2,036 research outputs found

    3D visualization processes for recreating and studying organismal form

    Get PDF
    The study of biological form is a vital goal of evolutionary biology and functional morphology. We review an emerging set of methods that allow scientists to create and study accurate 3D models of living organisms and animate those models for biomechanical and fluid dynamic analyses. The methods for creating such models include 3D photogrammetry, laser and CT-scanning, and 3D software. New multi-camera devices can be used to create accurate 3D models of living animals in the wild and captivity. New websites and virtual reality/augmented reality devices now enable the visualization and sharing of these data. We provide examples of these approaches for animals ranging from large whales to lizards and show applications for several areas: Natural history collections; body condition/scaling, bioinspired robotics, computational fluids dynamics (CFD), machine learning, and education. We provide two data sets to demonstrate the efficacy of CFD and machine learning approaches and conclude with a prospectus

    Vector offset operators for deformable organic objects.

    Get PDF
    Many natural materials and most of living tissues exhibit complex deformable behaviours that may be characteriseda s organic. In computer animation, deformable organic material behaviour is needed for the development of characters and scenes based on living creatures and natural phenomena. This study addresses the problem of deformable organic material behaviour in computer animated objects. The focus of this study is concentrated on problems inherent in geometry based deformation techniques, such as non-intuitive interaction and difficulty in achieving realism. Further, the focus is concentrated on problems inherent in physically based deformation techniques, such as inefficiency and difficulty in enforcing spatial and temporal constraints. The main objective in this study is to find a general and efficient solution to interaction and animation of deformable 3D objects with natural organic material properties and constrainable behaviour. The solution must provide an interaction and animation framework suitable for the creation of animated deformable characters. An implementation of physical organic material properties such as plasticity, elasticity and iscoelasticity can provide the basis for an organic deformation model. An efficient approach to stress and strain control is introduced with a deformation tool named Vector Offset Operator. Stress / strain graphs control the elastoplastic behaviour of the model. Strain creep, stress relaxation and hysteresis graphs control the viscoelastic behaviour of the model. External forces may be applied using motion paths equipped with momentum / time graphs. Finally, spatial and temporal constraints are applied directly on vector operators. The suggested generic deformation tool introduces an intermediate layer between user interaction, deformation, elastoplastic and viscoelastic material behaviour and spatial and temporal constraints. This results in an efficient approach to deformation, frees object representation from deformation, facilitates the application of constraints and enables further development

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    컴퓨터를 활용한 여러 사람의 동작 연출

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 이제희.Choreographing motion is the process of converting written stories or messages into the real movement of actors. In performances or movie, directors spend a consid-erable time and effort because it is the primary factor that audiences concentrate. If multiple actors exist in the scene, choreography becomes more challenging. The fundamental difficulty is that the coordination between actors should precisely be ad-justed. Spatio-temporal coordination is the first requirement that must be satisfied, and causality/mood are also another important coordinations. Directors use several assistant tools such as storyboards or roughly crafted 3D animations, which can visu-alize the flow of movements, to organize ideas or to explain them to actors. However, it is difficult to use the tools because artistry and considerable training effort are required. It also doesnt have ability to give any suggestions or feedbacks. Finally, the amount of manual labor increases exponentially as the number of actor increases. In this thesis, we propose computational approaches on choreographing multiple actor motion. The ultimate goal is to enable novice users easily to generate motions of multiple actors without substantial effort. We first show an approach to generate motions for shadow theatre, where actors should carefully collaborate to achieve the same goal. The results are comparable to ones that are made by professional ac-tors. In the next, we present an interactive animation system for pre-visualization, where users exploits an intuitive graphical interface for scene description. Given a de-scription, the system can generate motions for the characters in the scene that match the description. Finally, we propose two controller designs (combining regression with trajectory optimization, evolutionary deep reinforcement learning) for physically sim-ulated actors, which guarantee physical validity of the resultant motions.Chapter 1 Introduction 1 Chapter 2 Background 8 2.1 Motion Generation Technique 9 2.1.1 Motion Editing and Synthesis for Single-Character 9 2.1.2 Motion Editing and Synthesis for Multi-Character 9 2.1.3 Motion Planning 10 2.1.4 Motion Control by Reinforcement Learning 11 2.1.5 Pose/Motion Estimation from Incomplete Information 11 2.1.6 Diversity on Resultant Motions 12 2.2 Authoring System 12 2.2.1 System using High-level Input 12 2.2.2 User-interactive System 13 2.3 Shadow Theatre 14 2.3.1 Shadow Generation 14 2.3.2 Shadow for Artistic Purpose 14 2.3.3 Viewing Shadow Theatre as Collages/Mosaics of People 15 2.4 Physics-based Controller Design 15 2.4.1 Controllers for Various Characters 15 2.4.2 Trajectory Optimization 15 2.4.3 Sampling-based Optimization 16 2.4.4 Model-Based Controller Design 16 2.4.5 Direct Policy Learning 17 2.4.6 Deep Reinforcement Learning for Control 17 Chapter 3 Motion Generation for Shadow Theatre 19 3.1 Overview 19 3.2 Shadow Theatre Problem 21 3.2.1 Problem Definition 21 3.2.2 Approaches of Professional Actors 22 3.3 Discovery of Principal Poses 24 3.3.1 Optimization Formulation 24 3.3.2 Optimization Algorithm 27 3.4 Animating Principal Poses 29 3.4.1 Initial Configuration 29 3.4.2 Optimization for Motion Generation 30 3.5 Experimental Results 32 3.5.1 Implementation Details 33 3.5.2 Animation 34 3.5.3 3D Fabrication 34 3.6 Discussion 37 Chapter 4 Interactive Animation System for Pre-visualization 40 4.1 Overview 40 4.2 Graphical Scene Description 42 4.3 Candidate Scene Generation 45 4.3.1 Connecting Paths 47 4.3.2 Motion Cascade 47 4.3.3 Motion Selection For Each Cycle 49 4.3.4 Cycle Ordering 51 4.3.5 Generalized Paths and Cycles 52 4.3.6 Motion Editing 54 4.4 Scene Ranking 54 4.4.1 Ranking Criteria 54 4.4.2 Scene Ranking Measures 57 4.5 Scene Refinement 58 4.6 Experimental Results 62 4.7 Discussion 65 Chapter 5 Physics-based Design and Control 69 5.1 Overview 69 5.2 Combining Regression with Trajectory Optimization 70 5.2.1 Simulation and Motor Skills 71 5.2.2 Control Adaptation 75 5.2.3 Control Parameterization 79 5.2.4 Efficient Construction 81 5.2.5 Experimental Results 84 5.2.6 Discussion 89 5.3 Example-Guided Control by Deep Reinforcement Learning 91 5.3.1 System Overview 92 5.3.2 Initial Policy Construction 95 5.3.3 Evolutionary Deep Q-Learning 100 5.3.4 Experimental Results 107 5.3.5 Discussion 114 Chapter 6 Conclusion 119 6.1 Contribution 119 6.2 Future Work 120 요약 135Docto

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs
    corecore