164,833 research outputs found

    The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning

    The role of Artificial Intelligence in transforming HRM functions. A literature review

    Full text link
    [EN] Artificial intelligence (AI) has revolutionized the way employees and managers work. This paper studies how AI is transforming Human Resource Management (HRM) functions: Staffing, Learning & Development and, Motivation. Using recent advances in science mapping, this article analyses 30 journals and proceedings using three main keywords: “Artificial intelligence”; “Human Resource Management”; and “Transformation”. All the consulted papers have been published in Scopus databases between 1998 to 2021 in order to explore and understand topic content and intellectual structure of how AI is transforming HRM functions. The results reveal a gap in literature to build a complete framework for the transforming role of AI in HRM functions. Particularly, Strategic HR Planning, Job Design and Compensation. This study gives insights and foundations for researchers to expand their study on the role of AI in HRM.Tuffaha, M.; Perelló Marín, MR.; Suárez Ruz, ME. (2022). The role of Artificial Intelligence in transforming HRM functions. A literature review. En Proceedings 3rd International Conference. Business Meets Technology. Editorial Universitat Politècnica de València. 195-200. https://doi.org/10.4995/BMT2021.2021.1369619520

    Accelerating Heuristic Search for AI Planning

    Get PDF
    AI Planning is an important research field. Heuristic search is the most commonly used method in solving planning problems. Despite recent advances in improving the quality of heuristics and devising better search strategies, the high computational cost of heuristic search remains a barrier that severely limits its application to real world problems. In this dissertation, we propose theories, algorithms and systems to accelerate heuristic search for AI planning. We make four major contributions in this dissertation. First, we propose a state-space reduction method called Stratified Planning to accelerate heuristic search. Stratified Planning can be combined with any heuristic search to prune redundant paths in state space, without sacrificing the optimality and completeness of search algorithms. Second, we propose a general theory for partial order reduction in planning. The proposed theory unifies previous reduction algorithms for planning, and ushers in new partial order reduction algorithms that can further accelerate heuristic search by pruning more nodes in state space than previously proposed algorithms. Third, we study the local structure of state space and propose using random walks to accelerate plateau exploration for heuristic search. We also implement two state-of-the-art planners that perform competitively in the Seventh International Planning Competition. Last, we utilize cloud computing to further accelerate search for planning. We propose a portfolio stochastic search algorithm that takes advantage of the cloud. We also implement a cloud-based planning system to which users can submit planning tasks and make full use of the computational resources provided by the cloud. We push the state of the art in AI planning by developing theories and algorithms that can accelerate heuristic search for planning. We implement state-of-the-art planning systems that have strong speed and quality performance

    Parallel plan execution with self-processing networks

    Get PDF
    A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems

    The real-time control of planetary rovers through behavior modification

    Get PDF
    It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed

    Mapping of Land Use and Land Cover (LULC) using EuroSAT and Transfer Learning

    Full text link
    As the global population continues to expand, the demand for natural resources increases. Unfortunately, human activities account for 23% of greenhouse gas emissions. On a positive note, remote sensing technologies have emerged as a valuable tool in managing our environment. These technologies allow us to monitor land use, plan urban areas, and drive advancements in areas such as agriculture, climate change mitigation, disaster recovery, and environmental monitoring. Recent advances in AI, computer vision, and earth observation data have enabled unprecedented accuracy in land use mapping. By using transfer learning and fine-tuning with RGB bands, we achieved an impressive 99.19% accuracy in land use analysis. Such findings can be used to inform conservation and urban planning policies.Comment: 10 pages, 7 figure

    Computational Imaging and Artificial Intelligence: The Next Revolution of Mobile Vision

    Full text link
    Signal capture stands in the forefront to perceive and understand the environment and thus imaging plays the pivotal role in mobile vision. Recent explosive progresses in Artificial Intelligence (AI) have shown great potential to develop advanced mobile platforms with new imaging devices. Traditional imaging systems based on the "capturing images first and processing afterwards" mechanism cannot meet this unprecedented demand. Differently, Computational Imaging (CI) systems are designed to capture high-dimensional data in an encoded manner to provide more information for mobile vision systems.Thanks to AI, CI can now be used in real systems by integrating deep learning algorithms into the mobile vision platform to achieve the closed loop of intelligent acquisition, processing and decision making, thus leading to the next revolution of mobile vision.Starting from the history of mobile vision using digital cameras, this work first introduces the advances of CI in diverse applications and then conducts a comprehensive review of current research topics combining CI and AI. Motivated by the fact that most existing studies only loosely connect CI and AI (usually using AI to improve the performance of CI and only limited works have deeply connected them), in this work, we propose a framework to deeply integrate CI and AI by using the example of self-driving vehicles with high-speed communication, edge computing and traffic planning. Finally, we outlook the future of CI plus AI by investigating new materials, brain science and new computing techniques to shed light on new directions of mobile vision systems

    Artificial intelligence and 3D printing technology in orthodontics: future and scope

    Get PDF
    New digital technologies, like in other fields, have revolutionized the health care field and orthodontic practice in the 21st century. They can assist the health care professionals in working more efficiently by saving time and improving patient care. Recent advances in artificial intelligence (AI) and 3D printing technology are useful for improving diagnosis and treatment planning, creating algorithms and manufacturing customized orthodontic appliances. AI accomplishes the task of human beings with the help of machines and technology. In orthodontics, AI-based models have been used for diagnosis, treatment planning, clinical decision-making and prognosis prediction. It minimizes the required workforce and speeds up the diagnosis and treatment procedure. In addition, the 3D printing technology is used to fabricate study models, clear aligner models, surgical guides for inserting mini-implants, clear aligners, lingual appliances, wires components for removable appliances and occlusal splints. This paper is a review of the future and scope of AI and 3D printing technology in orthodontics
    corecore