10 research outputs found

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    All-optical Reservoir Computing

    Full text link
    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible

    Photonic machine learning implementation for signal recovery in optical communications

    Get PDF
    Machine learning techniques have proven very efficient in assorted classification tasks. Nevertheless, processing time-dependent high-speed signals can turn into an extremely challenging task, especially when these signals have been nonlinearly distorted. Recently, analogue hardware concepts using nonlinear transient responses have been gaining significant interest for fast information processing. Here, we introduce a simplified photonic reservoir computing scheme for data classification of severely distorted optical communication signals after extended fibre transmission. To this end, we convert the direct bit detection process into a pattern recognition problem. Using an experimental implementation of our photonic reservoir computer, we demonstrate an improvement in bit-error-rate by two orders of magnitude, compared to directly classifying the transmitted signal. This improvement corresponds to an extension of the communication range by over 75%. While we do not yet reach full real-time post-processing at telecom rates, we discuss how future designs might close the gap

    Reservoir computing based on delay-dynamical systems

    Get PDF
    Today, except for mathematical operations, our brain functions much faster and more efficient than any supercomputer. It is precisely this form of information processing in neural networks that inspires researchers to create systems that mimic the brain’s information processing capabilities. In this thesis we propose a novel approach to implement these alternative computer architectures, based on delayed feedback. We show that one single nonlinear node with delayed feedback can replace a large network of nonlinear nodes. First we numerically investigate the architecture and performance of delayed feedback systems as information processing units. Then we elaborate on electronic and opto-electronic implementations of the concept. Next to evaluating their performance for standard benchmarks, we also study task independent properties of the system, extracting information on how to further improve the initial scheme. Finally, some simple modifications are suggested, yielding improvements in terms of speed or performanc

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Recent advances in efficient learning of recurrent networks

    No full text
    Hammer B, Schrauwen B, Steil JJ. Recent advances in efficient learning of recurrent networks. In: Verleysen M, ed. European Symposium on Artificial Neural Networks. Brugge: d-facto; 2009: 213-226
    corecore