13 research outputs found

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    High availability for parallel computers

    Get PDF
    Fault tolerance has become an important issue for parallel applications in the last few years. The parallel systems' users want them to be reliable considering two main dimensions, availability and data consistency. Availability can be provided with solutions such as RADIC, a fault tolerant architecture with different protection levels, offering high availability with transparency, decentralization, flexibility and scalability for message-passing systems. Transient faults may cause an application running in a computer system to be removed from execution, however the biggest risk of transient faults is to provoke undetected data corruption that changes the final result of the application without anyone knowing. To evaluate the effects of transient faults in the robustness of applications and validate new fault detection mechanism and strategies, we have developed a full-system simulation fault injection environmentFacultad de Inform谩tic

    A Compiler Target Model for Line Associative Registers

    Get PDF
    LARs (Line Associative Registers) are very wide tagged registers, used for both register-wide SWAR (SIMD Within a Register )operations and scalar operations on arbitrary fields. LARs include a large data field, type tags, source addresses, and a dirty bit, which allow them to not only replace both caches and registers in the conventional memory hierarchy, but improve on both their functions. This thesis details a LAR-based architecture, and describes the design of a compiler which can generate code for a LAR-based design. In particular, type conversion, alignment, and register allocation are discussed in detail

    One-Sided Communication for High Performance Computing Applications

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009Parallel programming presents a number of critical challenges to application developers. Traditionally, message passing, in which a process explicitly sends data and another explicitly receives the data, has been used to program parallel applications. With the recent growth in multi-core processors, the level of parallelism necessary for next generation machines is cause for concern in the message passing community. The one-sided programming paradigm, in which only one of the two processes involved in communication actively participates in message transfer, has seen increased interest as a potential replacement for message passing. One-sided communication does not carry the heavy per-message overhead associated with modern message passing libraries. The paradigm offers lower synchronization costs and advanced data manipulation techniques such as remote atomic arithmetic and synchronization operations. These combine to present an appealing interface for applications with random communication patterns, which traditionally present message passing implementations with difficulties. This thesis presents a taxonomy of both the one-sided paradigm and of applications which are ideal for the one-sided interface. Three case studies, based on real-world applications, are used to motivate both taxonomies and verify the applicability of the MPI one-sided communication and Cray SHMEM one-sided interfaces to real-world problems. While our results show a number of short-comings with existing implementations, they also suggest that a number of applications could benefit from the one-sided paradigm. Finally, an implementation of the MPI one-sided interface within Open MPI is presented, which provides a number of unique performance features necessary for efficient use of the one-sided programming paradigm

    Doctor of Philosophy

    Get PDF
    dissertationRecent trends in high performance computing present larger and more diverse computers using multicore nodes possibly with accelerators and/or coprocessors and reduced memory. These changes pose formidable challenges for applications code to attain scalability. Software frameworks that execute machine-independent applications code using a runtime system that shields users from architectural complexities oer a portable solution for easy programming. The Uintah framework, for example, solves a broad class of large-scale problems on structured adaptive grids using fluid-flow solvers coupled with particle-based solids methods. However, the original Uintah code had limited scalability as tasks were run in a predefined order based solely on static analysis of the task graph and used only message passing interface (MPI) for parallelism. By using a new hybrid multithread and MPI runtime system, this research has made it possible for Uintah to scale to 700K central processing unit (CPU) cores when solving challenging fluid-structure interaction problems. Those problems often involve moving objects with adaptive mesh refinement and thus with highly variable and unpredictable work patterns. This research has also demonstrated an ability to run capability jobs on the heterogeneous systems with Nvidia graphics processing unit (GPU) accelerators or Intel Xeon Phi coprocessors. The new runtime system for Uintah executes directed acyclic graphs of computational tasks with a scalable asynchronous and dynamic runtime system for multicore CPUs and/or accelerators/coprocessors on a node. Uintah's clear separation between application and runtime code has led to scalability increases without significant changes to application code. This research concludes that the adaptive directed acyclic graph (DAG)-based approach provides a very powerful abstraction for solving challenging multiscale multiphysics engineering problems. Excellent scalability with regard to the different processors and communications performance are achieved on some of the largest and most powerful computers available today

    PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    Full text link
    corecore