8 research outputs found

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Full text link
    We continue research into a well-studied family of problems that ask whether the vertices of a graph can be partitioned into sets AA and~BB, where AA is an independent set and BB induces a graph from some specified graph class G{\cal G}. We let G{\cal G} be the class of kk-degenerate graphs. This problem is known to be polynomial-time solvable if k=0k=0 (bipartite graphs) and NP-complete if k=1k=1 (near-bipartite graphs) even for graphs of maximum degree 44. Yang and Yuan [DM, 2006] showed that the k=1k=1 case is polynomial-time solvable for graphs of maximum degree 33. This also follows from a result of Catlin and Lai [DM, 1995]. We consider graphs of maximum degree k+2k+2 on nn vertices. We show how to find AA and BB in O(n)O(n) time for k=1k=1, and in O(n2)O(n^2) time for k≥2k\geq 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook's Theorem, which was proven in a more general way by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. Moreover, the two results enable us to complete the complexity classification of an open problem of Feghali et al. [JGT, 2016]: finding a path in the vertex colouring reconfiguration graph between two given ℓ\ell-colourings of a graph of maximum degree kk

    Random Perfect Graphs

    Full text link
    We investigate the asymptotic structure of a random perfect graph PnP_n sampled uniformly from the perfect graphs on vertex set {1,…,n}\{1,\ldots,n\}. Our approach is based on the result of Pr\"omel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number α(Pn)\alpha(P_n) and clique number ω(Pn)\omega(P_n) is close to a concentrated distribution L(n)L(n) which plays an important role in our generation method. We also prove that the probability that PnP_n contains any given graph HH as an induced subgraph is asymptotically 00 or 12\frac12 or 11. Further we show that almost all perfect graphs are 22-clique-colourable, improving a result of Bacs\'o et al from 2004; they are almost all Hamiltonian; they almost all have connectivity κ(Pn)\kappa(P_n) equal to their minimum degree; they are almost all in class one (edge-colourable using Δ\Delta colours, where Δ\Delta is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon WP(x,y)=12(1[x≤1/2]+1[y≤1/2])W_P(x, y) = \frac12(\mathbb{1}[x \le 1/2] + \mathbb{1}[y \le 1/2])

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Get PDF
    We continue research into a well-studied family of problems that ask whether the vertices of a given graph can be partitioned into sets A and B, where A is an independent set and B induces a graph from some specified graph class G. We consider the case where G is the class of k-degenerate graphs. This problem is known to be polynomial-time solvable if k = 0 (recognition of bipartite graphs), but NP-complete if k = 1 (near-bipartite graphs) even for graphs of maximum degree 4. Yang and Yuan [DM, 2006] showed that the k = 1 case is polynomial-time solvable for graphs of maximum degree 3. This also follows from a result of Catlin and Lai [DM, 1995]. We study the general k ≥ 1 case for n-vertex graphs of maximum degree k + 2 We show how to find A and B in O(n) time for k = 1, and in O(n 2 ) time for k ≥ 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook’s Theorem, proved by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. The results also enable us to solve an open problem of Feghali et al. [JGT, 2016]. For a given graph G and positive integer `, the vertex colouring reconfiguration graph of G has as its vertex set the set of `-colourings of G and contains an edge between each pair of colourings that differ on exactly on vertex. We complete the complexity classification of the problem of finding a path in the reconfiguration graph between two given `-colourings of a given graph of maximum degree k

    Thick Forests

    Full text link
    We consider classes of graphs, which we call thick graphs, that have their vertices replaced by cliques and their edges replaced by bipartite graphs. In particular, we consider the case of thick forests, which are a subclass of perfect graphs. We show that this class can be recognised in polynomial time, and examine the complexity of counting independent sets and colourings for graphs in the class. We consider some extensions of our results to thick graphs beyond thick forests.Comment: 40 pages, 19 figure

    Recognition of unipolar and generalised split graphs

    No full text
    A graph is unipolar if it can be partitioned into a clique and a disjoint union of cliques, and a graph is a generalised split graph if it or its complement is unipolar. A unipolar partition of a graph can be used to find efficiently the clique number, the stability number, the chromatic number, and to solve other problems that are hard for general graphs. We present an O(n2)-time algorithm for recognition of n-vertex generalised split graphs, improving on previous O(n3)-time algorithms

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF
    corecore