113 research outputs found

    De novo drug design in continuous space

    Get PDF

    Brain Tumor Diagnosis Support System: A decision Fusion Framework

    Get PDF
    An important factor in providing effective and efficient therapy for brain tumors is early and accurate detection, which can increase survival rates. Current image-based tumor detection and diagnosis techniques are heavily dependent on interpretation by neuro-specialists and/or radiologists, making the evaluation process time-consuming and prone to human error and subjectivity. Besides, widespread use of MR spectroscopy requires specialized processing and assessment of the data and obvious and fast show of the results as photos or maps for routine medical interpretative of an exam. Automatic brain tumor detection and classification have the potential to offer greater efficiency and predictions that are more accurate. However, the performance accuracy of automatic detection and classification techniques tends to be dependent on the specific image modality and is well known to vary from technique to technique. For this reason, it would be prudent to examine the variations in the execution of these methods to obtain consistently high levels of achievement accuracy. Designing, implementing, and evaluating categorization software is the goal of the suggested framework for discerning various brain tumor types on magnetic resonance imaging (MRI) using textural features. This thesis introduces a brain tumor detection support system that involves the use of a variety of tumor classifiers. The system is designed as a decision fusion framework that enables these multi-classifier to analyze medical images, such as those obtained from magnetic resonance imaging (MRI). The fusion procedure is ground on the Dempster-Shafer evidence fusion theory. Numerous experimental scenarios have been implemented to validate the efficiency of the proposed framework. Compared with alternative approaches, the outcomes show that the methodology developed in this thesis demonstrates higher accuracy and higher computational efficiency

    Computing With Hybrid Material Oscillators

    Get PDF
    The evolution of computers is driven by advances not only in computer science, but also in materials science. As the post-CMOS era approaches, research is increasingly focusing on flexible and unconventional computing systems, including the study of systems that incorporate new computational paradigms into the materials, enabling the computer and the material to be the same entity. In this dissertation, we design a coupled oscillator system based on a new hybrid material that can autonomously transduce chemical, mechanical, and electrical energy. Each material unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemo-mechanical oscillations of the BZ gels deflect the piezoelectric layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these coupled units become synchronized across the network, with the mode of synchronization depending on the polarity of the piezoelectric. Taking advantage of this synchronization behavior, we demonstrate that the network of coupled BZ-PZ oscillators can perform specific computational tasks such as pattern matching in a self-organized manner, without external electrical power sources. The results of the computational modeling show that the convergence time for stable synchronization gives a distance measure between the “stored” and “input” patterns, which are encoded by the connection and phases of BZ-PZ oscillators. In addition, we demonstrate two methods to enrich the information representation in our system. One is to employ multiple BZ-PZ oscillator networks in parallel and to process information encoded in different channels. The other is to introduce capacitors into a BZ-PZ network that modify the dynamical behavior of the systems and increase the information storage. We analyze and simulate the proposed coupled oscillator systems by using linear stability analysis and phase models and explore their potential computational capabilities. Through these studies, we establish experimentally realizable design rules for creating “materials that compute”

    Learning the Language of Chemical Reactions – Atom by Atom. Linguistics-Inspired Machine Learning Methods for Chemical Reaction Tasks

    Get PDF
    Over the last hundred years, not much has changed how organic chemistry is conducted. In most laboratories, the current state is still trial-and-error experiments guided by human expertise acquired over decades. What if, given all the knowledge published, we could develop an artificial intelligence-based assistant to accelerate the discovery of novel molecules? Although many approaches were recently developed to generate novel molecules in silico, only a few studies complete the full design-make-test cycle, including the synthesis and the experimental assessment. One reason is that the synthesis part can be tedious, time-consuming, and requires years of experience to perform successfully. Hence, the synthesis is one of the critical limiting factors in molecular discovery. In this thesis, I take advantage of similarities between human language and organic chemistry to apply linguistic methods to chemical reactions, and develop artificial intelligence-based tools for accelerating chemical synthesis. First, I investigate reaction prediction models focusing on small data sets of challenging stereo- and regioselective carbohydrate reactions. Second, I develop a multi-step synthesis planning tool predicting reactants and suitable reagents (e.g. catalysts and solvents). Both forward prediction and retrosynthesis approaches use black-box models. Hence, I then study methods to provide more information about the models’ predictions. I develop a reaction classification model that labels chemical reaction and facilitates the communication of reaction concepts. As a side product of the classification models, I obtain reaction fingerprints that enable efficient similarity searches in chemical reaction space. Moreover, I study approaches for predicting reaction yields. Lastly, after I approached all chemical reaction tasks with atom-mapping independent models, I demonstrate the generation of accurate atom-mapping from the patterns my models have learned while being trained self-supervised on chemical reactions. My PhD thesis’s leitmotif is the use of the attention-based Transformer architecture to molecules and reactions represented with a text notation. It is like atoms are my letters, molecules my words, and reactions my sentences. With this analogy, I teach my neural network models the language of chemical reactions - atom by atom. While exploring the link between organic chemistry and language, I make an essential step towards the automation of chemical synthesis, which could significantly reduce the costs and time required to discover and create new molecules and materials

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization

    Get PDF
    This book contains chapters that describe advanced atomic force microscopy (AFM) modes and Raman spectroscopy. It also provides an in-depth understanding of advanced AFM modes and Raman spectroscopy for characterizing various materials. This volume is a useful resource for a wide range of readers, including scientists, engineers, graduate students, postdoctoral fellows, and scientific professionals working in specialized fields such as AFM, photovoltaics, 2D materials, carbon nanotubes, nanomaterials, and Raman spectroscopy
    • …
    corecore