1,057 research outputs found

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Belief Consensus Algorithms for Fast Distributed Target Tracking in Wireless Sensor Networks

    Full text link
    In distributed target tracking for wireless sensor networks, agreement on the target state can be achieved by the construction and maintenance of a communication path, in order to exchange information regarding local likelihood functions. Such an approach lacks robustness to failures and is not easily applicable to ad-hoc networks. To address this, several methods have been proposed that allow agreement on the global likelihood through fully distributed belief consensus (BC) algorithms, operating on local likelihoods in distributed particle filtering (DPF). However, a unified comparison of the convergence speed and communication cost has not been performed. In this paper, we provide such a comparison and propose a novel BC algorithm based on belief propagation (BP). According to our study, DPF based on metropolis belief consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus is the fastest in tree graphs. Moreover, we found that BC-based DPF methods have lower communication overhead than data flooding when the network is sufficiently sparse

    A Survey on Various Congestion Control Techniques in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are made up of small battery-powered sensors that can sense and monitor a variety of environmental conditions. These devices are self-contained and fault tolerant. The majority of WSNs are built to perform data collection tasks. These data are gathered and then sent to the sink node. Small packets are sent towards the sink node in such cases, and as a result, the areas near the sink node become congested, becoming the bottleneck of the entire network. In this paper, a survey of existing techniques or methods for detecting and eliminating congestions is conducted. Finally, a comparison in the form of a table based on various matrices is presented

    Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system

    Get PDF
    The recent proliferation of wireless sensor networks (WSNs) evolution into the Internet of Things (IoT) vision enables a variety of low-cost monitoring applications which allows a seamless transfer of information via embedded computing and network devices. Ambiguous ground vibration can be induced by blasting demolition is a severe concern which grievously damages the nearby dwellings and plants. It is an indispensable prerequisite for measuring the blast-induced ground vibration (BIGV), accomplishing a topical and most active research area. Thus, proposed and developed an architecture which emphasizes the IoT realm and implements a low-power wide-area networks (LPWANs) based system. Especially, using the available Long-Range (LoRa) Correct as Radio Frequency (RF) module, construct a WSN configuration for acquisition and streaming of required data from and to an IoT gateway. The system can wirelessly deliver the information to mine management and surrounding rural peoples to aware of the intensity of BIGV level. In this article, an endeavor has been made to introduce a LoRa WAN connectivity and proved the potentiality of the integrated WSN paradigm by testing of data transmission-reception in a non-line of sight (NLOS) condition. The path loss metrics and other required parameters have been measured using the LoRa WAN technology at 2.4 GHz frequency
    corecore