47 research outputs found

    Recognisable languages over monads

    Full text link
    The principle behind algebraic language theory for various kinds of structures, such as words or trees, is to use a compositional function from the structures into a finite set. To talk about compositionality, one needs some way of composing structures into bigger structures. It so happens that category theory has an abstract concept for this, namely a monad. The goal of this paper is to propose monads as a unifying framework for discussing existing algebras and designing new algebras

    Varieties of Cost Functions.

    Get PDF
    Regular cost functions were introduced as a quantitative generalisation of regular languages, retaining many of their equivalent characterisations and decidability properties. For instance, stabilisation monoids play the same role for cost functions as monoids do for regular languages. The purpose of this article is to further extend this algebraic approach by generalising two results on regular languages to cost functions: Eilenberg's varieties theorem and profinite equational characterisations of lattices of regular languages. This opens interesting new perspectives, but the specificities of cost functions introduce difficulties that prevent these generalisations to be straightforward. In contrast, although syntactic algebras can be defined for formal power series over a commutative ring, no such notion is known for series over semirings and in particular over the tropical semiring

    Varieties of Cost Functions

    Get PDF
    Regular cost functions were introduced as a quantitative generalisation of regular languages, retaining many of their equivalent characterisations and decidability properties. For instance, stabilisation monoids play the same role for cost functions as monoids do for regular languages. The purpose of this article is to further extend this algebraic approach by generalising two results on regular languages to cost functions: Eilenberg\u27s varieties theorem and profinite equational characterisations of lattices of regular languages. This opens interesting new perspectives, but the specificities of cost functions introduce difficulties that prevent these generalisations to be straightforward. In contrast, although syntactic algebras can be defined for formal power series over a commutative ring, no such notion is known for series over semirings and in particular over the tropical semiring

    The Right Angled Artin Group Functor as a Categorical Embedding

    Full text link
    It has long been known that the combinatorial properties of a graph Γ\Gamma are closely related to the group theoretic properties of its right angled artin group (raag). It's natural to ask if the graph homomorphisms are similarly related to the group homomorphisms between two raags. The main result of this paper shows that there is a purely algebraic way to characterize the raags amongst groups, and the graph homomorphisms amongst the group homomorphisms. As a corollary we present a new algorithm for recovering Γ\Gamma from its raag

    A non-regular language of infinite trees that is recognizable by a sort-wise finite algebra

    Get PDF
    ω\omega-clones are multi-sorted structures that naturally emerge as algebras for infinite trees, just as ω\omega-semigroups are convenient algebras for infinite words. In the algebraic theory of languages, one hopes that a language is regular if and only if it is recognized by an algebra that is finite in some simple sense. We show that, for infinite trees, the situation is not so simple: there exists an ω\omega-clone that is finite on every sort and finitely generated, but recognizes a non-regular language

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids
    corecore