64

Figure 4.8: Bounding box types .. 65

Figure 4.9: Bounding box coordinates returned in SolidWorks 66

Figure 4.10: Bounding box expanded to check for threshold

distance condition ... 67

Figure 4.11: Intersection calculation using bounding box .. 70

Figure 4.12: Parts meeting the threshold distance condition stored

as pairs in multimap container .. 71

Figure 4.13: Topological data structure in SolidWorks .. 72

Figure 4.14: Faces extracted from the bodies in the part pair ... 73

Figure 4.15: Each face from one set is compared with all faces

from the other set for orientation .. 74

Figure 4.16: Tessellating the face to generate sampling points .. 75

Figure 4.17: Surface outward normal for a face at different

sampling points ... 76

Figure 4.18: Unit normals retrieved at sampling points for the two

faces .. 77

Figure 4.19: Measurement of distance between sampling points 79

Figure 4.20: Face consisting of lesser number of sampling points is

used to start the measurement ... 81

Figure 4.21: Distances measured from one sampling point on Face

1 to all sampling points on Face 2 .. 83

Figure 4.22: Calculating percentage similarity between two

geometries ... 84

Figure 5.1:Instances of duplicate geometry highlighted in red by

the algorithm ... 102

Figure 5.2: Time consumed for the evaluation of orientation

condition for different geometric types... 106

Figure 5.3: Effect of the number of parts on the bounding-box

algorithm ... 108

Figure 5.4: Effect of the number of sampling points on the analysis

time for the evaluation of percentage similarity ... 110

 xii

Figure 5.5: Weighted bipartite graph of part connectivity

information extracted from the motor assembly ... 112

Figure 5.6: (a) The assembly of vice and the constituent parts; (b)

Part connection faces are highlighted by the algorithm in red .. 115

Figure 5.7: Part connections extracted for the vice assembly ... 116

Figure 5.8: The caster assembly from SolidWorks library ... 117

Figure 5.9: Part connections retrieved for the caster assembly 120

Figure 5.10: The punch assembly ... 121

 1

CHAPTER ONE: MOTIVATION - NEEDS FOR DUPLICATE GEOMETRY

FEATURE RECOGNITION ALGORITHM

Mechanical Computer Aided Design (CAD) software provides designers and

engineers with various tools to create and work with the virtual representation of the

physical artifact being designed. The CAD tools empower engineers to conduct design

and analysis of the desired product with increased productivity and reduced errors. This

research draws motivation from two distinct research works that compels developing a

feature recognition system in CAD software to support design reasoning of duplicate

geometry identification and analysis. The first application is for the automated

identification of duplicate geometries in CAD assembly for the mass reduction analysis in

lightweight engineering. The second application is to extract physical connections from

the CAD assembly to develop the connectivity graph for assembly time estimation. Each

of these applications will be discussed in greater detail below as system requirements are

defined.

1.1 Manual Identification of Lazy Parts Indicators Problem

The Lazy Parts Indication Mass Reduction Method (LPIMRM) is a lightweight

engineering tool that was developed at Clemson University to provide a systematic

approach for engineers to select components for redesign [1–3].

1.1.1 The Method and Benefits

 This method was developed through collaboration between Clemson University

and a major original equipment manufacturer (OEM) to develop lightweight engineering

 2

tools [4–6]. The collaborative effort was focused on the application of lightweight

engineering on five attributes of the design: requirements, concept development,

optimization, assembly, and material replacement [7,8].

Originally, this method was envisioned to support lightweight engineering in

automotive vehicles. However, the performance and scalability of this method to smaller

mechanical systems was studied and assessed in [3]. The method provides a list of

identifiers called laziness indicators to select components for mass reduction analysis.

The method has five phases to estimate percentage of mass reduction of which reviewing

the components against laziness indicators is one of the phase.

Formal definition of the lazy parts, description and examples for the laziness

indicators, and the process for identifying lazy parts can be found in [1,2]. To help with

understanding the motivation behind this research the definition of lazy parts and the

laziness indicators are briefly discussed below.

1.1.2 Lazy Parts Definition

The formal definition for lazy parts is any part or assembly in an automobile that

would include additional mass due to one of five reasons [1]. First, the part’s purpose

may be only for the assembly process and therefore, after the assembly process, the

presence of this part in the assembly is not necessary for full in-use performance. An

example for this type of lazy part is a bracket used for connecting two spatially separated

parts. Second, the part satisfies no functional requirement and the inclusion of this part

may be due to the presence of certain specific features. The nuts are the example for this

 3

type which is only used to fasten the bolts. If screws, rivets, or adhesive is used then, the

use of nuts is not required. Third, the part or system could be redesigned and replaced by

a lighter system. Fourth, two or more parts could be integrated into a single component

and still maintain the same overall system function. The third and fourth type of lazy

parts requires engineering knowledge for the manipulation of parts. Fifth, a part is

considered lazy if there is a possibility for optimization of the part for mass reduction [1].

An example for this type of lazy parts is the structural parts that can be optimized for

weight for the given mechanical stresses. Based on the five conditions, a list of indicators

was developed to help in the identification of lazy parts. These indicators are pointers that

would draw attention to the parts with mass reduction potential. The indicators are

discussed in the next section.

1.1.3 Laziness Indicators

The laziness indicators represent a list of hints that could be referred to filter

components for mass reduction analysis. The purpose of indicators are to draw the focus

of a designer to components that has the potential for mass reduction [1]. Regardless of

the expertise of the designer, the indicators help only in selecting the components for

mass reduction. The seven indicators of LPIMRM are discussed in the following section

(see Table 1-1 for examples).

 Rigid-to-Rigid Connection – A component that connects one rigid component to

another and prevents relative movements between them (Table 1-1 A).

 Support for a Flexible, Non-moving Part – A component that supports flexible

parts and secures them from moving during vehicle operation (Table 1-1 B).

 4

 Positioning Feature – A feature or a component that is useful only for positioning

the component in the assembly (Table 1-1 C).

 Bridging System – A component that transfers material or energy between two

systems that are separated (Table 1-1 D).

 Material Flow Restriction – A component whose purpose is to restrict the flow of

material into or outside a system (Table 1-1 E).

 Fastener – A part that secures two or more components in place (Table 1-1 F).

 Duplicate Geometry – Two closely located geometries that are similar to each

other. (Table 1-1 G). The research presented in this thesis addressed this identifier

with an aim to automate the recognition of this identifier in CAD assemblies.

Table 1-1: Examples of Laziness Indicators

A. Rigid-to-Rigid Connection
B. Support for a Flexible, Non-

moving Part

CAD model of Black and Decker’s One Touch Chopper

showing an instance of rigid-to-rigid connection
Clip Securing Wire Harness [1]

Wire Harness

Clip
Base plate

Motor sub-assembly

Mounting bracket

 5

C. Positioning Feature
D. Bridging System

Positioning feature on a safety switch Electrical wire – bridging system between battery and

servo from an RC car [3]

E. Material Flow

Restriction
F. Fastener G. Duplicate Geometry

Enclosure in headlight cluster Hexagonal head bolt

Undersurface of the chip and top surface of

One Touch Chopper casing are duplicate to

each other [9]

1.1.4 Limitation and Motivation

For a large CAD assembly, supposing the assembly of an entire vehicle, manually

parsing through the list of above discussed indicators against each component to identify

lazy parts becomes tedious resulting in a large pre-analysis time and increased likelihood

of human error. This limitation can be overcome by integrating the laziness indicators

Assembly

position

One

Touch

Chopper

casing

Chip

Wiring

Safety

switch

Positioning feature

 6

into a CAD system that can use feature recognition technology to identify lazy parts

indicators. Over one thousand components were manually evaluated for an automotive

vehicle at a large OEM and recommended the development of a CAD system for the

automation of laziness indicators [1].

1.1.5 Research Challenges

Integration of all the seven laziness indicators into a CAD system necessitates

separate research for each of the indicators. Feature Recognition (FR) of rigid-to-rigid

connection and support-for-flexible part requires reasoning for differentiating a rigid

component from a flexible component. One of the options could be to use material

property information from the CAD software and use rule-based approach of FR to fulfill

the task. Much of FR algorithms available in the literature could be explored and suitable

ones adjusted to identify positioning features. Semantics or hint-based approach could be

used to detect fasteners in the assembly. A FR algorithm for duplicate geometry needs to

consider the degree of similarity and the proximity conditions. Certainly, all indicators

require separate research to address and overcome the challenges.

The research of this thesis focuses on the development of a tool to automatically

identify duplicate geometry as a laziness indicator. The definition of the duplicate

geometry is broad and needs refinement for the purpose of automation [1]. To illustrate

further, the definition “two closely located geometries that are similar to each other”

presents three questions that needs to be answered. First, what distance between the

geometries can be considered close? Second, how to determine if two geometries are

similar and lastly, what is the amount of similarity that would make the two geometries

 7

duplicate. While formalizing the definition for the duplicate geometry (discussed in

Chapter Three), all the three questions are addressed. The answers for these questions

may change based on the application and users, therefore these questions are treated as

user-defined parameters in this research.

Although, duplicate geometry lazy part indicator is the primary motivation for this

research, another research area where this FR system could be useful is for the automated

assembly time estimation method that will be discussed in the next section.

1.2 Manual Retrieval of Physical Connections Problem for Assembly Time Estimation

Assembly Time Estimation (ATE) is a useful redesign tool that offers a

quantitative scale to compare competitive designs. ATE is a part of Design for Assembly

(DFA) method used for cost analysis, part count reduction, and comparison of different

designs [10–12]. The research in the field of ATE has progressed from manual rule-

based system [11,13,14] towards automation with integration into CAD system [9,15–

19].

For this research, the motivation is the automation of ATE method that uses the

information from a CAD system. The advantage of using a CAD system for DFA

analysis is the ability to extract different types of data for automated reasoning; some

examples for such type of data include geometry, assembly coordinates, volume, mass,

part count, and assembly constraints. More recent works on ATE uses part connectivity

information from the assembly [18,20] and the assembly mates [9,19] from a CAD file.

This approach is aimed at reducing the number of user inputs and subjectivity elements

 8

prevalent in previous DFA methods [21]. Both the approaches are semi-automated and

offer scope for improvement that forms the motivation for this research. The discussion

on these methods is presented in the following section. Presently, the part connectivity

information is manually extracted from CAD data [6,22,23]. However, the automated

retrieval of part connections from a CAD system could yield benefits such as reduced

analysis time and reduced human inputs.

1.2.1 Connectivity Based Assembly Time Estimation Method

The Assembly Time Estimation Method based on connective complexity metrics,

developed at Clemson University, uses a mathematical model based on the part

connections in the assembly to estimate the assembly time [20]. The assembly relations

are manually retrieved from the CAD assembly file for input into the artificial neural-net.

Based on the study in [21], this method is reported to be suitable for automation due to

the use of objective information for inputs. The construction of assembly relations in this

method is presently not automated and therefore, the method is time consuming and

presents the possibility for human error in the construction of assembly relations [18].

Besides automation, another benefit of using objective information as input is the

repeatability of the predicted assembly time for a given assembly.

Bi-partite graphs are used for the representation of the assembly relations from the

CAD assembly file. The method lists four types of assembly relations that are based on

the physical connections between parts in the assembly. A physical connection is the

contact between parts in the assembly. The four assembly relations are: surface contact

connection (two flat surfaces touching each other), fastener connection that includes all

 9

types of clamping, snap, press, and interference fit connection, and other connections

such as shaft and a hole instance and electrical types. Figure 1.1 shows an example of the

bi-partite graph developed for a fastener assembly relationship [20]. In the example, the

bolt fastens the Plate_top having a clearance hole to the Part_bottom having a tapped

hole. The bi-partite graph used in this method (see Figure 1.1 right) only provides

information about the assembly relationship between the three parts and not the assembly

order.

Figure 1.1: Left – Section view of a fastener connection; Right – Bi-partite graph

showing connectivity between three parts

The part connectivity information and the metrics based on part connections are

both fundamental to this method. Presently, the part connectivity information is captured

in the form of a bipartite graph. The current research challenge is constructing the graph

of part connections from the CAD assembly file. In the present state, the extraction of

part connections and developing metrics are performed manually which is a tedious

process. To illustrate further, the example shown in Figure 1.2 is from an automotive

1

2

3

1.Bolt

2.Plate_top

3.Part_bottom

Bolting Instance

 10

sub-assembly [18] where the part connectivity graph is developed manually by

examining the assembly relationship. The sub-assembly is manually analyzed and the

connections between parts are recorded as a bipartite graph that leads to:

 Increased model set-up time: Depending on the size of the assembly, the

time spent on the analysis and the verification of part connections varies

and results in the time consumption for setting up the graph.

 Erroneous connections: The manually generated part connectivity graph

requires quality check to ensure that the erroneous connections are not

recorded or the connections are not missed.

 Integration of sub-assemblies and the main assembly: The presence of

sub-assemblies requires the integration of the part connectivity graphs

between sub-assemblies and the integration of part connectivity graphs of

the main assembly and the sub-assemblies. This phase requires additional

time and resources.

The presence of such issues in the development of complexity metrics can lead to

erroneous assembly time estimation and in turn can lead to design reasoning on wrong

data.

 11

Figure 1.2: Part connections and relationships developed for an automotive sub-

assembly [18]

Certainly, it is evident from the identified issues that there is a need for the

automated generation of part connectivity graph from the CAD assembly models. To this

end, the research in [9] demonstrates the use of assembly mates for the automated

generation of part connectivity graph but is limited to the type of mates offered by the

CAD software and the type and the number of mates used by the user. Also, the part

connectivity graph used for input in this method does not consider the amount of overlap

between the connected parts. The motivation of the research presented in this thesis is to

extract the part connectivity graph and the amount of overlap between the connected

parts.

 12

1.2.2 Product Complexity Method Based on Neural Networks

The method is similar to the Connective Complexity method with regard to using

part connections for the assembly time prediction but differs in the model development

technique. In this method, the artificial neural network (ANN) approach is selected to

develop the model in place of the previously used regression analysis [18]. The ANN was

selected due to its capabilities of handling the non-linearity of the metrics [1]. The

method is intended for the assembly time estimation of automotive systems and is

derived from the original part connectivity based method [18].

The Product Complexity method demonstrates its applicability to the automotive

industry with the assembly time estimates having a deviation of ±15% from the target

values. However, problems associated with manual construction of part connectivity

graph are similar to the issues discussed in section 1.2.1 for the part connectivity method.

Increased model set up time, erroneous connections, and integration of part connections

between sub-assembly and main assembly offers a need for developing computer

algorithm for automated generation of part connectivity graph.

 The challenges that need to be overcome for the manual extraction of physical

connections for automotive assemblies are further amplified due to the complexity of the

system. Here complexity may be due to the large number of components in the system,

difficulty in disassembling certain systems into smaller elements, identifying concealed

connections such as adhesives and interference fits, and the size of the system to list a

few.

 13

A feature recognition algorithm to extract connectivity graph is not presently

found in the literature that would help in the automated data collection process [18].

However, a more recent research looked at using the assembly mates from CAD system

to build the connectivity graph, but that is dependent on the type of mate used, whether

the assembly is fully constrained or partially constrained, and the user practices [19]. This

approach leads to some amount of variation as the assembly mates selected depends on

the user preference and practices. Therefore, a feature recognition algorithm to retrieve

physical connections would be a useful tool repeatability of the results. The automation

of the extraction of physical connectivity graph is common to both the product

complexity method and the part connectivity based method. The algorithm can support

both these methods and hence demonstrate the need in multiple DFA methods.

1.2.3 Assembly Mates Based Time Estimation Problem

Based on the study that evaluated Boothroyd and Dewhurst DFA method and the

Connective Complexity DFA method for feasibility of automation, the Connective

Complexity method was selected due to its objective inputs that could be retrieved from

solid modeling software [9]. Solid modeling software is a popular tool used in the

product development process [2]. The benefits offered by solid modeling software are

improved product quality, reduced product development time, reduced product cost, and

increased performance [3]. CAD software package is generally used across all product

development companies for the representation and exchange of the part model data. The

assembly mates based time estimation method makes use of the information contained in

CAD models to build the complexity metrics.

 14

The method uses the mates, which are used to constrain solid models in a CAD

assembly file as a substitute for physical connections. The physical connections from

Connective Complexity method represent the types of connections between components;

for example, surface contacts, fasteners, fits (snap, press, and interference), and other

connections (shafts, springs, and electrical). Extraction of such information from CAD

software requires a feature recognition algorithm with the capability to identify physical

connections. For this purpose, the feature recognition algorithm needs to evaluate all

features in the solid model and perform comparisons with features from other models in

the assembly to identify the physical connections. The computational effort of such an

algorithm can get expensive depending on the size of the assembly and the number of

features in the solid model. Therefore, as an alternate solution assembly mates were

selected to represent the connections between the components in this method.

The mates are used between the assembly components to constrain their degrees

of freedom at correct locations to simulate the real world assembly. Hence, the mates can

offer information about the components’ location and their connectivity relationship in

the assembly. Adding mates is a necessary part of CAD modeling practice that is helpful

in making assembly drawings and performing analyses (CAE, tolerance, motion, and

packaging). In this method, the SolidWorks CAD software is used for the research and

hence the mates offered by SolidWorks software were utilized to develop the complexity

metrics. Table 1-2 shows the list of mates offered by SolidWorks software for the 2010

education edition.

 15

Table 1-2: All mate types offered by SolidWorks software [4]

 Mate Types Geometric Entities

S
ta

n
d

ar
d

Coincident Coincides faces, edges, planes, and vertices on the same plane

Parallel Makes selected geometric entities parallel

Perpendicular Makes selected geometric entities perpendicular to each other

Tangent Places a geometric entity tangential to a spherical or cylindrical entity

Lock Freezes the present position and orientation of the part

Distance Maintains specified distance between geometric entities

Angle Maintains specified angle between geometric entities (orientation)

A
d
v

an
ce

d

Symmetric Makes similar entities symmetric about a plane

Width Centers to the width of the groove

Path Constrains a point to a path

Linear Establishes linear relationship between two components

Limit Limits movement of components to a specified tolerance

M
ec

h
an

ic
al

Cam Makes a cylinder, plane, or point to be coincident or tangent to a series

of tangent extruded faces
Gear Makes two components to rotate relative to one another about selected

axes
Hinge Allows one rotational degree of freedom

Rack and Pinion Linear translation of a part causes rotation in the other

Screw concentric and pitch relationship between rotation of one and

translation of the other
Universal Joint Rotation of one component about its axis is driven by rotation of the

other about its axis

The mates based connectivity relationship established for all components in the

assembly is a bi-partite graph of components’ name that indicates if a mate was defined

between the two components. Once the bi-partite graph of mate relationship is

established, the process followed to develop the assembly time estimation model is

similar to the process followed in the Product Complexity method with artificial neural-

nets. The procedure for this method is, first, the SolidWorks add-in developed as part of

this research gets the components name between which a mate is defined from the

SolidWorks feature manager tree and forms a bi-partite graph [9]. Second, the graph is

analyzed with a Matlab algorithm that generates twenty-nine different complexity

 16

metrics. Third, these complexity metrics in conjunction with the respective MTM times

for the assembly is used for neural-net training. Based on the neural-net training

conducted for twenty-four products, a relationship is developed between the complexity

metrics and MTM assembly times that is used for the assembly time estimation.

Although, the assembly mates based time estimation method demonstrates

potential for complete automation of the DFA method it is shown that this method is

sensitive to the number of mates defined in the assembly. The number of mates and the

type of mates used are factors that depend upon the geometry, best practices, user

preference, software, and the application the CAD assembly is intended for. A study was

conducted to evaluate the variation in the predicted assembly time when different

designers constrain the same assembly file and the general variation is observed to range

from -7% to +27% [9]. The sensitivity of the assembly times with respect to the use of

different mate types is acknowledged but not yet been explored. For instance, the

assembly of hard-drive packaging with foam (see Figure 1.3) demonstrates a case where

this assembly could be constrained alike with the use of different types of mates.

Figure 1.3: Hard drive packaging with foam [5]

Foam Inner Face

Foam Interior

Face

Hard-disc Face

 17

The distance mate, lock, and coincident mate discussed in the Table 1-2: All mate

types offered by SolidWorks software Table 1-2 can all be used to constrain the two

foams in its proper location. The distance mate could establish a distance relationship

between the two inner-faces of the foam; the lock mate can arrest the parts in their current

location; and coincidence mate can mate interior faces of the foam with the respective

hard disc faces. This type of variability can exist for all components in the assembly.

Another type of variation discussed in the research is the variation in the number of mates

used. Based on whether fully constrained assembly is used for neural-net training or the

partially constrained assembly, the predicted time is shown to vary between -44.2% to

+101.6% [9].

The issue of variability in the predicted assembly time due to the use of different

number of mates and the different types of mates demonstrate the necessity for a feature

recognition algorithm that could extract only the physical connections between the

assembly components consistent with the original Connective Complexity method. Use

of contact relationship between the components is both objective and independent of the

mates’ usage. The use of contact relationship also provides opportunity to develop

weighted graph based on the area of contact for developing complexity metrics. The

weighted graph could be used to explore the influence of additional metrics based on the

minimum spanning tree, cycles, number of nodes and edges, traversability, graph

connectivity, and isomorphism [6]. Previous work on the assembly time modeling has

already investigated the performance of neural-nets with bipartite graphs, and hence there

is an opportunity to explore the behavior of neural-nets with the weighted graphs. The

 18

computer algorithm, therefore, exhibits a requirement for the automated retrieval of

physical connections from the assembly which addresses the issue of subjectivity in the

mates based method.

1.3 Inference - Necessity for a Duplicate Geometry Algorithm

The discussion on lazy parts light weight engineering method and the assembly

relations based DFA method both highlight the need for a feature recognition system that

could support both applications towards automation. In the case of light weight

engineering tool, the feature recognition (FR) algorithm needs to identify instances of

duplicate geometries in the CAD assembly. Duplicate geometries are two geometries

that possess certain user-defined amount of similarity lying within the threshold distance

and threshold orientation (formal definition is provided in section 3.1). For the assembly

relations based DFA method, the FR algorithm needs to identify and record the

connectivity between components in the assembly. Thus, the focus of this research is

developing a FR algorithm that consists of user controlled parameters that is useful for

both lazy parts method and assembly relations based DFA method.

The current state of the art in the feature recognition technology focuses mainly

on the integration of CAD and CAM, CNC visualization, process planning, and

manufacturing [24–27]. A feature recognition algorithm to support the automation of

duplicate geometry identification for the lazy parts method need to be developed with the

focus on user-controllable parameters[2]. Also, the FR algorithm for the automated

extraction of assembly relations from CAD data for assembly time estimation presents

another opportunity for research[18]. That said, a tool to extract the CAD assembly

 19

mates to represent assembly relations (also, design intent) is developed but that is user

defined in nature and do not represent the actual physical contact based connectivity

between parts [19].

Therefore, the intended requirement for the FR algorithm of this thesis is its

extensibility to support both duplicate geometry identification and assembly relations

extraction. The idea is to have single feature recognition system with user driven

parameters that can provide the required extensibility. The value of the parameters could

be controlled to have the FR algorithm to support either lazy parts method or connectivity

based DFA method. Additionally, it is also desired to have the feature recognition

system that is independent of the geometry type. The geometric shape of parts in the

assembly can be formed of different types as shown in the Figure 1.4. Therefore, it is

necessary for the feature recognition algorithm to be able to evaluate different geometric

types. Such an algorithm would allow for the functioning with various types of geometry

such as freeform, planar, cylindrical, spherical, conic, and toroidal to name a few (see

Figure 1.4).

 20

Figure 1.4: Different 3D shapes in geometric modeling

The benefit of the research presented in this thesis is the development of a feature

recognition system that can support the automation of duplicate geometry identification

of lazy parts method and assembly relations retrieval for connectivity based DFA

method. The automation of both these methods will address the repeatability of the

methods. Presently both methods are manual and therefore automation can prevent the

potential errors arising from manual data collection. To illustrate further, the FR

algorithm can help in the retrieval of the same instances of duplicate geometries for a

given CAD assembly for lazy parts analysis. Similarly, for connectivity based DFA

method the FR algorithm can ensure the extraction of same connectivity graph for a given

CAD assembly. The potential errors associated with the manual construction of assembly

relations are eliminated. Increased productivity is another benefit of the automated FR

system [7]. This way, the FR system can allow designers more time to focus on the data

rather than on the data collection processes.

Planar
Cylindrical

Spherical

Conical

Toroidal

Freeform

 21

In this chapter the motivation for the duplicate geometry FR algorithm is

presented. Lazy parts light weight engineering method and physical connections based

DFA method demonstrate a need for the duplicate geometry FR algorithm. The

algorithm will consist of user-controllable parameters to modify the applicability of the

system and would be independent of geometric types. The FR algorithm can help with

reducing the inconsistencies associated with manual data collection and modeling

technique. In the next chapter, the current state of the art in feature recognition

technologies will be explored.

1.4 Overview of Thesis

The motivation for the research presented in this thesis was discussed in this

chapter. The rest of the thesis is organized in the following way:

The Chapter Two of this thesis presents the literature review of feature

recognition algorithms that use b-rep data for the evaluation. Based on the motivation

discussed in Chapter One and the existing feature recognition algorithms, the need is

identified for the development of the duplicate geometry feature recognition algorithm to

support lazy parts method and the part connectivity based assembly time estimation

method.

The Chapter Three presents the research objective, definition of the duplicate

geometry, and discussion on three conditions derived from the duplicate geometry

definition. Furthermore, list of requirements is generated to meet the research objective

and the definition of duplicate geometry.

 22

The system architecture and the implementation details of the algorithm are

presented in Chapter Four. The discussion on system architecture demonstrates the design

that meets the usability requirements. The remainders of the system requirements are

addressed in the implementation of the algorithm.

The Chapter Five presents the validation of the algorithm using the test cases.

This chapter explains the design of test cases to check the algorithm against specific

requirements and presents the results of the analyses.

The Chapter Six is the concluding chapter in this thesis that presents the research

contribution and future work.

 23

CHAPTER TWO: LITERATURE REVIEW OF FEATURE RECOGNITION

ALGORITHMS

Most Feature Recognition (FR) algorithms discussed in the literature are intended

for extracting features for manufacturing [28–31] and Computer Aided Process Planning

(CAPP) applications [28,32–34]. The FR algorithms intended for other domains such as

structural design and analysis [35–38], sheet metal applications [25,26,28,29], and stress

analysis [26,30,36,39] to name a few is less common. The extraction of manufacturing

features from a solid model involves the conversion of low-level topological and

geometric information contained in the CAD model to usually higher-level semantic

information applicable to the Computer Aided Manufacturing (CAM) system usage [40].

To do this conversion, there are different types of feature recognition systems depending

on the type of geometric engine used in the CAD software, underlying representation of

the data, and the procedure used for reasoning in the algorithm. However, in this thesis

the feature recognition algorithms discussed are based on the Boundary Representation

(B-rep).

In the following sections, five popular methods for feature recognition are

reviewed: graph-based method, hint-based method, convex hull decomposition method,

cell based volumetric decomposition method, and the hybrid method. The discussion will

focus on the feature representation used for recognition, types of features supported,

adaptations to include additional features, reasoning procedure and strategies, merits and

challenges, and the comparison of different approaches.

 24

2.1 Graph-Based Method

In the graph based approach, the B-rep of the solid model is used to develop the

attributed adjacency graph (AAG) for feature recognition [41]. B-rep is a graph

representing the connectivity of topological elements (faces, edges, and vertices) in the

solid model, each element having also associated geometric entities. Alongside B-rep,

the adjacency information of faces, edges, and vertices are essential for feature

recognition and may be represented through the AAG [41]. A node of the AAG is an

identifier of the face and therefore, every face of the solid model consists of a unique

node. Similarly, an arc is a unique identifier for every edge in the solid model.

Attributes provide information regarding whether the two faces sharing an edge form a

concave or convex angle. Other geometric information can also be attributed, but

convexity is the most common attribute form.

The example shown in Figure 2.3 is an AAG for the part with a pocket feature on

its “face one” (see Figure 2.2). In this AAG, the numbers inside the circle nodes

represent the unique identifiers for each of the eleven faces in the part. The connection

between two nodes is an arc that is a unique to the corresponding edge. The number (0

and 1) linked to the arcs are attributes that inform if the two faces sharing an edge form

concave or convex angle. Zero is used to represent concave angle and one is used to

represent convex angle. The graph is then analyzed to delete nodes associated with the

attribute one. The algorithm uses “if… else…” rules for the recognition of different

types of features. The method is able to recognize wide range of polyhedral features and

nested features [41]. The limitation of the method is recognizing all types of interacting

 25

features. Interacting features are single or multiple features that are split by another

feature. For example, see Figure 2.1where a slot is machined over a square pocket thus

splitting the pocket into two halves. Also, the method is only applicable to planar features

while other features such as cylindrical, toroidal, spherical, conical, and freeform (see

Figure 1.4) are not recognized.

Figure 2.1: Interacting features; square pocket is split into two halves by a slot

Interacting features may be addressed using multi-attributed adjacency graphs

(MAAG) [42]. The MAAG uses a modified winged edge data structure [43], called

enhanced winged edge data structure (EWEDS) that has labeled faces containing pointers

to boundary edges to construct the graph. Again, the algorithm for processing the graph

is rule-based with graph matching conditions.

Pocket

Slot

Pocket split into

two halves by

the slot

 26

Figure 2.2: Cube with a pocket

1
2

5
4

3

6

11

10

9

8

7

 27

Figure 2.3: AAG for the part in Figure 2.2

An alternative method uses generalized edge-face graph (GEFG) to represent the

solid object’s boundary model [44]. GEFG provides the connectivity information about

the topological entities in a solid model. In contrast with the AAG, the GEFG uses two

additional topological entities, the shell and the loop for graph construction. The shell is

the maximum number of connected faces and the loop is a closed loop of edges [44]. The

method decomposes the GEFG into bi-connected and tri-connected sub-graphs for the

recognition of depressions and protrusions on the face. This method also uses rules for

feature recognition. A distinguishing aspect of GEGC is that the sub-graphs are directed

and acyclic as shown in Figure 2.4, where each sub-graph represents a feature in the part.

 1

 2 6

 3

 5

 7

 4

 8

 9

 10

 11

0

0

0

0

0

0
0

0

0

0

1

1

1

1

1 1

1

1

1

1

1

1

 28

This method can identify cylindrical features in additional to planar and features that lack

axial symmetry [44].

Figure 2.4: Bi-connected and Tri-connected acyclic directed graph

The cavity graph algorithm is another graph based approach that uses convexity

information for feature recognition [45]. The representation is modification of AAG,

where the nodes also contain information pertaining to the orientation of the face. For

example, a node with label {5: -Y} indicates that face five in the solid model has a

topologically correct orientation (normal pointing away from material) in the negative Y

direction. For this representation, a challenge in graph construction is the selection of the

correct base face. Despite this, the representation has helped to overcome the problem of

identifying interacting features. The algorithm uses the concept of virtual links to

recognize interacting features. The virtual links are the edges that would be present in the

absence of the interacting feature. The orientation labels used with the nodes are all

aligned with orthogonal Cartesian directions. The method uses logic rules to evaluate the

hypothesis.

Bi-connected Tri-connected

 29

Another type of graph used for feature recognition is the loop adjacency hyper

graph (LAHG) for the boundary representation of a solid object [46]. LAHG is a

modified form of face adjacency graph (FAG) that contains the additional hyper-arc

showing the relationship between the inner and the outer loop. This approach further

uses the matrix form of the LAHG called loop adjacency matrix (LAM) for

computations. The method is intended for planar surfaces.

The multi-resolution reeb graph (MRG) is an extension of previous work [47] that

is used for comparison of similar models [37]. The method generates a polyhedral

approximation of the solid model through faceting and thereafter constructs the MRG.

The MRG’s of two geometries are used for graph based comparisons. The method is

sensitive to topological relationship, but becomes less sensitive for complex geometries

[37].

Reviewing the graph based approach for feature recognition indicates that the

method works well for polyhedral features. Additional features, such as cylindrical, can

be detected but requires geometric and adjacency information to be captured in the

graphs. Preprocessing for the construction of solid model’s representation is expensive

[25]. The MRG approach has been shown to be useful for shape comparisons of diverse

shapes, but method require further research dealing with missing faces and edges, and

high sensitivity with the VRML format and topology.

 30

2.2 Hint-Based Method

The hint-based approach uses logic rules based on the topology data of a solid

model to generate hints for feature recognition. The faces in the solid model are the

preferred topological entity used for hint generation and need to satisfy certain

topological and geometric relationships. These hints only form a partial representation of

the feature that still requires further analysis for full feature recognition [30]. Essentially,

the hint-based approach incrementally examines possible instances of features, while the

graph based approach defines the features all-at-once. For example, instances of

cylindrical faces may serve as a hint for the presence of holes, while planar parallel faces

with a floor may provide clues about the slots. This strategy was used to develop a

feature recognizer for interacting features [25,30,48]. Hints may also be generated using

other information such as semantics and geometric attributes from the part. As an

example, a similar hint based feature recognition system uses geometric attributes from

both part and stock for the construction of well-behaved feature instances [26,29,48].

The basic principle is that if a part can be produced by machining the stock, then the

material removed from the stock represents features in the part. This approach helps in

devising the strategies to machine a part from the stock.

The objective of the hint based approach is to look for feature hints and then

incrementally solve them to find full features [30]. As opposed to searching for full

features, this approach helps in dealing with feature interactions. Rules are used to

categorize hints and features into sub-classes, such as promising, unpromising, and

rejected groups [30] and or to define accessibility of the features [48]. Feature hints are

 31

then used to produce the largest nonintrusive feature volume by extending the feature

along specific directions through feature completion. The extension could be both in

one-dimension or two-dimension; linear extension is an example of one-dimensional

feature extension and translational sweeping of the points on a feature’s cross section is

an example of two-dimensional sweep. The completed features are then verified using

validity rules and invalid hints are dropped [30].

Besides using the topology relationship to generate hints for feature identification,

a different approach is the ray-firing technique that has been used to generate hints based

on the idea of human type analysis [49]. This method is illustrated with the example

shown in Figure 2.5.The figure shows a slot machined into a rectangular part. The points

P1 and P4 represent the points on the outer faces of the part and the points P2 and P3

represent the points on the inner faces of the part. When a ray is fired, the faces that are

hit by the ray is flagged and checked whether they form alternate depressions and

protrusions as shown in Figure 2.5. In this figure, the points pairs P1-P2 and P3-P4

represents a protrusion, and the points pair P2-P3 represents a depression which is used

as a hint for the identification of features. The sequence of points is only a hint that needs

to be solved for the full feature recognition.

To summarize, hint based approach is predominately adopted to address standard

machining features formed from drilling, milling, chamfering, and filleting whose traces

are stored in the pre-defined library. The hint based approach uses specific rules to

generate, classify, and drop/select the hints. The information used to generate hints is the

topological and geometric relationships in the part. Recent work [25] has extended this

 32

method to also use tolerances and geometric attributes to generate hints. The algorithmic

overhead for hint based approach is due to the storage of hints in the pre-defined library,

the processing of these hints against rules to construct complete features, and the

verification. However, the advantage of using hints is the reduction in the search space

for features. As opposed to graph based approach that uses pattern matching and

processing of all features, in the hint based approach only those features that are selected

based on the hints are considered for further processing. The complexity of the algorithm

for the hint based approach is polynomial in nature.

Figure 2.5: Hints generated through ray-firing

2.3 Convex Hull Decomposition Method

A convex hull decomposition approach uses the constructive solid geometry

(CSG) models of complex geometric shapes defined through a collection of regular

primitives for feature recognition. The concept of representing a solid using primitive

shapes are also observed in B-rep solid modeling, parametric solid modeling, and FEM

P1 P2

Start point Light ray

P3 P4

Hint generated: (P1-P2, P2-P3, P3-P4)

Alternate pair of points represents hints for protrusion and depression

 33

(finite element model) [50–52]. The method was originally conceptualized [25,28] and

then extended into Alternating Sum of Volumes (ASV) decomposition [26,53]. The

objective of the method is to create a convex hull around the boundary of the solid model.

The convex hull represents the smallest non-concave envelop of the solid model

consisting of planar faces as shown in Figure 2.6. The subtracted difference between the

part and the convex hull represents delta features in the part. This approach is used for

the recognition of depressions, such as slots, pockets, and holes, in the solid model and

hence is suitable for non-convex parts [50]. The difference between the convex hull and

the delta features provide the representation of the part. The creation of delta features

from the convex hull is continued until all the features in the part are exhausted. In case

of interacting features, the combination of multiple decomposed features may represent a

single complex feature in the part. Otherwise, maximal features can be used to represent

non-interacting features in the part [50]. As the process of decomposition is continued

for all instances of delta features, the delta features of both convex and concave nature

are obtained and hence the method is as the alternating sum of volumes [26,53].

 34

Figure 2.6: Left: Part with a cylindrical protrusion; Right: Convex hull for the part

The lack of a termination criterion for the continued creation of the delta features

result in the problem of non-convergence. However, the Alternating Sum of Volumes

with Partitioning (ASVP) method addressed this problem by combining ASV

decomposition and remedial partitioning [54,55]. The ASVP method was extended to

extract Form Feature Decomposition (FFD) from each component in the assembly, which

is a set of positive and negative form features [56]. Equivalent positive and negative

form features from two distinct components provide the assembly mating relationship

that is used for assembly planning. The conversion of positive form feature to negative

form feature, called Negative Feature Decomposition (NFD), is used to obtain material

removal volume from the components [57,58].

In summary, the convex hull decomposition approach uses the difference between

convex hull and the part to represent features (delta volume). If the delta volume is empty

then the algorithm terminates, otherwise the delta volume is recursively decomposed until

termination. This method is suitable for polyhedral parts. The method was extended to

 35

identify cylindrical features, but is not fully successful against cylindrical interacting

features [28] because of approximation of all shapes into the polyhedral form. Due to this

reason, the approach requires final reconversion of the cylindrical features from their

polyhedral form [26]. This reconversion step and the decomposition of delta features

make the algorithm expensive.

2.4 Cell Based Volumetric Decomposition Method

The term ‘cell decomposition’ refers to representing a given shape in terms of

constituent volumetric cells so that combining the cells back together gives the original

shape [51]. In contrast to convex hull method, here the delta volume is decomposed into

unit volumetric cells without the use of convex hull. Thereafter the unit volumetric cells

are combined together to form maximal volumes that represent features. The voxel

representation of a solid, that also uses unit cells, is different compared to the volumetric

unit cells because the voxels may not always be able to combine to get the exact original

geometry. Due to this reason, a voxel representation cannot be classified as cell

decomposition [59,60]. The cell based volumetric decomposition method consists of

three steps. First, the part is subtracted from the stock to obtain delta volume. The delta

volume is decomposed into unit cells by using selected faces or half spaces. Second, the

unit cells are combined to form maximal volumes based on the constraints related to

manufacturing operations. Finally, the last step involves classifying the maximal volume

as a specific type of machining feature.

However, the challenge associated with combining the unit cells back together

results in the possibility of multiple feature interpretations. The condition that while

 36

combining unit cells to maximal volume at least one face of the cell need to share a face

with the part generates more than one possible combination. For instance, for the part

shown in Figure 2.7, there are multiple ways of connecting the unit cells into maximal

volumes as shown in Figure 2.8. Another problem, referred to as “the global effect of

local geometry” where cell decomposition globally extends the surfaces or half spaces

related to the faces of delta volume to regions where machining features would not

extend. This results in the creation of cells that do not represent the machining feature

that needs to be resolved to avoid multiple machining feature interpretation [25,28].

Also, in case of cylindrical and freeform surfaces some of the unit cells generated may

represent voids or other unnecessary spaces that are discarded [26].

Figure 2.7: (a) Part; (b)cell decomposition of the delta volume

Two approaches are used to connect the unit cells into maximal volume. First, the

connection is based on the adjacency relation between the unit cells which results in a

non-convex volume [26,51,61,62]. The second approach uses a more selective strategy

to combine cells based on adjacency rules [26,63]. Topology graph of the solid model

and tool approach direction are other factors considered for the volume classification

(a)
(b)

 37

[26,45,51,63]. Graph-pattern matching has been used in conjunction with heuristic rules

to avoid unnecessary combination of the unit cells [51,61].

Figure 2.8: Two distinct maximal volume interpretation

In summary, the cell based volumetric decomposition method uses decomposition

of the delta volume, re-composition of unit cells, and classification of maximal volumes

as the three steps for the machining feature recognition. The algorithm for re-

composition of the unit cells into maximal volumes is computationally expensive because

of the reasoning required to interpret maximal volumes that do not match with pre-

defined feature type. The approach is suitable for interacting features with planar

surfaces, but problems persist with freeform and curved surfaces.

2.5 Hybrid Method

The hybrid approach uses a combination of previously discussed strategies to

overcome the limitations that persist in the individual methods, mostly to deal with

interacting features. It has been argued that three major feature recognition techniques,

graph-based, hint-based, and volumetric decomposition (convex hull and cell

decomposition both use volume decomposition)approaches, are unique and difficult to be

 38

combined into a single algorithm [28]. However, the authors do recognize the benefits of

combining such conventional feature recognition techniques referring to the work found

in [31].

A combination of the graph-based and hint-based approaches is used to develop a

general purpose algorithm to recognize interacting features and improve the

computational efficiency [31]. This algorithm uses Extended Attributed Adjacency

Graphs (EAAG) to represent features in the solid model. EAAG is an enhanced version

of the attributed adjacency graph (AAG) [41], which includes additional arc and node

attributes (see Table 2-1 for the additional attributes stored in EAAG).

Table 2-1: Additional attributes of EAAG [31]

Arc attributes Node attributes

Concave edge or convex edge? Stock face or part face?

Real edge or virtual edge? Is face common to both the part and its convex

hull?

Inner loop or outer loop? Number of loops?

Curved edge or straight edge? Is the split face unifiable or not?

Smooth blend or sharp edge? Is the face planar or non-planar?

The EAAG is decomposed into manufacturing face adjacency graphs (MFAG’s)

obtained by deleting the stock faces and faces that are common to both the part and its

convex hull. Each MFAG generated is compared with all the EAAG’s corresponding to

graphs of predefined features stored in the library. The feature recognition is

accomplished by the graph matching between MFAG and the EAAG’s in the library. For

instance, if the MFAG of a particular feature in the part matches with the EAAG of a T-

slot in the library, then the feature is declared as a T-slot. However, if no match is found

 39

then the MFAG’s are evaluated against the sequential list of heuristic rules in the library

for the identification of other general features such as different kinds of pockets. If no

match, either in the predefined feature library or the heuristic rule library, is found, then

the feature is interacting and a minimal condition sub-graph (MCSG) is generated for

feature recognition.

The MCSG is a sub-graph of EAAG generated through the decomposition of

MFAG using the arc and node attributes shown in Table 2-1. MCSG’s are used as hints

for the identification of interacting features. The construction of MCSG is done in two

steps: (1) virtual links between face pairs are generated based on conditions proposed in

[64] and (2)features are constructed based on the virtual link classification. Once, the

construction of MSCG’s is completed the alternate feature interpretations are generated

using heuristic rules from the library. Some of the advantages of this algorithm are the

extensibility to include additional features in the library without modifications requiring

to the code, reduction in the search space due to the use of virtual links and MFAG’s, and

the alternate interpretations of interacting features [31]. The limitation for this approach

is with the identification of open pockets, but solution strategies are proposed to

overcome the limitation.

2.6 Comparison of Techniques

Reviewing different feature recognition techniques, it is seen that the common

challenges faced across all approaches are the recognition of interacting features, dealing

with free-form surfaces, and having a general purpose algorithm for all feature types.

The solid models’ topological entity relationships with certain geometric attributes are

 40

the preferred representation used in the graph-based, hint-based, and hybrid feature

recognition approaches. Different kinds of representation used for the feature recognition

purposes include the labeled graph, directed graph, bipartite graph, and undirected graph.

The feature representation in convex hull decomposition and cell based decomposition

techniques are volume based, and hence volumes of primitive shapes are used for feature

representation. The comparison of previously discussed feature recognition techniques

are shown in Table2-2.

Graph matching and logic rules are the commonly used reasoning procedure to

identify features. In case of the graph-based, hint-based, and hybrid approaches, a pre-

defined library of sub-graphs is used for the recognition of features. Due to the necessity

for such a library, the types of features identified are limited depending on the library size

and the code requires modification if new features are to be added into the library.

However, one example demonstrates the potential to use pre-defined library while still

allowing for the addition of new feature types without the need for changing the code

[31]. Some of the other reasoning systems used for feature recognition are heuristic rules

and artificial neural networks.

 41

Table2-2: Comparison of feature recognition techniques

FR Technique
Feature

Representation
Reasoning Geometry

Independent

of feature

type?

Complexity

Graph-based
Topology,

Geometry

Graph

matching

[31,47]

Heuristic

[34]

neural nets

[65]

logic rules

[41]

Planar,

Cylindrical

No;

includes

pre-defined

library of

feature

types

Exponential

[28,66]

Hint-based

Topology,

Geometry,

Heuristics,

Ray firing

[49]

Graph

matching,

Rules

Planar,

Cylindrical,

Second-order

curves

No;

includes

pre-defined

library of

feature

types

Polynomial

[28,48]

Convex hull

Delta volume

of primitive

shapes

Rules,

Graph

matching

Polyhedral,

Cylindrical

[58]

Independen

t of feature

type

Exponential

Cell

decompositi

on

Maximal

volumes

Logic Rules,

Heuristic

[51],

Graph

matching

[51]

Polyhedral

Independen

t of feature

type

Exponential

[28]

Hybrid

Topology,

Geometry,

Heuristics

Graph

matching

[31]

Rules

Planar,

Cylindrical,

Second-order

curves

No;

includes

library of

feature

hints

Polynomial

[31]

The type of geometry supported by a feature recognition algorithm depends upon

the underlying feature representation used and the reasoning structure. Most of the

graph-based techniques are able to recognize planar and cylindrical features. In the hint

based method, the use of partial features as traces and the subsequent reasoning on the

incomplete feature hints has allowed for the identification of analytical surfaces. In the

 42

case of the convex hull and volume decomposition methods, the feature types supported

are limited to polyhedral and cylindrical volumes because of the approximations

associated with the re-composition of the maximal volumes. The multiple-level

reasoning in the hybrid approach has demonstrated much promise with the identification

of analytical surfaces and interacting features.

The feature recognition techniques reviewed in this chapter were mostly intended

for specific application domains. Most common application of the feature recognition

algorithms are for the use in computer aided manufacturing (CAM) software for

machining and computer aided process planning (CAPP). The types of features that need

to be identified by the feature recognition system are governed by the definition of a

feature for a particular application. Notably, a standard definition for features or feature

classification is not found in the literature. The application domain for the feature

recognition system developed in this research is for the design analysis of CAD assembly

models. The specific requirements for the new system are found in Section 3.3 based,

partially, on this review. For feature recognition, the definition of a feature for the scope

of this research is discussed in Chapter Three.

 43

CHAPTER THREE: RESEARCH OBJECTIVE

3.1 Definition of Duplicate Geometry

There is no standard definition for features and the current definitions found in the

literature depend on the downstream application where the model will be used [41].

Features can hold different meanings based on use context. The definition of features

vary depending on whether the FR algorithm is intended for identifying machining

features, extruded features, polyhedral entities, or features for stress analysis. For

example, extruded entities in the part are classified as a feature for the finite element

modeling application for mesh generation. However, for machining purposes only

concave features are classified as features to calculate the tool path and the amount of

material that needs to be removed to produce that feature. Also, presently there is no

standard definition for features and it is argued that it may not be possible to have a

single definition covering all feature types [26,28].

For the research in this thesis, a feature recognition algorithm is needed to support

the duplicate geometry identification and extraction of assembly relations from CAD

assembly. Recalling the duplicate geometry identifier from lazy parts indicator mass

reduction method in Chapter One, the definition is “two or more similar geometries that

lie in close proximity to each other [2]”. An example for duplicate geometry is the

vehicle underbody and cable guide as shown in Figure 3.1 where the profile of the cable

guide follows the profile of the vehicle underbody and both geometries lie close to each

other. However, as discussed earlier this definition is not comprehensive and therefore

 44

identification depends on engineering judgment. To explain this further, some of the

questions that need to be answered objectively for the identification of duplicate

geometry are,

 Do the two geometries lie close to each other?

 What distance between the geometries can be regarded as close?

 Are the two geometries similar?

 If similar, what is the amount of similarity required?

Figure 3.1: Cable Guide Attached to the Underside of the Battery [2]

In order to remove the ambiguity involved with identifying duplicate geometry

from the current definition and also to make the definition objective for the purposes of

automation, the following definition is proposed:

 45

Geometries lying equal to or within a threshold distance (user defined)

with the surface outward normals opposed to each other within a

threshold tolerance (user defined) and the percentage of similarity

between the two geometries is equal to or within a threshold value (user

defined).

In this definition, there are three user defined variables that determine if the

geometries are duplicate. The ambiguity involved in the earlier definition is removed by

the use of these user defined variables that are quantitative in nature. Table 3-1 provides

a comparison of subjective questions in the earlier definitions to the user defined

variables in the new definition. There is also a threshold tolerance for the surface

outward normal that is not shown in Table 3-1. This parameter is used to ensure that the

profiles of two geometries are opposed to each other, which is discussed with an example

in the next section.

Table 3-1: Subjectivity in the old definition addressed in revised definition

Questions in original definition Addressed in revised definition

Do the two geometries lie close to each other?

What distance between the geometries can be

regarded as close?

Threshold distance

Are the two geometries similar?

If similar, what is the amount of similarity

required?

Percentage value of similarity

The revised definition offers three conditions that need to be satisfied for the

geometries to be evaluated as duplicate. The three conditions are the threshold distance

condition, the orientation condition, and the percentage similarity condition. The next

section presents the discussion on the three duplicate geometry conditions.

 46

3.1.1 Threshold Distance

Threshold distance is the first condition in the definition of duplicate geometry.

As per the definition, only those geometries that are lying within or equal to the threshold

distance should be considered for duplicate geometry analysis. This condition is derived

from the original definition of duplicate geometry from lazy parts mass reduction method

that requires geometries to be in close proximity. By defining a threshold distance, the

ambiguity involved with what distance can be considered close is removed. The example

in Figure 3.2 shows two instances of same curve pairs but with different distances

between them. In Figure 3.2 (a), the curves are considered for duplicate geometry

analysis as the distance between them is equal to the threshold distance. However, in the

Figure 3.2 (b) the same two curves cannot be considered for duplicate geometry analysis

as the distance between them is greater than the threshold distance.

Figure 3.2: Geometries that are lying within or equal to threshold distance are

considered for duplicate geometry analysis

Threshold

Distance
Threshold

Distance

(a) (b)

 47

3.1.2 Orientation Angle and Tolerance

The orientation angle and tolerance is a user-defined input value for the algorithm

that determines the angle between the duplicate geometries. From the definition of the

duplicate geometries, it is required for the duplicate geometries to satisfy the angle

condition. Typically in the assemblies the angle between the geometries is not always a

single value, especially in the case of freeform and cylindrical surfaces. Moreover, the

intent of identifying duplicate geometry is more of satisficing problem than an

optimization problem [67]. Because of this reason a tolerance is used to compensate the

variation of the angle along the surface. For the example shown in Figure 3.3, the angle

between the two opposing topologically correct normal need to be within 180º±a

tolerance band. Here the angle (α-β) needs to be within the tolerance. If the angle α is

equal to the angle β, then the angle would be 180º. Therefore the difference between

angle α and β should be less than the orientation tolerance if the two geometries need to

be considered for the duplicate geometry analysis.

Figure 3.3: The angle between the outward normals from opposing geometries need

to be within the threshold tolerance

α β

Surface Normals

 48

3.1.3 Percentage Similarity

Percentage similarity is the third, and final, condition in the revised definition of

duplicate geometry. The percentage similarity is a user defined parameter used to

address the ambiguity involved with the amount of similarity in the original definition.

The original definition stated that the two geometries need to be similar in order to be

considered duplicate, but did not mention the amount of similarity that was required. The

revised definition provides control to the user to determine how much of similarity is

required for the intended application. The similarity between the two geometries, upon

satisfying the first two conditions, is calculated by measuring distance between sampling

points on the two surfaces. The distances d1, d2, d3, and d4in the Figure 3.4 show the

distance measurements between the corresponding sampling points. The two geometries

are considered duplicate if the number of measurements between the sampling points

from the two geometries meets the user defined percentage similarity value. In this

example, if d1, d2, and d3 were all equal to each other and the percentage of similarity

defined was 75% or above, then the two geometries are duplicate. However, in the actual

assembly it may not always be feasible to have all measurements equal to one another

based on the number of sampling points used. For this reason, bounds are considered

instead of a single value. That is if d1, d2, and d3 are all equal to each other within a

certain tolerance then the two geometries are duplicate. The bounds can be adjusted by

the user based on the intended application.

 49

Figure 3.4: The distance measurements between the sampling points

3.2 Thesis Objective

The identification of duplicate geometries in the lazy parts mass reduction method

involves the tedious process of manually evaluating the CAD assembly for selecting

duplicate geometries. This manual identification consumes considerable time and allows

for the possibility for human subjectivity and error.

In addition to the above problem, the connectivity based assembly time estimation

method [18,20] does not have an automated means for the extraction of the assembly

relations from the CAD assembly absent of predefined assembly mates extraction [9].

The present manual construction of the assembly relations presents the same problem

such as more time consumption and possibility for human error.

The objective of the research in this thesis, therefore, is to develop a feature

recognition algorithm that can support both the automated identification of duplicate

geometries for lazy parts mass reduction method and the automated extraction of

assembly relations for the connectivity based assembly time estimation method from

CAD assembly files.

d1

d2

d3

d4

Sampling points

 50

3.3 Establishing Requirements

Establishing requirements is part of the software development process that helps

in identifying the user, system, and functional requirements prior to software design and

implementation [68,69]. In the software industry, there is no common definition for

requirements. According to [69], requirement elicitation is a science of completely

describing the behavior of software that aids in software development. Another definition

for requirements according to [70] states that requirements are the condition needed by a

user to achieve an objective. Although there is no common agreement on the definition

for requirements, there is a common agreement about the need to document the

requirements [68,69,71]. The system and user requirements for the research in this thesis

are as follows:

 The system allows users to define the threshold distance between duplicate

geometries: The user gets to decide the proximity between geometries

based on the application and experience for the duplicate geometry

analysis. The proximity between duplicate geometries could be different

for different mechanical systems.

 The system allows users to define the tolerance for surface outward

normal: The user can set the orientation that is required between the

geometries with certain tolerance value for the duplicate geometry

analysis. Depending on the geometric type of parts in the assembly, the

user can choose the angle that is appropriate for the given assembly.

 51

 The system allows users to define the percentage of similarity: The degree

of similarity that is desired between geometries is decided by the user. This

parameter indicates the extent of similarity between the geometries being

compared. For example, the percentage of similarity value of 100% would

mean identical geometries and the value zero would mean completely

dissimilar.

 The system allows users to adjust the bounds for the distance

measurements between the sampling points: The similarity between

geometries is calculated by measuring the distance between sampling points

on the two geometries. This list of distances between sampling points are

analyzed to check if they are equal to each other within a certain tolerance.

The tolerance value can be varied depending on the application and is decided

by the user.

 The system needs to highlight instances of duplicate geometry: The

system need to display the result of the duplicate geometry analysis to the

user, so that the user is able to visualize the instances of duplicate geometries

in the assembly. The highlighted geometries in the assembly would inform the

user about regions where lazy parts mass reduction method could be applied.

 The system needs to work with different geometric types: The parts in the

assembly may be composed of different geometric types. The examples of

some of the geometric types are planar, cylindrical, spherical, conical,

 52

freeform, and toroidal. The algorithm needs to function with such geometric

types.

 The system offers extensibility to extract assembly relations with weight:

The algorithm need to extract the weighted bipartite graph of assembly

relations to support the part connectivity based assembly time estimation

method.

 The system supports the assembly models from SolidWorks (licensed CAD

software in the university) for design analysis: The SolidWorks is the

licensed CAD software in Clemson University that provides easy-to-use GUI

for creating parts and assemblies.

 The users are able to access the duplicate geometry program from within

the SolidWorks software: Presently, the duplicate geometries and part

connectivity information are manually evaluated by loading the CAD

assemblies in SolidWorks. For the automation of duplicate geometry

identification and extraction of assembly relations, the system need to provide

access to duplicate geometry program upon opening the CAD assembly file.

 The users are able to start the duplicate geometry analysis by the click of

a mouse button: The system need to reduce the time required for the user to

start the duplicate geometry analysis.

To summarize, there is no consensus on the definition of feature for feature

recognition purposes and the definition of feature depends upon the application of feature

recognition algorithm. The definition of feature discussed in this chapter is in the context

 53

of duplicate geometry for lazy parts mass reduction method. The revised definition of

duplicate geometry presented in this chapter removes the ambiguity involved with the

original definition. Threshold distance, orientation tolerance, and the percentage

similarity are the three parameters that determine the presence of duplicate geometry in a

CAD assembly. Lastly, the research objective and algorithm requirements were

discussed. In the next chapter software design and concepts will be reviewed.

 54

CHAPTER FOUR: DESIGN AND IMPLEMENTATION

4.1 System Architecture

The system architecture for the duplicate geometry feature recognition system is

shown in Figure 4.1. This architecture supports the system requirements 5, 7, and 8 and

the user requirements 9 and 10. The duplicate geometry feature recognition system is

integrated into SolidWorks using 2010 SolidWorks API (Application Protocol Interface)

Software Development Kit (SDK). Visual Studio C++ Professional 2008 was used for

programming with the API (Application Programming Interface) and to register the DLL

(Dynamic Link Library) as an add-in in the SolidWorks software. In this manner, the

users will be able to access duplicate geometry algorithm from within SolidWorks

software upon opening the assembly file. The users also have the advantage of reviewing

the results of duplicate geometry analysis in SolidWorks GUI and focus on redesign

efforts.

Figure 4.1: System Architecture

Duplicate Geometry

Feature Recognition
Display Results

GUI

Control Extract CAD data

 55

The feature recognition system developed inside SolidWorks GUI (Graphical

User Interface) help users to start the analysis by the click of a mouse button

(requirement 9 and 10, see Figure 4.2). The topology and geometric data of the CAD

assembly in SolidWorks is accessed by the duplicate geometry algorithm through the API

function calls. The duplicate geometry feature recognition analysis is performed in the

background and the result of the analysis is displayed back in the SolidWorks software

using function calls from the SolidWorks API (requirement 5, 7 and 8).

Figure 4.2: SolidWorks GUI showing Find Duplicate Geometries button built on the

panel and drop down menu

4.1.1 SolidWorks Software

SolidWorks is a commercial CAD software package used for creating parametric

solid models and the production drawings. SolidWorks was selected as the CAD software

for this research for the following reasons:

 Licensed CAD software at Clemson University

 Offers API SDK to build add-ins for customization

 Elaborate documentation on API functions with examples and help forum

 Supports multiple programming languages (VBA, VB.NET, C#, and C++)

 56

 Offers easy-to-use GUI

 Provides option to build solid models of different geometric types

The version of SolidWorks used for this research was Education Edition 2010

x64. In addition to the above mentioned reasons, SolidWorks offers capability to model

parts and assemblies, import assemblies from the library and online resources, conduct

design analysis, and review the results.

4.1.2 Application Programming Interface (API)

API is an interface that allows software developers to interact with the application

software. APIs consist of function calls for the exchange of data between software. For

this research, SolidWorks API is used to build a tool inside the SolidWorks CAD

software for initiating the duplicate geometry analysis. The function calls from the API is

used to access the data structures and its contents from SolidWorks. The version of API

used in this research is SolidWorks 2010 API SDK (Software Development Kit) service

pack 4.0 for Microsoft’s Windows Vista 64-bit machine. The documentation for

SolidWorks 2010 API SDK can be found at [72]. The API supports five languages: VBA,

VB.NET, Visual C#, Visual C++ 6.0, and Visual C++/CLI [72].

In this research, C++ was used as the preferred programming language to generate

duplicate geometry feature recognition COM add-in (Component Object Model) in the

SolidWorks software. COM add-in is a DLL that is registered in the SolidWorks software

using the SolidWorks API. The C++ programming language provides for easy

implementation of the COM objects and supports the Microsoft data structures that are

 57

used as input and output variables in the SolidWorks API functions. Other benefits of

C++ programming language are its extensibility, code reusability, and the modularity.

4.2 Duplicate Geometry Recognition Approach

The general approach to find duplicate geometries is shown in Figure 4.3. This

high level description of the duplicate geometry algorithm consists of nine steps. The first

step is to read the CAD assembly file from SolidWorks software. The second step is to

extract all visible parts from the assembly. The third step involves checking for threshold

distance condition, where distance between parts is measured and compared with the

user-defined threshold value. If the distance is less than or equal to the threshold value,

then the instances of part pairs are stored in a list for further analysis. On the other hand,

if the distance between parts is greater than the threshold value then such instances are

dropped and the algorithm moves to the next parts. The first three steps are used to filter

only those parts that lie in close proximity to each other within or equal to the threshold

value that is defined in Requirement 1. In the fourth step, all the faces are extracted for

parts that satisfy the threshold distance condition. The fifth step compares each face from

one part with all the faces of the other part for orientation condition (Requirement 2) and

storing the faces that satisfy this condition in a list. The orientation between the two faces

is calculated by measuring the angle between the surface outward normals from the two

faces as is explained in detail in the next section. The fifth step is a first pass check to

ensure that only the required geometries are carried forward for further analysis. In the

sixth step, sampling points are generated on the selected face pairs for the purpose of

 58

distance measurements. Sampling points are necessary for the similarity analysis between

the two faces. The seventh step is to measure the distance between sampling points from

the two faces (Requirements 3 and 4).These measurements are used for the determination

of percentage similarity between the two faces. In the eighth step, the total number of

distance measurements that lie within a certain user-defined bounds, explained in detail

in the next section, are compared with the user-defined Percentage Similarity value. The

eighth step is used to differentiate duplicate geometries from the non-duplicate

geometries for all faces that satisfy the distance and orientation condition. In the final

step, the faces that satisfy the Percentage Similarity condition are highlighted. The

description of the algorithm presented in this section is only a high level account of the

general approach used for duplicate geometry feature recognition analysis. In the next

section, a detailed description about the implementation for each of the above nine steps

are provided.

 59

Figure 4.3: High level description of the duplicate geometry algorithm

Read assembly file

Get all Parts

Find opposingfaces

Check instances of part
pairs where distance

between them is lesser

than or equal to the
threshold

Is the angle between
faces within

orientation tolerance?

Is similarity between greater
than or equal to the

Percentage Similarity value?

No duplicate
geometries

Drop faces

Get all instances of
part pairs

Duplicate geometry

No duplicate
geometry

Yes

Move to
next
faces

No

Yes

No

No

Yes

 60

4.3 Implementation

The implementation details of the general approach discussed above is presented

in this section. The flowchart shown in Figure 4.4, illustrates the breakdown of the

general approach to show details used for the identification of duplicate geometry. The

detailed account of the stages of flowchart shown in Figure 4.4 is presented below.

Figure 4.4: Flowchart representing duplicate geometry algorithm

 61

Step 1: Load Assembly

The first step of the algorithm is to read the assembly file from SolidWorks. The

Figure 4.5 shows the SolidWorks GUI used to load the assembly file. In SolidWorks, the

extension *.SLDASM in the file name represent the assembly file. Loading the assembly

file in SolidWorks is the first step in the duplicate geometry analysis by the user. After

opening the required assembly file, the duplicate geometry algorithm is activated by

pressing the Duplicate Geometry button that is shown in Figure 4.5. Once the file is

loaded, the algorithm reads the active assembly document.

Figure 4.5: SolidWorks GUI with the duplicate geometry button

Step 2: Get Part Count

The second step is to extract all the visible parts from the SolidWorks assembly.

For example, the motor assembly shown in Figure 4.6 consists of nine visible parts that

are also displayed in the SolidWorks feature manager tree. The feature manager tree is

Triggers duplicate geometry algorithm

 62

the area in the SolidWorks GUI that shows the parametric CAD data of the active

document. The data displayed includes information regarding parts name, construction

history, assembly mates, and display properties to name a few.

Figure 4.6: List of visible parts in the SolidWorks feature manager tree for the

motor assembly shown in the right

In the presence of sub-assemblies, the parts inside the sub-assemblies are

considered towards the total part count. For example, if an assembly contains ‘n’ parts

and a sub-assembly, then the total part count is equal to

If the number of parts inside the sub-assembly is ‘m’, then

In this research, sub-assemblies are treated as the assembly of parts and not as

single units. However, there could be certain applications where sub-assemblies may be

required to be treated as single units. An example for this case is the mechanical systems

in the assembly from suppliers such as turbo charger assembly from a supplier.

Parts listed in Feature Manger Tree
Motor assembly

 63

Therefore, if the requirement demands the sub-assemblies to be treated as parts, then the

code used to extract parts from the assembly offers the option to treat sub-assemblies as

single units.

Step 3: Check for threshold distance condition

The threshold distance between the two geometries is a user-defined value. This is

the first necessary condition to be satisfied by the geometries before being analyzed for

the orientation. Checking parts for the threshold distance condition is the third step of the

algorithm. The details of this step are discussed in the following sub-section: extracting

bounding box, expanding bounding box, and checking for intersection.

Step 3.1: Get bounding box

The first step in the process of determining the distance between two geometries

is to retrieve the bounding box around each part in the assembly. The bounding box is a

tight convex, prismatic, orthogonal, hexagon envelop around the boundary of the part

(see Figure 4.7). The bounding box representation of the part is often used for

intersection detection between parts due to its simple geometric representation [73].

Since, the bounding box represents the outer enclosure of the part, absence of intersection

between bounding boxes ensures absence of intersection between the parts. This rule is

used in this research to determine proximity between parts.

 64

Figure 4.7: Example of an axis aligned bounding box

There are four different types of bounding boxes discussed in the literature. These

are bounding sphere, axis aligned bounding box, oriented bounding box, and discrete

bounding box [73]. The spherical bounding box forms a spherical envelope around the

part (see Figure 4.8 (a)). The oriented bounding box is a rectangular bounding box whose

orientation is along the axis of the part as shown in the Figure 4.8 (b). The discrete

bounding box is a special envelope around the part that is non-orthogonal in nature,

which is also referred to as fixed direction hull [73] as shown in Figure 4.8 (c). The

bounding box used in this research is an axis aligned bounding box (see Figure 4.7).Axis

aligned bounding box is rectangular in geometric shape similar to the oriented bounding

box, but is aligned to the global Cartesian coordinates axes (see Figure 4.7).

X

Y

Bounding box

Part

 65

Figure 4.8: Bounding box types

The SolidWorks API offers a function to extract axis aligned bounding box for

visible parts in the assembly. The bounding box returned is the x, y, and z coordinates for

the upper and lower diagonal points of the bounding box as shown in the Figure 4.9.

Y

X

Part

X

Part

Y

X

Part

Y

(a) Bounding

sphere

(b) Oriented

bounding box

(c) Discrete

bounding box

 66

Figure 4.9: Bounding box coordinates returned in SolidWorks

Step 3.2: Expand bounding box:

After retrieving bounding box for all visible parts in the assembly, the second step

is to expand the bounding box. The bounding box size is expanded in the three main

Cartesian coordinate directions by the amount equal to half the user-defined threshold

distance value. To explain this further, if the user-defined threshold distance value is ‘x’

unit then the bounding box around all parts are expanded by the amount equal to ‘x/2’

unit in the three main Cartesian coordinate directions. The pseudo-code used for

expanding the bounding box is as follows:

y

x

z

(x 1 , y 1 , z 1)

(x 2 , y 2 , z 2)

Bounding box co-ordinates = {x1, y1, z1, x2, y2, z2}

 67

Get the array of six bounding box coordinates (see Figure 4.9)

for inti = 0 to 5; i++

 if i< 3

 value[i] = value[i] – (half threshold distance value)

 end if

 else

 value[i] = value[i] + (half threshold distance value)

 end else

end for

As shown in the Figure 4.10, expanded bounding box are used to check for

intersection between parts. Intersection between the expanded bounding boxes ensures

that the distance between the original bounding boxes meets the threshold distance

condition.

Figure 4.10: Bounding box expanded to check for threshold distance condition

x/2

x/2

X

Y
Part 1

Part 2
Expanded

bounding

box

Original

bounding

box

 68

It is to be noted here that, this strategy of using bounding box for measuring the

distance between parts does not provide the accurate distance between the two geometries

in consideration. However, it does provide an approximate and quick check to filter only

those parts that satisfy the threshold distance value. The actual minimum distance

between the two parts may be greater than the threshold distance value; however, no parts

separated by the distance lesser than the threshold value will be missed.

Because the bounding box used is axis aligned, the check for threshold distance

condition made is in the principle axes direction in the Cartesian coordinate system.

Therefore, if the distance between parts in all the x-, y-, and z-direction is less than or

equal to the threshold value, then the parts will be considered as meeting the threshold

distance condition. The next step explains the dynamics of intersection calculation.

Step 3.3: Find intersection between bounding box:

In the third step, expanded bounding box are used to check for intersection. The

pseudo code used for intersection calculation is as follows:

 69

for i = 0 to partCount-1; i++

itr_1 = part[i];

for j = 0 to part count; j++

itr_2 = part[j+1];

checkForIntersection (itr_1, itr_2)

if intersection == true

push (itr_1, itr_2) into a container as pair

end if

end for

end for

If the assembly contains ‘n’ parts, then each part is checked for interference with

(n-1) parts. The Big O complexity for this algorithm is O(N
2
), where N is the number of

parts as there is a for-loop nested within another for-loop.

 70

Figure 4.11: Intersection calculation using bounding box

When the two parts are considered for the intersection calculation, the expanded

bounding boxes for the two parts are retrieved first. The intersection between the two

expanded bounding boxes is calculated as follows (see Figure 4.11 for reference):

if (B1_right > B2_left && B1_top > B2_bottom)

return true;

end if

else

return false;

end else

1 5 7 4 .5
X

Y

Bounding box 1(B1)

Bounding box 2

(B2)

2

4

5

3.5

 71

Once the intersection between the two bounding boxes is determined, the parts

associated with the two bounding boxes are stored as pair in a container. The standard

template library’s (STL) multimap (multiple-key map) data structure is used to store the

parts as pairs. The multimap forms a link between key values and the mapped values (see

Figure 4.12) allowing for multiple mapped values to have a single key value. To explain

this in context, P1 can be stored as a pair with P2 and P3. In the Figure 4.12, P1 is paired

with both P2 and P3. The pair P1-P2 represents part pairs that satisfy the threshold

distance condition. The pair P1-P3 represents a different part pair indicating P1 and P3

satisfy threshold distance condition. In this example, both P2 and P3 have the single key

value P1.

Figure 4.12: Parts meeting the threshold distance condition stored as pairs in

multimap container

Step 4: Iterate through part pairs and retrieve bodies and faces

The fourth step in the algorithm is to access each pair of parts in the multimap list

for the extraction of bodies and faces from the topology. Bodies and faces are the

topological entities in a B-Rep data structure for a given part that are of interest in this

(b) Parts stored as array of

pairs

P1

P2

P3

P1

P2

P3

Array Components Name

[0] (“P1",“P2")

[1] (“P1",“P3")

[2] (“P2",“P3")

Key value Mapped value

(a) Graph view

 72

research. The list of topological entities for models in SolidWorks is shown in the Figure

4.13. The extraction of faces from the part pairs is necessary for the determination of

orientation between faces.

Figure 4.13: Topological data structure in SolidWorks

Once the first pair of parts is accessed from the multimap list, as shown in Figure

4.12 (b), the bodies inside both parts are extracted first. In this research, only assemblies

with single-bodied parts are considered for the duplicate geometry analysis and hence the

bodies extracted from both parts are single objects instead of an array of bodies as

observed in case of multi-bodied parts. However, the program offers extensibility to

extract the array of bodies while dealing with assemblies that include multi-bodied parts.

After the bodies are extracted from the two parts, all faces from the two bodies are

extracted next. As shown in Figure 4.14, part P1 and P2 represent a part pair from the list

in Figure 4.12 (b). B1 and B2 represent the bodies extracted from the parts P1 and P2

Part

Body

Face

Edge

Loop

CoEdge

Vertex

Entities of Parasolid Topology

 73

respectively. Faces f11 through f15 represent a total of five faces extracted from the body

B1. Similarly, faces f21 through f2n represent a total of ‘n’ faces extracted from the body

B2. Once all faces are extracted from both the bodies, each face from one set is compared

with all faces in the other set for the orientation that is explained next.

Figure 4.14: Faces extracted from the bodies in the part pair

Step 5: Check for orientation between faces

Determining the orientation between faces from the two bodies is the fifth step in

the algorithm. As illustrated in the Figure 4.15, each face belonging to Part 1 is compared

with all faces from Part 2 to ensure that all faces in Part 1 are compared with all faces

from Part 2 for the orientation between them. Due to this strategy, the complexity of the

algorithm is less than or equal to O(N
2
), where N represents the number of faces in Part 1

and Part 2. The details of the method used for the determination of orientation between

the two faces are described below.

Extract the body

Part

Body

f12

f11

f14

f15 Faces

P1

B1

f13

Extract the body

Part

Body

…

f21 Faces

P2

B2

f2n

 74

Figure 4.15: Each face from one set is compared with all faces from the other set for

orientation

Step 5.1: Tessellate the faces to generate sampling points

All faces extracted from both the bodies are tessellated to generate sampling

points. Tessellation is the process of representing the face in terms of triangles. For

example, the planar face shown in Figure 4.16 is discretized into triangles to generate the

sampling points for determining the orientation between faces.

f11

f12

f13

f14

.

.

.

f1n

f21

f22

f23

f24

.

.

.

f2m

Part 1 Part 2

 75

Figure 4.16: Tessellating the face to generate sampling points

Step 5.2: Get surface outward normals at sampling points

After generating sampling points on the faces, the surface outward normal for the

face at each of the sampling points are retrieved. The direction of the surface outward

normal is always away from the material and is orthogonal to the face at a given sampling

point (see Figure 4.17). The surface outward normals retrieved are the unit normal

vectors indicating the direction of the face at a given sampling point.

Sampling points

 76

Figure 4.17: Surface outward normal for a face at different sampling points

Step 5.3: Measure the angle between normal vectors

In this step, all the unit normal vectors from the first face of Part 1 and the first

face of Part 2 are sorted into two separate lists. First, the first unit normal vector is

selected from list one and the dot product between this and all the unit normal vectors

from the list two is calculated. For the example shown in Figure 4.18, ‘n1’ represent the

set of unit normal vectors at all sampling points on the Face 1 of Part 1. Similarly, ‘n2’

represents the set of unit normal vectors at all sampling points on the Face 1 of Part 2.

The dot product is calculated between the first unit normal in the list ‘n1’ and the all the

unit normals in the list ‘n2’. The formula used to calculate the dot product between two

vectors is:

 | || |

Sampling points

Surface outward normal

Material

 77

Now, using the dot product and the magnitude of the two vectors the angle

between the two vectors is determined using,

| || |

If the angle  between the two vectors is within the user-defined angle and the

tolerance then a counter is incremented by one unit. Next, the iteration is repeated with

the second unit normal in the list ‘n1’ and all the unit normals in the list ‘n2’ until all the

unit normal in the list ‘n1’ are exhausted. If at least three unit normals from ‘n1’ forms

the angle with any unit normals from ‘n2’ that is within the user-defined bounds, then the

two faces are considered to be meeting the orientation condition.

Figure 4.18: Unit normals retrieved at sampling points for the two faces

n1 n2

Face 1 in

Part 1

Face 1 in

Part 2

List of unit normal

vectors on Face 1

in Part 1
List of unit normal vectors

on Face 1 in Part 2

Sampling

points

 78

The reason for considering a minimum of three unit normals from ‘n1’ meeting

the orientation condition is because; three is the minimum number of vectors required

bound a facet. Therefore, the three vectors from the list ‘n1’ meeting the orientation

condition provides an indication that at least one facet on the face from which ‘n1’ is

derived forms a parallel orientation with the other face from which ‘n2’ is derived within

the user-defined tolerance. Based on the angles calculated using the unit vectors, the pair

of faces from the two parts that have parallel orientation within the user defined tolerance

are stored in a container as pairs for further analysis. To explain further, let {f11, f12…

f1n} represent a list of faces in Part 1 and {f21, f22… f2n} represent a list of faces in Part 2,

then the pair of faces that have orientation within the user defined angle and tolerance is

stored as pairs as shown in Table 4-1. This table indicates an example where the face

pairs f11-f23, f15-f24, and f16-f25have orientation within the user-defined value and can

be considered for further analysis to determine percentage similarity.

Table 4-1: Example list showing faces stored as pairs that have orientation within

the user-defined angle and tolerance

Pair of faces that have parallel orientation

f11 – f23

f15 – f24

f16 – f25

Step 6: Check for percentage similarity between the stored list of face pairs

The percentage similarity between the two faces is evaluated by measuring the

distance between sampling points from both faces. The face pairs are re-tessellated with

 79

shorter edge length for the facet in order to generate more sampling points. The length of

the facet edge is presently maintained at a length equal to the shortest edge in the

assembly. The generated sampling points for both faces are stored in two separate lists.

For example, if Face 1 has ‘n’ newly generated sampling points and Face 2 has ‘m’

sampling points as shown in Figure 4.19, then ‘n’ sampling points are stored in a list

associated with Face 1 and ‘m’ sampling points are stored in a different list associated

with the Face 2. After producing two lists of sampling points (SP), the steps described

hereafter are used to determine the percentage similarity.

Figure 4.19: Measurement of distance between sampling points

Step 6.1: Find the list with the lesser sampling points

The two lists of sampling points are compared for the size. The smaller of the two

lists (indicating fewer number of sampling points) is selected to be the first list of

SP1

SP2

SP3

SP4

.

.

.

SPn

SP1

SP2

SP3

SP4

.

.

.

SPm

Face 1 Face 2

 80

sampling points that will be considered as start points for the distance calculation. The

other list then forms the list of sampling points that will be considered as end points for

the distance measurements. The reason for choosing the smaller list of sampling points as

start points is because, in the case of two geometries of different sizes the larger geometry

(with more sampling points) would allow unnecessary measurements between the

sampling points of both faces.

To explain this further, consider the example shown in Figure 4.20 (a) where

three sampling points on Face 1 are used as start points and the Face 2 with five sampling

points are used as end points for the measurements. In this case, the number of

measurements between Face 1 and Face 2 is only three and this number is used later to

calculate the percentage similarity between the two faces. Now, for the case shown in

Figure 4.20 (b) the sampling points on Face 2 becomes the start points and the three

sampling points on Face 1 becomes the end points. For this case, the number of

measurements between the two faces is five. Distances measured from the five start

points to the smaller geometry with three end points would add two extra measurements

that are unnecessary.

 81

Figure 4.20: Face consisting of lesser number of sampling points is used to start the

measurement

Step 6.2: Find shortest distances between sampling points from both lists

Before calculating the distance between sampling points from both lists, the X, Y,

and Z coordinates of sampling points need to be transformed into the assembly

coordinates. In SolidWorks, the coordinates for the sampling points generated on the part

face returns the X, Y, and Z coordinates from the part file. Due to the fact that the part

coordinate system is different from the assembly coordinate system, the sampling points

generated on the part face need to be converted to assembly coordinate. For converting

the X, Y, and Z coordinates of sampling points from the part into assembly coordinates,

each sampling point in the list is multiplied by the assembly transformation matrix as

shown below:

Sampling Points

Face 1

Face 2

(a) (b)

Face 2

Face 1

Unnecessary

Measurement

Unnecessary

Measurement

 82

 [

]

 [

]

[

] [

] [

]

 [

]

After transforming all sampling points in both lists to the assembly coordinates,

the distances between the first sampling point from Face 1 (see Figure 4.21) and all the

other sampling points in Face 2 (see Figure 4.21) are calculated using the distance

formula as shown below:

 √

Among distances calculated between the first sampling point from Face 1 and all

the other sampling points in Face 2, the shortest distance is selected and stored in a list.

 83

This process is repeated until all the sampling points from Face 1 are exhausted. The

outcome of this step will be a list of shortest distances from the sampling points in Face 1

to the sampling points in Face 2 (see Figure 4.21).

Figure 4.21: Distances measured from one sampling point on Face 1 to all sampling

points on Face 2

Step 6.3: Find the average of the entities in the shortest distance list and

check for percentage similarity

This step starts by calculating the average of all the distances in the shortest

distance list. User defined upper and lower bounds (Requirement 4) are added to the

newly calculated average. The upper and lower bounds represent a tolerance value for the

average for comparing the number of distances in the shortest distance list that lie within

this bound. The Figure 4.22 shows the spread of distances in the shortest distance list.

The points lying inside tolerance band represent distances that are within the tolerance

band. The point to the left of lower bound represents distances shorter than the lower

tolerance limit. The points to the right of the upper bound represent distances that are

Sampling Points

Face 1 Face 2

List of shortest

distances

 84

more than the upper tolerance limit. It is the number of distances that are within the

tolerance band that are considered as meeting the tolerance bound condition. The

distances (or points in the figure) inside the tolerance band are interpreted as being equal

to the average value within a certain degree of tolerance that is defined by the user.

Figure 4.22: Calculating percentage similarity between two geometries

To determine the percentage similarity between the two faces, the number of

distances in the shortest distance list that falls inside the tolerance band is calculated (see

Figure 4.22). This number divided by the total number of points in the shortest distance

list (size of the list) gives the actual similarity ratio. For the example shown in Figure

4.22, the actual similarity ratio is:

 9

Increasing

Values in the shortest distance list

Average

Decreasing

Lower

bound

Upper

bound

Tolerance band

 85

The two faces are evaluated to be duplicate geometries if the value of the actual

similarity ratio is less than or equal to the user-defined percentage similarity value. The

user-defined percentage similarity value is divided by 100, which is then compared with

the actual similarity ratio. The need for geometries to satisfy the percentage similarity

condition is the third condition of the duplicate geometry definition and the third

requirement for the algorithm listed in Section 3.3.

Step 7: Highlight duplicate geometries

Highlighting duplicate geometry instances in the CAD assembly is the final step

of the algorithm. All the face pairs that meet the percentage similarity condition are

highlighted and displayed in the SolidWorks GUI. Highlighting the duplicate geometry

instances helps the user to review the results of duplicate geometry analysis on the

SolidWorks GUI. For the part connectivity based assembly time estimation method, in

addition to highlighting part connections, the part connectivity graph with the degree of

overlap is written to a *.csv file which is discussed in section 5.9.

To review, in this chapter the system architecture for the algorithm, the high level

description of the algorithm providing a concise overview of all steps, and the details of

the implementation are discussed. The algorithm checks for the threshold distance

condition and the orientation condition to filter only required geometries for duplicate

geometry analysis. These two conditions are the necessary conditions derived from the

definition of duplicate geometry. Each selected pair of geometries is then evaluated for

percentage similarity in the final step and highlighted upon satisfying the percentage

similarity condition that is displayed in the SolidWorks GUI. For part connectivity based

 86

assembly time estimation method, in addition to highlighting instances of duplicate

geometry the part connectivity graph and the amount of overlap are written to a *.csv file.

In the next chapter, validation of the algorithm using test cases will be discussed.

 87

CHAPTER FIVE: VALIDATION

The functioning of the algorithm is evaluated against the system requirements

(discussed in Chapter Three) using test cases. Different test cases are designed to study

the performance of the algorithm for each of the first seven requirements. The first seven

requirements refer to the system requirements necessary for duplicate geometry analysis

and displaying the results. The requirements 8 - 10 that are relevant to usability are

already met as discussed in System Architecture in Chapter Four. The current system

supports assembly models from SolidWorks CAD software for the analysis (requirement

no. 8). Additionally, the users are able to access the duplicate geometry program from

inside SolidWorks by using the duplicate geometry tool built in SolidWorks (requirement

no. 9 and 10).

5.1 Test-Cases to Check for Threshold Distance Condition

The threshold distance condition is the first necessary condition for analyzing the

parts for duplicate geometry and is also the first requirement for the algorithm. Presently

the algorithm takes the input from the user for the threshold distance value (requirement

no. 1). The parts that are lying closer than or equal to the threshold distance are filtered

by the program to check for orientation and percentage similarity. The test cases

presented in this section are designed to check for the performance of the algorithm in

recognizing the geometries that satisfy the threshold distance condition.

The following test cases are designed to check the program’s behavior for three

different types of threshold distances between the geometries. The three distances

 88

checked are the distance between parts less than the threshold distance, the distance

between parts equal to the threshold distance, and the distance between parts greater than

the threshold distance as these are the only three types of conditions that can be

encountered by the algorithm. For this test, the user-defined threshold distance input is

set at 15mm.

In the test case 1 shown in the Table 5-1, the two parts with planar faces are

separated by a distance equal to 14mm that is less than the threshold distance. The

bounding box algorithm that is used to test the distance between parts recognizes the pair

of parts as meeting the threshold distance condition and stores the pair in a container for

the orientation check.

In the test case 2 (see Table 5-1), the distance between the same part pairs are set

at 15mm that is equal to the threshold distance value. The test case with the distance

between parts equal to the threshold distance is used because the definition of duplicate

geometry qualifies those geometries separated by the distance equal to threshold distance

as meeting the threshold distance condition. For this test case, the bounding box

algorithm calculates the distance between the part pairs to be equal to the threshold

distance value and then stores them in a container for the orientation check.

In the test case 3 shown in Table 5-1, the distance between the part pair is

increased to 16mm that is greater than the threshold distance value. The bounding box

algorithm calculates the distance between the two parts to be more than the threshold

distance value and discards the part pair from considering for further analysis as the part

pair does not satisfy the first necessary condition.

 89

Table 5-1: Test cases for threshold distance

Test

Case

No.

Test Case Description

1

Input: User-defined threshold distance =

15mm

Output: The algorithm calculates the

distance between the two parts to be less than

the threshold distance and stores the two parts

in a container for orientation check.

2

Input: User-defined threshold distance =

15mm

Output: The algorithm calculates the

distance between the two parts to be equal to

the threshold distance and stores the two parts

in a container for orientation check.

3

Input: User-defined threshold distance =

15mm

Output: The algorithm calculates the

distance between the two parts to be more

than the threshold distance and therefore

discards this part pair from further analysis.

4

Input: User-defined threshold distance =

15mm

Output: The algorithm calculates the

distance between the two parts as less than

threshold distance. But the distance between

the geometries from the two parts is greater

than the threshold distance.

20mm

16mm

16 mm

15 mm

14 mm

 90

Although the threshold distance condition need to be checked for the distance

between geometries, the bounding box algorithm presently checks for the distance

between the parts. The test case 4 shown in Table 5-1 has minimum distance between the

parts set at 16mm that is greater than the threshold distance value. However, the

bounding box algorithm uses the bounding envelops of the two parts to check for the

threshold distance condition. Due to the configuration, the algorithm detects the overlap

between the two bounding box and treats the two parts as meeting the threshold distance

condition.

The threshold distance check using bounding box is only a preliminary check

intended purely to shortlist the component pairs for subsequent orientation and

percentage similarity analysis. As demonstrated using test case 4, certain false positive

(distance greater than threshold condition) part pairs are selected for further analysis by

the algorithm. As bounding box check is only a preliminary filter, having false positives

among the part pairs for orientation and percentage similarity is not going to affect the

final results. The algorithm discards these false positive part pairs while performing the

analysis for percentage similarity. The performance of the bounding box algorithm for

threshold distance condition involving cylindrical and freeform surfaces is also tested

(see Appendix A:). The observation is that the algorithm is consistent in detecting

threshold distance across all geometric types and no part pairs that have the distance

between them less than or equal to threshold distance is missed.

 91

5.2 Test-Cases to Check for Orientation Condition

The orientation condition is the second necessary condition to be satisfied by the

duplicate geometries and the second requirement in the requirement list presented in

Chapter Three. The orientations between the geometries are determined by calculating

the angle between outward unit vectors on the surface at different sampling points and

comparing it with the user-defined angle value with a tolerance. Presently, the algorithm

requires the user to input the value for the angle and tolerance.

The test cases showed in Table 5-2for the validation of requirement no. 2 uses

parts with planar faces to determine the performance of the algorithm for the angles that

are within the user-defined orientation tolerance, equal to the upper or lower limit of

orientation angle, and outside the user-defined orientation angle. The user-defined

orientation angle and tolerance used for this test case is 180⁰±10⁰.

The test case 1 in Table 5-2 consists of two parts, each having planar faces that

are aligned parallel to each other. The parallel orientations of the two parts suggest that

the surface outward normal between the two opposing faces f15 and f26 (see test case 1 in

Table 5-2) forms an angle of 180⁰ that is between the user-defined angle tolerance of

170⁰ and 190⁰. The algorithm evaluates the two parts for geometries that satisfy the

orientation condition. The result from the analysis showed six pair of faces from the two

parts as having satisfied the orientation condition. The six pair of faces that were

identified are f11-f23, f12-f24, f13-f21, f14-f22, f16-f25, and f15-f26.

 92

In the test case 2 shown in Table 5-2, the angle between the surface outward

normal from the planar faces f15 and f26 is increased to 190⁰. The angle 190⁰ represents

the upper limit for the user-defined orientation angle tolerance. The algorithm evaluates

the two parts and still identifies six pair of faces as having satisfied the orientation

condition. The six pair of faces that meets the orientation condition are f11-f23, f12-f24, f13-

f21, f14-f22, f16-f25, and f15-f26.

For the test case 3 shown in Table 5-2, the angle between the surface outward

normal form the planar faces f15 and f26 is increased to 191⁰ that is outside the user-

defined angle tolerance. For this test case, the algorithm does not identify any pair of

faces as meeting the orientation condition as none of faces are oriented within the

orientation tolerance defined by the user.

 93

Table 5-2: Test cases used check for orientation between face pairs

Test

Case

No.

Test Case Description

1

Input: User-defined

orientation = 180⁰ ± 10⁰

Output: The algorithm

evaluated the following

pair of faces as being

opposed to each other

within the user defined

orientation angle,

1. f11-f23

2. f12-f24

3. f13-f21

4. f14-f22

5. f16-f25

6. f15-f26

2

Input: User-defined

orientation = 180⁰ ± 10⁰

Output: The algorithm

evaluated the following

pair of faces as being

opposed to each other

within the user defined

orientation angle,

1. f11-f23

2. f12-f24

3. f13-f21

4. f14-f22

5. f16-f25

6. f15-f26

Parallel

 94

3

Input: User-defined

orientation = 180⁰ ± 10⁰

Output: The algorithm

evaluated the following

pair of faces as being

opposed to each other

outside the user defined

orientation angle. None of

the faces meet the

orientation condition.

4

Input: User-defined

orientation = 180⁰ ± 10⁰

Output: The algorithm

evaluated threepair of

faces as being opposed to

each other within the user

defined orientation angle.

The face pairs identified

were,

1. f12-f24

2. f14-f22

3. f15-f26

The angles between other

face pairs are greater than

the user-defined

orientation angle.

The test case 4 shown in Table 5-2 consists of two curved faces opposed to each

other at an angle of 46.5⁰. This angle between the two faces is set by inclining the face f25

at an angle of 46.5⁰ with respect to the face f16. Although the angles between all the other

 95

planar faces are greater than the threshold angle except for face pairs f12-f24 and f14-f22

that are parallel, the angle between surface outward normal at some sampling points on

the curved faces f15 and f26 is within the user-defined orientation angle tolerance of 170⁰

and 190⁰. This test case is designed to check the performance of the algorithm for

instances when the face pair partially satisfies the orientation condition. As seen in the

results for the test case 4 shown in Table 5-2, the algorithm identifies even the face pair

that is only partially within the threshold angle tolerance. These faces (f12-f24, f14-f22, and

f15-f26) are recognized by the algorithm as satisfying the orientation condition and are

stored in a container for percentage similarity analysis.

The algorithm was also tested for its performance against other geometric types

such as cylindrical, freeform, and spherical surfaces that are shown in Appendix B: with

results. The check for orientation between the faces is a pre-requisite step before

evaluating the geometries for percentage similarity. The orientation is a necessary

condition that needs to be satisfied by geometries to be considered for percentage

similarity analysis. The geometries that satisfy the threshold distance condition (first

necessary condition) but do not satisfy the orientation condition (second necessary

condition) are dropped from further analysis, as geometries need to satisfy both the

necessary conditions before being tested for percentage similarity. The results indicate

that the algorithm is consistent with all geometric types that are tested in evaluating the

faces for orientation condition.

 96

5.3 Test-Cases to Check for Percentage Similarity between Geometries

The percentage similarity check is the final step in the duplicate geometry

comparison analysis. The algorithm uses two user-defined values to check for duplicate

geometry in this stage: the percentage similarity value (requirement no. 3) and the

tolerance bound (requirement no. 4). The algorithm requires the user to input the values

for the desired percentage similarity and the tolerance bound which are the requirements

listed in chapter Three. The test cases designed to check the program’s ability to

recognize duplicate geometry uses different degree of similarity between the two faces,

different amount of overlap between the faces, and varying geometric types. In order to

discuss the performance of the algorithm for these different cases, the relevant test cases

are selected form the complete list shown in Appendix C:.

The test case 1 shown in Table 5-3 uses the assembly of two identical rectangular

plates separated by a distance equal to 14mm. The user inputs for the algorithm are

shown in the Table 5-3 under the column description. The algorithm successfully

identifies the two planar faces as duplicate that is highlighted in red. The same test case is

modified by changing the orientation of the rectangular plate to the right by 10⁰ as shown

in the test case 2. Although the orientation between the two opposing faces is within the

user-defined orientation value, no instances of duplicate geometry are identified by the

algorithm. From this observation, it is evident that the orientation and the threshold

distance conditions are not sufficient (but necessary) for duplicate geometry analysis. The

two opposed faces do not pass the percentage similarity evaluation for the given user

inputs.

 97

The two opposed planar faces from test case 1 are modified to have waviness as

shown in test case 3 in Table 5-3. The waviness in this test case is only in 2-dimension

and therefore is different from the freeform surface. This test case is similar to the test

case 1 in terms of the assembly, but is used to check the performance of the algorithm for

non-planar geometry. As observed in the results the algorithm identify the two wavy

faces as duplicate that is highlighted in red. In another modification to test case 1, the

amount of overlap between the two opposed planar faces is changed to be less than 50%.

This test case demonstrates the ability of the algorithm to evaluate geometries having

different amount of overlap. The results show that the algorithm evaluates the two parts

to have no instances of duplicate geometry.

The test cases 5, 6, and 7 demonstrate the percentage similarity evaluation results

for curved and spherical surfaces. The test case 5 in Table 5-3 has two curved surfaces

opposed to each other at an angle that is within the user defined orientation angle. The

radiuses of the two curved surfaces are different that represent certain amount of

similarity but not identical surfaces. The algorithm evaluated these curved surfaces to be

duplicate geometries and was highlighted in red. The results indicate that the two curved

surfaces have percentage similarity greater than or equal to 80% and the surface variation

within the 2mm tolerance bound. The test case 6 consists of two parts that has a convex

curved surface opposed to a spherical surface. For this test case, the algorithm returned

no instances of duplicate geometries, which is the indication of not satisfying that

percentage similarity and tolerance bound condition. In the test case 7, convex curved

surface from test case 6 was replaced with a concave curved surface where the profile of

 98

the concave curved surface followed the profile of the spherical surface. However, the

algorithm did not recognize any instances of duplicate geometries between the parts.

Table 5-3: Test cases to check for percentage similarity

Test

Case

No.

Test Case Description

1

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

2

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

3

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

 99

4

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

5

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

6

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

7

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

 100

8

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

The test case 8 in Table 5-3 shows two parts having freeform surfaces opposed to

each other. This test case is used to check the performance of the algorithm in the

evaluation of percentage similarity for freeform surfaces. The results indicate that the two

freeform surfaces are duplicate to each other with similarity between the surfaces equal to

or greater than the percentage similarity value and the surface variation between the two

geometries within the user defined tolerance bound.

The test cases presented in this section covers different geometric types, different

degrees of overlap between faces, and different amounts of similarity for the verification

of the performance of the algorithm. The algorithm is also evaluated against other

geometric types such as conical and cylindrical surfaces that are shown in Appendix C:.

The percentage similarity evaluation is the final step in the algorithm for the

identification of duplicate geometry instances. The use of test cases demonstrates that the

algorithm is consistent in the evaluation of percentage similarity for the cases shown. In

the next section, the effect of the geometric types on the analysis time is presented.

 101

5.4 Highlight Duplicate Geometries

The fifth requirement of the algorithm states that it is required to highlight the

instances of duplicate geometries for the user to visualize the results on screen. This

requirement is met by changing the color of duplicate geometries to red. To illustrate

further, for a given CAD assembly all the instances of duplicate geometry pair are

highlighted by changing the color of the face to red as shown in Figure 5.1. Due to this

reason, it required not to have any parts in the assembly whose color is already set to red.

 102

Figure 5.1:Instances of duplicate geometry highlighted in red by the algorithm

5.5 Effect of Geometric Types on the Evaluation

In this section, the ability of the algorithm to evaluate different geometric types

for duplicate geometry analysis is presented. This is the sixth requirement of the

algorithm listed in the requirement list in Chapter Three. The different geometric types

tested were planar, cylindrical, spherical, freeform, conical, and toroidal shapes.

Recalling from the requirement list presented in Chapter Three, the fifth requirement

b) After Analysis a) Before Analysis

 103

necessitates the algorithm to work with different geometric types that may be

encountered in the CAD assembly. The analysis time shown in Table 5-4 is the system

time calculated using the number of ticks elapsed since the evaluation started for each of

the three algorithms.

Table 5-4: Duplicate geometry analysis results for different geometric types

Geometric Type

Threshold

Distance

Evaluation

Time

Orientation

Condition

Evaluation

Time

Percentage

Similarity

Evaluation

Time

Planar

0 ms 1.17 s 21.88 s

Conical

0ms 8.45 s 1.21 min

Cylindrical

0ms 25.53 s 4.09 min

Freeform

0ms 9.84 min 3.04 min

 104

Spherical

0ms 5.15 min 11.01 min

Toroidal

0ms 78.31 min 11.38 min

The results indicate that the algorithm was successful in the evaluation of

different geometric types. The three evaluation phases of the algorithm are: checking for

threshold distance condition, checking for orientation condition, and checking for

percentage similarity. It is observed that the threshold distance evaluation time is

independent of the geometry. The bounding box algorithm that is used for calculating the

distance between parts depends on the number of parts in the assembly (worst case

complexity is O(N
2
), where N is the number of parts) and the geometric shape of the part

has not effect on the bounding box calculations. All the test cases shown in Table 5-4

contain two parts and the threshold distance analysis time was zero milliseconds.

However, the geometric types affects the evaluation time for the orientation and

percentage similarity analysis. The number of facets generated on the face depends upon

the geometric shape of the face. It is observed that the planar face always generates fewer

number of facets compared to a non-planar face for a given width of the facet edge. The

worst case complexity for both the orientation and the percentage similarity algorithm is

 105

O(M
2
xN

2
), where M is the number of faces in the part and N is the number of sampling

points on the face. The analysis time presented in Table 5-4 for the orientation and

percentage similarity evaluation indicate an increase in the analysis time from planar to

non-planar geometric types. The analysis time consumed for the evaluation of different

geometric types is presented in Figure 5.2. The graph shows exponential increase in the

analysis time from the planar geometric type to the toroidal geometric type. This increase

in the analysis time is because of the increase in the number of facets in the non-planar

geometries. The number of facets required to represent a non-planar geometric type is

more than the number of facets required to represent a planar geometry. Due to the

increase in the number of facets, the number of sampling points on each face is also

increased that affects the analysis time.

 106

Figure 5.2: Time consumed for the evaluation of orientation condition for different

geometric types

The analysis time for the evaluation of percentage similarity shown in the Table

5-4 varies for different geometric types. The number of sampling points generated on the

face for percentage similarity evaluation is different for the number of sampling points

used for the evaluation of orientation condition. The algorithm re-tessellates all the faces

that have met the orientation condition to generate the facets. The re-tessellation of the

 107

faces generates more number of sampling points by using shorter facet width. The

combination of the number of faces and the coarse tessellation used for the orientation

evaluation and the number of shortlisted faces and the fine tessellation used for the

percentage similarity evaluation affects the analysis time that is presented in Table 5-4.

The complexity of algorithm for percentage similarity evaluation is O(M
2
xN

2
), where M

is the number of faces and N is the number of sampling points. Although the complexity

for the percentage similarity algorithm is same as the complexity of the orientation

evaluation algorithm, the number of faces and the sampling points are different that

varies the analysis time between the two algorithms. Because of this difference in the

number of faces considered for the evaluation and the number of sampling points used,

consistent trend between the analysis times for the orientation and percentage similarity

evaluation is not observed.

5.6 Effect of the Number of Parts on the Bounding-box Algorithm

The effect of the number of parts on the analysis time of the bounding-box

algorithm for the evaluation of threshold distance condition is presented in this section.

To study the effect of the number of parts, the pattern of cubes is used to generate more

parts and the analysis time is recorded. The worst case complexity for this algorithm is

O(n
2
), where n is the number of parts. The bounding-box algorithm compares each part in

the assembly with all the other parts in the assembly until all the combinations of part

comparisons are exhausted. This quadratic nature of the algorithm complexity is also

observed in the analysis time consumed that is showed in the Figure 5.3. The graph

shows the system time consumed in milliseconds for the evaluation of the threshold

 108

distance condition for the assemblies with different number of parts. The results validate

that bounding-box approach offers a faster first pass filtering of parts in close proximity.

The algorithm consumed zero milliseconds for the assembly of up to 25 parts and 1.3

seconds for the assembly of 500 parts.

Figure 5.3: Effect of the number of parts on the bounding-box algorithm

5.7 Effect of the Number of Sampling Points on the Percentage Similarity Algorithm

The effect of the number of sampling points on the analysis time used for the

measurement of percentage similarity is presented in this section. The results indicate a

Big O (n
2
)

 109

polynomial increase in the analysis time with the increase in the number of sampling

points as shown in Figure 5.4. The program consumed 31 milliseconds for the evaluation

of percentage similarity when four sampling points were used on two planar faces. The

analysis time increased to 0.2 seconds for 12 sampling points and 6.02 seconds for 70

sampling points. For two planar geometries of square cross sectional area, four sampling

points were sufficient for the percentage similarity evaluation. However, for non-planar

geometries more sampling points are required for the percentage similarity evaluation

that would increase the analysis time. For a non-planar geometry, more sampling points

are generated compared to a planar geometry of comparable area of cross section because

the number of facets required to represent a non-planar geometry (curved, spherical, or

freeform) is usually higher that would result in the increased number of sampling points.

An example of a non-planar geometry with higher number of sampling points is a

concave face that generated 3168 sampling points and consumed 31.75 minutes for the

analysis.

 110

Figure 5.4: Effect of the number of sampling points on the analysis time for the

evaluation of percentage similarity

5.8 Algorithm offers Extensibility to obtain Weighted Assembly Relations

This section presents the assembly test cases and their part connectivity

information that is automatically retrieved by the algorithm. The requirement seven states

that the algorithm needs to provide extensibility to extract the weighted part connectivity

graph of the assembly file to support the part connectivity based assembly time

estimation method [9,18,20]. The test cases used in this section demonstrates the ability

of the algorithm to automatically extract the part connectivity information and thus meets

requirement seven.

 111

The duplicate geometry algorithm is modified to obtain weights for the amount of

overlap between two connected faces. The amount of overlap is measured by calculating

the ratio of the number of sampling points that meet the percentage similarity condition to

the total number of sampling points. The threshold distance value for extracting the

assembly relations is set at 1mm. The orientation angle and tolerance value used are

180⁰±5⁰. The percentage similarity value is set at 90% with a bound of -1mm to +1mm.

The maximum facet size used to generate sampling points is set at 15mm. The algorithm

is run on the motor assembly shown in Figure 5.1. The resulting weighted part

connectivity bipartite graph is written to a “filename.csv” (comma-separated values) file.

The result of the analysis is presented in Figure 5.5. The result show the

connections between one face to another from different parts with the amount of overlap.

The first row of the bipartite graph in Figure 5.5 informs that a face from the part

“stack_motor-1” is connected to the face from another part “shaft_motor-1” with 0.76

overlap between the two faces. The data in Figure 5.5 represents the list of physical

connectivity between parts in the assembly. This part connectivity data is objective for a

given assembly. The same connections between parts and the same weight are retrieved

every time the analysis is run on the assembly that also validates the repeatability of the

automated data collection method.

 112

Figure 5.5: Weighted bipartite graph of part connectivity information extracted

from the motor assembly

In this chapter, test cases are used to demonstrate that the algorithm meets the

requirements presented in Chapter Three. The algorithm requires the user to input the

values for threshold distance, orientation angle and tolerance, percentage similarity, and

the bounds for the duplicate geometry evaluation. It is also shown that the algorithm

works with different types of geometries. It is observed that the number of sampling

points generated on the face for duplicate geometry comparison has the greatest effect on

 113

the analysis time compared to the number of parts and the number of faces. The increase

in the number of sampling points causes a quadratic increase in the analysis time. In order

to help the designers review the result of the analysis, duplicate geometry instances are

highlighted in red. The algorithm is also extendible to automatically extract the part

connections from the assembly file. The motor assembly is used to demonstrate that the

algorithm can extract a weighted bipartite graph of assembly relations. The usability

requirements (8-10) are addressed in the system architecture presented in Chapter Four.

5.9 External Validation

The ability of the algorithm to use the duplicate geometry approach to extract the

part connectivity graph for CAD assemblies is presented in this section. The test

assemblies used in this section were externally developed and are only used in this

research for validation purpose. The externally developed assemblies used for this section

are of products encountered in the real world that would provide different connection

types. The discussion of results from the three test cases used is presented in sections

5.9.1, 0, and 5.9.3.

5.9.1 Vise Assembly

The vise is a mechanical device used for clamping the work piece. The assembly

of vise used in this analysis is selected from the library of assemblies in the SolidWorks

folder. The assembly of vise and its parts are shown in Figure 5.6. The input parameters

used for the algorithm is shown in Table 5-5.

 114

Table 5-5: Input parameters for the algorithm

Name vise.sldasm

Max Facet Size 5 mm

Threshold Distance 1 mm

Orientation 180⁰± 2⁰
Percentage Similarity Not applicable for assembly relations extraction

Bound 2 mm

The assembly of vice consisted for four parts, but one of the part (clamp) was

suppressed to check if the algorithm was able to detect and filter out the suppressed part.

As a result, the number of active parts in the assembly was three. For this configuration

the anticipated part connections are shown in Table 5-6.

Table 5-6: Anticipated connections

Sl. No. Part Name Part Name

1 Support Base

2 Support Base

3 Support Base

4 Support Base

5 Support Base

6 Support Base

7 Support Base

8 Support Jaw

9 Support Jaw

10 Support Jaw

 115

Figure 5.6: (a) The assembly of vice and the constituent parts; (b) Part connection

faces are highlighted by the algorithm in red

The algorithm was able to successfully identify all the ten instances of part

connections and was able to filter out the suppressed clamp. The region of part

connections are highlighted by the algorithm and shown in the Figure 5.7 (b). The

weighted bipartite graph of part connections extracted by the duplicate geometry

algorithm for the vice assembly is shown in Figure 5.7. The algorithm consumed 99.83

minutes for the complete analysis.

Base

Jaw

Support (a)

(b)

 116

Figure 5.7: Part connections extracted for the vice assembly

5.9.2 Caster Assembly

The second test case used is the caster assembly from SolidWorks library. The

caster is an assembly of the wheel and supporting parts that is attached to the bottom of

mechanical structure for the purpose of moving. The caster assembly consists of seven

parts as shown in Figure 5.8.

Bipartite graph of part connections

Part Name Part Name Weight

support-1 base-1 0.952381

support-1 base-1 0.483871

support-1 base-1 0.483871

support-1 base-1 0.952381

support-1 base-1 0.952381

support-1 base-1 0.941704

support-1 base-1 0.952381

support-1 jaw-1 0.42069

support-1 jaw-1 0.963636

support-1 jaw-1 0.456897

 117

Figure 5.8: The caster assembly from SolidWorks library

(a) Caster assembly

(b) Caster assembly after the analysis

Top_plate-1

Axle_support-1

Axle_support-2

Bushing-1

Axle-1

Bushing-2

Wheel-1

 118

The input parameter for the analysis of caster assembly is shown in Table 5-7.

The maximum size for the facet edge was increased to 10mm from the initial 5mm that

was used for the vice assembly. The other parameters were not changed.

Table 5-7: Input parameters for the caster assembly

Name caster.sldasm

Max Facet Size 10 mm

Threshold Distance 1 mm

Orientation 180⁰± 2⁰
Percentage Similarity Not applicable for assembly relations extraction

Bound 2 mm

A total of eleven part connections are identified for the caster assembly that is

shown in Table 5-8.

Table 5-8: Anticipated part connections for caster assembly

Sl. No. Part Name Part Name

1 Top_plate-1 Axle_Support-1

2 Top_plate-1 Axle_Support-2

3 Axle_Support-1 Bushing-1

4 Axle_Support-1 Bushing-1

5 Axle_Support-2 Bushing-2

6 Axle_Support-2 Bushing-2

7 Bushing-1 Wheel-1

8 Bushing-2 Wheel-1

9 Axle-1 Wheel-1

10 Axle-1 Bushing-1

11 Axle-1 Bushing-2

 119

The algorithm was able to identify twenty five part connections in the assembly.

This is fourteen part connections more than the anticipated part connections. The

algorithm has identified other duplicate geometric pairs that have satisfied the 1mm

threshold condition. The algorithm consumed 36.6 minutes to complete the analysis. The

weighted bipartite graph of part connections for the caster assembly retrieved by the

algorithm is shown in Figure 5.9.

 120

Figure 5.9: Part connections retrieved for the caster assembly

5.9.3 Punch Assembly

The punch is a mechanical system used for producing holes in sheet metals. The

punch assembly test case used in this section is taken from the SolidWorks installation

folder. The assembly consists of six parts in total as shown in Figure 5.10 (a). For this

 121

analysis, the motor was hidden and the plate was suppressed to check the ability of the

algorithm to analyze only the active parts. The assembly with only the active parts is

shown in Figure 5.10 (b).

Figure 5.10: The punch assembly

The input parameters for the assembly with four active parts are as shown in

Table 5-9.

Motor

Plate

Link

Punch

Guide

Sheet

(a) Actual assembly (b) Active parts

 122

Table 5-9: Input parameters for the punch assembly

Name punch.sldasm

Max Facet Size 10 mm

Threshold Distance 1 mm

Orientation 180⁰± 2⁰
Percentage Similarity Not applicable for assembly relations extraction

Bound 2 mm

The anticipated part connections for the punch assembly are shown in Table 5-10.

Table 5-10: Anticipated part connections for punch assembly

Sl. No. Part Name Part Name

1 Link-1 Punch-1

2 Link-1 Punch-1

3 Link-1 Punch-1

4 Punch-1 Guide-1

5 Sheet-1 Guide-1

The algorithm consumed 2.23 minutes for the complete evaluation of the

assembly with four active parts. The algorithm was able to identify six part connections

in the assembly. This is one more than the anticipated part connections that were

manually identified. The algorithm identified two extra connections between the Link-1

and the Punch-1, as opposed to only one connection that was identified manually,

because of the split face in the punch. The part connectivity relation and the weights for

the punch assembly are shown in Table 5-11. The part connections in the assembly are

highlighted that is shown in Figure 5.10 (b).

Table 5-11: Assembly relations extracted for the punch assembly

Part Name Part Name Weight

Sheet-1 Guide-1 0.0652174

Guide-1 Punch-1 0.0192308

Link-1 Punch-1 0.428571

Link-1 Punch-1 0.428571

Link-1 Punch-1 0.411765

Link-1 Punch-1 0.842105

 123

To summarize, this section presented the externally developed test cases to

demonstrate the ability of the algorithm to retrieve part connectivity graph for the CAD

assemblies. The algorithm was tested using the vice assembly, caster assembly, and the

punch assembly. The results indicate that the algorithm is able to identify suppressed and

hidden parts and consider only the active parts for the analysis. The assembly relations

are exported to a *.csv file with the part names and the corresponding weight. The

research contribution and the future work are presented in the next section.

 124

CHAPTER SIX: FUTURE WORK AND CONCLUSION

The motivation for this research was to develop a feature recognition system that

could automate the identification of duplicate geometries in CAD assemblies to support

the lazy-parts lightweight engineering method. Also, a need was identified for the

development of a feature recognition system for the automated extraction of assembly

relations from CAD assembly file to support the part connectivity-based assembly time

estimation method. Based on the identified needs, the objective of this research was to

develop a feature recognition algorithm that could both identify duplicate geometries and

retrieve assembly relations.

6.1 Research Contribution

The repeatability issue associated with the manual identification of duplicate

geometry is addressed by this research. The original definition for duplicate geometry

was subjective and therefore provided opportunity for subjectivity in the decision

making. The formal definition of duplicate geometry proposed in this research removes

the subjectivity in identifying duplicate geometries. In addition to addressing the issues of

repeatability and subjectivity, the automated identification of duplicate geometry by the

feature recognition algorithm removes the tediousness involved with the manual

identification.

The part connectivity based assembly time estimation is a semi-automated method

for the assembly time estimation that required manual construction of the assembly

relationship for the input. The construction of the part connectivity graph manually was a

 125

tedious process that required time and effort both for the construction and quality check

for errors. The algorithm developed in this research allows for the automated extraction

of part connectivity graph from an assembly file that reduces human effort required to

study the assembly and prepare the graph. The algorithm eliminates the need for checking

the graph for manual construction error and consistency. The automated retrieval of the

assembly relations would allow designers more time on the data analysis by the reduction

in time and effort required for data collection. The algorithm provides the way for

complete automation of part connectivity-based assembly time estimation.

The research in [9] focused on the development of a tool for the complete

automation of the assembly time estimation for CAD assemblies using the user-defined

mates information. However, the limitation of this research was the inability to extract

connections in the case of part patterns. The duplicate geometry algorithm presented in

this thesis can extract connectivity information from the part patterns. The limitations of

using user-defined mates for the assembly time prediction can be overcome by using the

duplicate geometry algorithm that can extract the part connections which is objective.

The feature recognition algorithm developed in this research is independent of the

geometric types. The test cases made of different geometric types demonstrate the ability

of the algorithm to evaluate different kinds of geometries. It is observed that the analysis

time was the only parameter affected by the different geometric types because of the

change in the number of sampling points for orientation and percentage similarity

calculation. The geometric type did not have any effect on the threshold distance

calculation.

 126

6.2 Future Work

The research presented in this thesis is the first attempt at the automation of the

lazy parts mass reduction method. The lazy parts mass reduction method consists of

seven identifiers for the identification of parts that have potential for mass reduction. The

method requires manual effort to check the assemblies for parts that satisfy the definition

of seven identifiers. The duplicate geometry identification was one of the indicators of

the lazy parts method that has been automated through the algorithm presented in this

research. However, for the complete automation of the lazy parts mass reduction method

it is required to develop and integrate the algorithms for the identification of the other six

indicators. The six other indicators that require further research for the automatic

identification are: rigid-to-rigid connection, support for a flexible part, positioning

feature, bridging systems, material flow restriction, and fasteners. The definitions for all

of the indicators are presented in Table 1-1.

Some of the research challenges identified related to the automation of the other

indicators using CAD data are:

 How to distinguish between rigid and flexible parts in the CAD assemblies

for the automation of rigid-to-rigid connection and support for a flexible

part indicator?

 Can the positioning feature be defined in the CAD terminology that would

allow for the positioning feature identification using CAD data? Also, will

the definition of the positioning feature be unique that would distinguish

them from other parts?

 127

 How to capture the engineering knowledge required for the decision

making of identifiers such as material flow restriction and bridging

systems?

The research challenges presented above is not a complete list but fundamental

questions that need to be answered for the automation of other indicators of lazy parts

method.

The algorithm can retrieve weighted bipartite graph of part connections that is

used as input for the part connectivity based assembly time estimation. The method is

semi-automated except for the process of data collection for the input. With this

algorithm, automation of collecting part connectivity information is achieved. There is a

need for the integration of the algorithm presented in this research with the semi-

automated part connectivity based assembly time estimation method in order to make the

assembly time estimation a completely automated tool. The current part connectivity

method for the assembly time estimation uses a Matlab program for performing

computations on the bipartite graph. It is required to integrate the SolidWorks add-in

developed for this research with the Matlab code so that when the duplicate geometry

algorithm is initiated from the SolidWorks the part connectivity graph is exported to the

Matlab code for computations and the estimated assembly time is presented back in the

SolidWorks software.

The limitation of the percentage similarity analysis that has been identified is with

respect to the distance measurements between geometries of unequal sampling points. If

 128

the distance measurements between the sampling points are performed from the geometry

with fewer sampling points to the geometry with equal or more sampling points then no

issue has been identified. However, if the distance measurements are calculated from the

geometry with more sampling points to the geometry with fewer sampling points, then

the algorithm interprets that the larger geometry as not being duplicate of the smaller

geometry. Although, the interpretation is correct, the smaller geometry could be a

duplicate of the larger geometry that is not considered in the program. In the case the

algorithm identifies two geometries to be duplicate, then the two geometries are

presented as duplicate to each other and not as one being the duplicate of another. Due to

this reason, it is always required to measure distances from the geometry with fewer

sampling points to the geometry with equal or greater sampling points. The future

modification that could be implemented in the program to resolve the above mentioned

limitation is to swap the two geometries if the second geometry to where the distance is

measured to have fewer sampling points compared to the first geometry where the

distance is measured from.

6.3 Conclusion

The research in this thesis is motivated from two distinct research topics that were

developed at Clemson University. The first research topic is the lazy parts light weight

engineering tool that has a time consuming process of identifying lazy parts through the

use of indicators. The duplicate geometry is one of the seven indicators and this research

focuses on the automation of duplicate geometry indicator. The second research topic

from which this research was motivated is the part connectivity based assembly time

 129

estimation method. The part connectivity based method required bipartite graph of part

connections in the assembly as input for the assembly time prediction. The extraction of

the part connectivity information from the assembly model is a manual process that

requires time and effort. Hence, this research also focused on the automation of the

extraction of part connectivity information using the duplicate geometry algorithm. The

automation of duplicate geometry identification and the automation of the extraction of

assembly relations using a feature recognition algorithm form the research objective for

this thesis.

The feature recognition algorithms that use the B-rep data were reviewed as part

of the background study. The algorithms discussed in the literature mainly focused on the

manufacturing features that finds application in computer aided process planning (CAPP)

and computer numerical controlled (CNC) machining. The performance of the algorithms

discussed was dependent on the geometric type. The requirements derived from the

motivation and the shortcomings of extending the existing feature recognition algorithms

for duplicate geometry identification that required an algorithm independent of geometric

type helped in the recognition of a need for this research. The need identified necessitated

the development of a feature recognition algorithm that is independent of geometric type

for the identification of duplicate geometries in CAD assemblies.

Based on the research objective, the definition for duplicate geometry and the

requirements for the duplicate geometry feature recognition algorithm were developed.

The requirements list consisted of system requirements and user requirements. The user

requirements (8-10) were related to the usability parameters and were addressed while

 130

developing the system architecture for this research. The system architecture adopted for

this research was developing an add-in in the SolidWorks CAD software using

SolidWorks API in C++ programming language. The add-in was developed to meet the

system requirements (1-7) that were validated using test cases. The test cases

demonstrated that the algorithm was successful in the evaluation of geometries for

duplicate geometry identification of different geometric types.

The results indicated that the number of sampling points used for the percentage

similarity evaluation in the duplicate geometry algorithm has the major effect on the

analysis time. The worst case big O complexity of the algorithm is,

O (
n
C2x m1

2
x m2

2
x p

4
)

Where,

n = the number of parts in the assembly

m1 = the number of faces in the parts that meet the threshold distance condition

m2 = the number of faces that meet the orientation condition

p = the number of sampling points on the face

The algorithm is independent of geometric type and consists of no predefined library for

the recognition of duplicate geometries. The algorithm is capable of extracting part

connections from the assembly in the form of bipartite graph. The bipartite graph of part

connection extracted also contains weight that is an indication of area of overlap between

the connected faces.

In addition to the duplicate geometry algorithm, further research is required for

the development of feature recognition algorithms for the automated identification of

 131

other six lazy parts indicators that is discussed in Chapter One. For the complete

automation of lazy parts identification in the CAD assembly, development and

integration of feature recognition algorithms of other indicators are necessary. The part

connectivity based assembly time estimation method requires the integration of the

algorithm presented in this research with the assembly time computation algorithm for

complete automation.

 132

CHAPTER SEVEN: REFERENCES

[1] Caldwell B. W., Namouz E. Z., Richardson J. L. I., Sen C., Rotenburg T., Mocko

G. M., Summers J. D., and Obieglo A., 2010, “Automotive Lightweight

Engineering: A Method for Identifying Lazy Parts,” SAE World Congress, Detroit,

pp. 1-21.

[2] Namouz E. Z., 2010, “Mass and Assembly Time Reduction for Future Generation

Automotive Vehicles Based on Existing Vehicle Model,” Clemson University.

[3] Griese D., Namouz E., Shankar P., Summers J. D., and Mocko G., 2011,

“Application of A Lightweight Engineering Tool: Lazy Parts Analysis and

Redesign of a Remote Controlled Car,” IDETC, Washington DC, pp. 1-10.

[4] Maier J., Ezhilan T., Fadel G., Summers J., and Mocko G., 2007, “A Hierarchical

Requirements Modeling Scheme to Support Engineering Innovation,” Proceedings

of the 16th International Conference on Engineering Design (IDED07).

[5] Mocko G., Summers J., Teegavarapu S., Ezhilan T., Maier J., and Fadel G., 2007,

“A Modeling Scheme for Capturing and Analyzing Conceptual Desing

Information: An Application to the Hair Dryer Example and Comparison to

Existing Literature,” International Conference for Engineering Design, Paris.

[6] Snider M., Summers J., and Teegavarapu S., 2007, “Database Support for Reverse

Engineering Product Teardown and Redesign as Integrated into a Mechanical

Engineering Course,” ASEE Computers in Education Journal.

[7] Gruijicic M., Arakere G., Pisu P., Ayalew B., Seyr N., and Erdmann M., 2009,

“Application of Topology, Size, and Shape Optimization Methods in Polymer

Metal Hybrid Structural Lightweight Engineering,” Multidisciplinary Modeling in

Materials and Structures, 4(4).

[8] Teegavarapu S., Snider M., Summers J., Thompson L., and Grujicic M., 2007, “A

Driver for Selection of Functionally Inequivalent Concepts at Varying Levels of

Abstraction,” Journal of Design Research, 6, pp. 239-259.

[9] Owensby J. E., 2012, “Automated Assembly Time Prediction Tool Using

Predefined Mates from CAD Assemblies,” Clemson University.

[10] Stone R. B., McAdams D. a., and Kayyalethekkel V. J., 2004, “A product

architecture-based conceptual DFA technique,” Design Studies, 25(3), pp. 301-

325.

 133

[11] Dewhurst B., and Knight W., 1993, “Design for Assembly,” IEEE Spectrum,

30(9), pp. 53-55.

[12] Boothroyd G., 1982, “Design for Assembly Handbook.”

[13] Boothroyd G., and Alting L., 1992, “Design for Assembly and Disassembly,” in

CIRP Annals-Manufacturing Technology, 41(2), pp. 625-636.

[14] Boothroyd G., 1994, “Product Design for Manufacture and Assembly,” Computer-

Aided Design, 26(7), pp. 505-520.

[15] Rodriguez-Toro C., Jared G., and Swift K., 2004, “Product-development

Complexity Metrics: A Framework for Proactive-DFA Implementation,”

Internation Design Conference-Design, Dubrovnik, pp. 483-490.

[16] Sanders D. D., 2009, “An Expert System for Automatic Design for Assembly,”

Assembly Automation, 29(4), pp. 378-388.

[17] Barnes C. J., Dalgleish G. F., Jared G. E. M., Mei H., and Swift K. G., 1999,

“Assembly oriented design,” Proceedings of the 1999 IEEE International

Symposium on Assembly and Task Planning (ISATP’99) (Cat. No.99TH8470),

(45-50), pp. 45-50.

[18] Miller M. G., 2011, “Product and Process Based Assembly Time Estimation in

Engineering Design,” Clemson University.

[19] Owensby E., Namouz E. Z., Shanthakumar A., and Summers J. D., 2012,

“EXTRACTING MATE COMPLEXITY FROM ASSEMBLY MODELS TO

AUTOMATICALLY PREDICT ASSEMBLY TIMES,” International Design

Engineering Technical Conferences & Computers and Information in Engineering

Conference, Chicago, pp. 1-9.

[20] Mathieson J. L., Wallace B. a., and Summers J. D., 2010, “Assembly Time

Modeling through Connective Complexity Metrics,” 2010 International

Conference on Manufacturing Automation, Ieee, pp. 16-23.

[21] Owensby J. E., Shanthakumar A., Rayate V., and Summers J. D., 2011,

“Evaluation and Comparison of Two Design for Assembly Methods: Subjectivity

of Information Inputs,” ASME Design Engineering Technical Conference,

Washington DC.

[22] Otto K. N., and Wood K. L., 1998, “Product Evolution: A Reverse Engineering

and Redesign Methodology,” Research in Engineering Design, pp. 226-243.

 134

[23] Snider M. R., 2006, “Extended Toolset for Reverse Engineering to Support

Lightweight Engineering.”

[24] Kao C.-Y., Kumara S. R. T., and Kasturi R., 1995, “Extraction of 3D Object

Features from CAD Boundary Representation Using the Super Relation Graph

Method,” 17(12).

[25] Babic B., Nesic N., and Miljkovic Z., 2008, “A review of automated feature

recognition with rule-based pattern recognition,” Computers in Industry, 59(4), pp.

321-337.

[26] Shah J. J., Anderson D., Kim Y. S., and Joshi S., 2001, “A Discourse on

Geometric Feature Recognition From CAD Models,” Journal of Computing and

Information Science in Engineering, 1(1), p. 41.

[27] Wu M., and Lit C., 1996, “Analysis on machined feature recognition techniques

based on B-rep,” Computer-Aided Design, 28(8), pp. 603-616.

[28] Han J., Pratt M., and Regli W. C., 2000, “Manufacturing feature recognition from

solid models: a status report,” Robotics and Automation, 16(6), pp. 782-796.

[29] Regli W. C., Geometric Algorithms for Recognition of Features from Solid

Models.

[30] Vandenbrande J. H., and Requicha a. a. G., 1993, “Spatial reasoning for the

automatic recognition of machinable features in solid models,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(12), pp. 1269-1285.

[31] Gao S., and Shah J. J., 1998, “Automatic recognition of interacting machining

features based on minimal condition subgraph,” Computer-Aided Design, 30(9),

pp. 727-739.

[32] Kailash S. ., Zhang Y. ., and Fuh J. Y. ., 2001, “A volume decomposition approach

to machining feature extraction of casting and forging components,” Computer-

Aided Design, 33(8), pp. 605-617.

[33] Jun Y., Raja V., and Park S., 2001, “Geometric Feature Recognition for Reverse

Engineering using Neural Networks,” The International Journal of Advanced

Manufacturing Technology, 17(6), pp. 462-470.

[34] Y Z., Taib J. M., and Tap M. M., 2011, “Implementation of Heuristic Reasoning to

Recognize Orthogonal and Non-Orthogonal Inner Loop Features From Boundary

Representation (B-Reps) Parts,” Jurnal Mekanikal, (33), pp. 1-14.

 135

[35] Anandan S., 2008, “Similarity Metrics Applied to Graph Based Design Model

Authoring.”

[36] Zhang H. L., Van der Velden C., Yu X., Bil C., Jones T., and Fieldhouse I., 2009,

“Developing a rule engine for Automated Feature Recognition from CAD

models,” 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 3925-

3930.

[37] Bespalov D., Regli W. C., and Shokoufandeh A., 2003, “Reeb Graph Based Shape

Retrieval for CAD.”

[38] Tate S. J., Jared G. E. M., Brown N. J., Swift K. G., and Cad A.-oriented, 2000,

“An Introduction to the Designers’ Sandpit,” Proceedings of DFM 2000 Design for

Manufactufing, Baltimore.

[39] Summers J. D., Bettig B., and Shah J. J., 2004, “The Design Exemplar: A New

Data Structure for Embodiment Design Automation,” Journal of Mechanical

Design, 126(5), p. 775.

[40] Shah J. J., and Mantyla M., 1995, Parametric and Feature Based CAD/CAM:

Concepts, Techniques, and Applications, New York.

[41] Joshi S., and Chang T. C., 1988, “Graph-based Heuristics for Recognition of

Machined Features from a 3D Solid Model,” Computer-Aided Design, 20(2), pp.

58-66.

[42] Venuvinod P. K., and Wong S. Y., 1995, “A graph-based expert system approach

to geometric feature recognition,” Journal of Intelligent manufacturing, 6(3), pp.

155-162.

[43] Baumgart B. G., 1972, Winged Edge Polyhedron Representation.

[44] Floriani De L., 1987, “A Graph Based Approach To Object Feature Recognition,”

SCG ’87 Proceedings of the third annual symposium on Computational geometry,

pp. 100 - 109.

[45] Marefat M., 1990, “Geometric reasoning for recognition of three-dimensional

object features,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

12(10), p. 949.

[46] Qamhiyah A. Z., Venter R. D., and Benhabib B., 1996, “Geometric Reasoning for

the Extraction of Form Features,” Computer-Aided Design, 28(11), pp. 887-903.

 136

[47] Hilaga M., “Topology Matching for Fully Automatic Similarity Estimation of 3D

Shapes,” See note at the title.

[48] Regli W. C., Gupta S. K., and Nau D. S., “Extracting alternative machining

features: An algorithmic approach.”

[49] Sommerville M. G. L., Clark D. E. R., and Corney J. R., 2001, “Viewer-centered

geometric feature recognition,” Journal of Intelligent Manufacturing, 12(4), pp.

359-375.

[50] Woo Y., and Sakurai H., 2002, “Recognition of maximal features by volume

decomposition,” Computer-Aided Design, 34(3), pp. 195-207.

[51] Sakurai H., 1995, “Volume decomposition and feature recognition : Part 1 -

polyhedral objects,” Computer-Aided Design, 27(11), pp. 833-843.

[52] Lu Y., Gadh R., and Tautges T. J., 2001, “Feature Based Hex Meshing

Methodology: Feature Recognition and Volume Decomposition,” Computer-Aided

Design, 33(3), pp. 221-232.

[53] Woo T., 1982, “Feature Extraction by Volume Decomposition,” Proc. Conf. on

CAD/CAM Technology in Mechanical Engineering, Cambridge, pp. 76-94.

[54] Kim Y. S., 1992, “Recognition of form features using convex decomposition,”

Computer-Aided Design, 24(9), pp. 461-476.

[55] Kim Y. S., 1990, “A Convergent Convex Decomposition of Polyhedral Objects,”

Journal of Mechanical Design, 114(3), p. 468.

[56] Wang E., and Kim, 1999, “Feature-based assembly mating reasoning,” Journal of

Manufacturing Systems, 18(3), pp. 187-202.

[57] Waco D. L., and Kim Y. S., 1994, “Geometric reasoning for machining features

using convex decomposition,” Computer-Aided Design, 26(6), pp. 477-489.

[58] Wang E., and Kim Y. S., 1998, “Form feature recognition using convex

decomposition: results presented at the 1997 ASME CIE Feature Panel Session,”

Computer-Aided Design1, 30(13), pp. 983-989.

[59] Kriegel H.-peter, Kr P., and Seidl T., 2003, “Effective Similarity Search on

Voxelized CAD Objects,” Database Systems for Advanced Applications, pp. 27-

36.

 137

[60] Tiwari S., 2009, “Development and Integration of Geometric and Optimization

Algorithms for Packing and Layout Design.”

[61] Sakurai H., and Chin C., 1994, “Definition and Recognition of Volume Fea- tures

for Process Planning,” Advances in Feature Based Manufacturing, pp. 65-80.

[62] Li W. D., Ong S. K., and Nee A. Y. C., 2002, “Recognizing manufacturing

features from a design-by-feature model,” Computer-Aided Design, 34(11), pp.

849-868.

[63] Shen Y.-te, and Shah J. J., 1994, “Feature recognition by volume decomposition

using half-space partitioning,” ASME Computers in Engineering.

[64] Trika S. N., and Kashyap R. L., 1993, “Geometric Reasoning for Exraction of

Manufacturing Features in Isooriented Polyhedrans,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(11), pp. 1087-1100.

[65] Ding L., and Yue Y., 2004, “Novel ANN-based feature recognition incorporating

design by features,” Computers in Industry, 55(2), pp. 197-222.

[66] Garey M. R., and Johnson D. S., 1979, “Computers and Intractability: A Guide to

the Theory of NP-Completeness.”

[67] Simon H. A., 1970, The Sciences of the Artificial, M.I.T Press, Massachusetts.

[68] Wiegers K. E., 2003, Software Requirements, Microsoft Press.

[69] Stellmann A., and Greene J., 2006, Applied Software Project Management,

O’Reilly Media, Inc., North Sebastopol.

[70] 1990, “IEEE Standard Glossary of Software Engineering Terminology.”

[71] Ulrich K. T., and Eppinger S. D., 1995, Product Design and Developement,

McGraw-Hill, Inc.

[72] Help 2010 S. A., 2010,

“http://help.solidworks.com/2010/English/api/sldworksapiprogguide/Welcome.ht

m,”

http://help.solidworks.com/2010/English/api/sldworksapiprogguide/Welcome.htm.

[73] Ding S., Mannan M. a., and Poo a. N., 2004, “Oriented bounding box and octree

based global interference detection in 5-axis machining of free-form surfaces,”

Computer-Aided Design, 36(13), pp. 1281-1294.

 138

Appendices

 139

Appendix A:Test Cases to Check Threshold Distance Condition

Test

Case

No.

Test Case Description

1

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two parts to be less than the threshold

distance and stores the two parts in a container for

orientation check.

2

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two parts to be equal to the threshold

distance and stores the two parts in a container for

orientation check.

3

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two parts to be more than the threshold

distance and therefore discards this part pair from

further analysis.

4

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two parts as less than threshold

distance. But the distance between the geometries

from the two parts is greater than the threshold

distance.

20mm

16mm

16 mm

15 mm

14 mm

 140

5

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two cylinders as less than threshold

distance. But the distance between the inner cylinder

and the inner diameter of the outer cylinder is

greater than the threshold distance (17.5mm).

6

Input: User-defined threshold distance = 15mm

Output: The algorithm calculates the distance

between the two freeform geometries as less than

the threshold distance. This test case is used to test

the bounding box performance for freeform

geometric type.

9.91mm

17.5mm

 141

Appendix B:Test Cases to Check Orientation Condition

Test

Case

No.

Test Case Description

1

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm evaluated

the following pair of

faces as being opposed

to each other within

the user defined

orientation angle,

7. f11-f23
8. f12-f24
9. f13-f21
10. f14-f22
11. f16-f25

12. f15-f26

2

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm evaluated

the following pair of

faces as being opposed

to each other within

the user defined

orientation angle,

7. f11-f23
8. f12-f24
9. f13-f21
10. f14-f22
11. f16-f25

12. f15-f26

Parallel

 142

3

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm evaluated

the following pair of

faces as being opposed

to each other outside

the user defined

orientation angle.

None of the faces meet

the orientation

condition.

4

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm evaluated

three pair of faces as

being opposed to each

other within the user

defined orientation

angle. The face pairs

identified were,
4. f12-f24
5. f14-f22
6. f15-f26

The angles between

other face pairs are

greater than the user-

defined orientation

angle.

 143

5

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm evaluated

four pair of faces as

being opposed to each

other within the user

defined orientation

angle. The face pairs

identified were,
1. f11-f22
2. f12-f21
3. f13-f23

4. f14-f23

The angles between

other combinations of

face pairs are greater

than the user-defined

orientation angle.

6

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:This test case

is used to check the

algorithm’s

performance in

checking orientation

for freeform surfaces.

Some portions of the

faces f11-f22 have

orientation within the

angle tolerance and

the algorithm

identifies that and

stores the two faces

for percentage

similarity analysis.

 144

7

Input:User-defined

orientation = 180⁰ ±

10⁰

Output:The

algorithm was checked

using a spherical body

and combination of

planar and curved

surfaces. The face

pairs meeting the

orientation condition

that were identified

are:
1. f11-f21

2. f12-f21

3. f13-f21

4. f14-f21

5. f16-f21

6. f15-f21

 145

Appendix C:Test-Cases to Check for Percentage Similarity between Geometries

Test

Case

No.

Test Case Description

1

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

2

User input:
1. Threshold distance = 15mm

2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%

4. Tolerance bound = 2mm

Result: No duplicate geometries

3

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

4

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

 146

5

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

6

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

7

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

8

User input:
1. Threshold distance = 15mm

2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%

4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

 147

9

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%

4. Tolerance bound = 2mm

Result: No duplicate geometries

10

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

11

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: No duplicate geometries

12

User input:
1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%
4. Tolerance bound = 2mm

Result: Face pair that meets threshold

distance and percentage similarity

condition are highlighted in red as

duplicate geometries.

13

16

17.5

 148

13

User input:

1. Threshold distance = 15mm
2. Orientation = 180⁰ ± 10⁰
3. Percentage similarity = 80%

4. Tolerance bound = 2mm

Result: Duplicate geometry shown in red

	Clemson University
	TigerPrints
	12-2012

	Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in CAD Models
	Aravind Shanthakumar
	Recommended Citation

	tmp.1387585722.pdf.fIsXU

