
N89- 26584
a.

Parallel Plan Execution with Self-Processing Networks

C. Lynne D'Autrechy and James A. Reggia*

Department of Computer Science
University of Maryland, College Park, MD 20742

*Also with the University of Maryland Institute for Advanced Computer Studies
and the Department of Neurology, University of Maryland

Abstract: A critical issue for space operations is how to develop and apply advanced automation tech-
niques to reduce the cost and complexity of working in space. In this context, it is important to examine
how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this
reason, we are currently exploring the feasibility of applying self-processing network models to a variety of
planning and control problems relevant to spacecraft activities. Our goals are both to demonstrate that self-
processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software
environment for implementing self-processing models, is sufficiently robust to support deve!opment of a wide
range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, we imple-
mented a model of the execution of a "Spaceworld plan which is a simplified model of the Voyager space-
craft which photographed Jupiter, Saturn, and their satellites. This study demonstrates that plan execution,
a task usually solved using traditional AI techniques, can be accomplished using a self-processing network.
The fact that self-processing networks have been applied to other space-related tasks in addition to the one
discussed here demonstrates the general aplicability of this approach to planning and control problems
relevant to spacecraft activities. This work also demonstrates that MIRRORS/II is a powerful environment
for the developmenVevaluation of self-processing systems.

1. Introduction
A critical issue for space operations is how to develop and apply advanced automation techniques to

reduce the cost and complexity of working in space. In this context, it is important to examine how recent
advances in self-processing networks (connectionist models, artificial neural networks, marker passing sys-
tems, etc. [SI) can be applied to planning and scheduling tasks. Most successful work with such models has
focused on fairly low-level applications (pattern recognition or completion, associative memory, constraint
satisfaction, etc.) and relatively little has been done in traditional AI problem-solving areas like planning.
Thus, while these methods potentially offer tremendous advantages for complex automation applications
(massively parallel processing, fault tolerance, etc.), it is currently difficult to see how they can be adopted
directly.

For this reason, we are exploring the feasibility of applying self-processing network models to a variety
of planning and control problems relevant to spacecraft activities. Our goals are both to demonstrate that
self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose
software environment for implementing self-processing models [1,2], is sufficiently robust to support develop-
ment of a wide range of application prototypes. While a number of specific applications have recently been
developed using MIRRORS/II for spacecraft applications (camera controller [5], diagnostic problem-solver
[6], etc.), this paper focuses on a specific plan execution example.

11. Self-Processing Network Models and Marker Passing
To enable the reader less familiar with current work on self-processing network models to follow the

principal ideas embodied in MIRRORS/II, we introduce some basic concepts and terminology, simplifying
somewhat for brevity. The term self-processing network model as used in this paper refers to models in
which many, usually simple, processing elements operate in parallel and communicate via connections
(links) between nodes. For our purposes, it is convenient to view self-processing network models as having

61
PRECEDING PAGE BLAidK NOT FiLMED

https://ntrs.nasa.gov/search.jsp?R=19890017213 2020-03-20T02:06:12+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42827139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

two components: a network and an activation method. The network consists of a set of processing nodes
connected together via links. Nodes directly connected to one another are said to be neighbors of each
other. The activation method is a local rule or procedure that each node follows in updating its current state
in the context of information from neighboring nodes. Typically, the goal in constructing and running a simu-
lation with a self-processing network model is to demonstrate that some global behavior (behavior of the net-
work as a whole) can emerge from the concurrent local interactions between neighboring nodes during a
simulation.

A great number of self-processing network models have been proposed and studied since the 1940's
in cognitive science, artificial intelligence, and neurophysiological modelling [3]. This paper is only con-
cerned with one class of such models referred to as marker passing systems. The networks in these
symbol-processing models usually have semantically-labeled, unweighted links and implement spreading
activation by passing symbolic (non-numeric) labels or markers. Typically, a node might have a dozen
marker bits (M l , M2, ..., M12), binary switches that can be turned on or off when the appropriate marker is
"received." Using these markers, such networks provide powerful mechanisms for implementing set opera-
tions (intersection, union, etc.) as well as some forms of deduction (transitive closure of relations, inheritance
of properties, etc.).

I l l . The MIRRORS/II Simulator
MIRRORS/II is an extensible general-purpose simulator which can be used to implement a broad spec-

trum of self-processing network models. MIRRORS/II is distinguished by its support of a high-level non-
procedural language, an indexed library of networks, spreading activation methods, learning methods, event
parsers and handlers, and a generalized event-handling mechanism.

The MIRRORS/II language allows relatively inexperienced computer users to express the structure of a
network that they would like to study and the parameters which will control their particular self-processing
network model simulation. Users can select an existing spreading activation/learning method and other sys-
tem components from the library to complete their model; no programming is required. On the other hand,
more advanced users with programming skills who are interested in research involving new methods for
spreading activation or learning can still derive major benefits from using MIRRORS/II. The advanced user
need only write functions for the desired procedural components (e.g., spreading activation method, control
strategy, etc.). A specification file, written in the MIRRORS/II language by the user, serves as input to
MIRRORS/II.

Self-processing network models developed using MIRRORS/II are not limited to a particular processing
paradigm. Many spreading activation methods and learning methods including Hebbian learning, competi-
tive learning, and error back-propogation are among the resources found in the MIRRORS/II library.
MIRRORS/II provides both synchronous and asynchronous control strategies that determine which nodes
should have their activation values updated during an iteration. Users can also provide their own control
strategies and have control over a simulation through the generalized event handling mechanism.

Simulations produced by MIRRORS/II have an event-handling mechanism which provides a general
framework for scheduling certain actions to occur during a simulation. MIRRORS/II supports system-defined
events (constant/cyclic input, constantkyclic output, clamp, learn, display and show) and user-defined
events. An event command (e.g., the input-command) indicates which event is to occur, when it is to occur,
and which part of the network it is to affect. At run time, the appropriate event handler performs the desired
action for the currently-occurring event.

MIRRORS/II was originally designed for implementing connectionist models with no significant thought
being given to how marker-passing methods might be developed in the context of MIRRORS/II. Thus, at
the start of the work described here, it was not immediately obvious whether MIRRORS/II could support
marker passing methods without alterations.

IV. Non-Hierarchical Plan Execution
Using MIRRORS/II and marker passing techniques, we implemented a model of the execution of a

"Spaceworld plan as described in [4]. Spaceworld is a simplified model of the Voyager spacecraft which
photographed Jupiter, Saturn, and their satellites. The specific Spaceworld plan used here describes the
sequential and parallel sequence of steps (goals) which must be taken by the Voyager spacecraft in order to
photograph two satellites and transmit the photographs to earth. Each goal in the plan has the following

62

63

four parameters: an earliest starting time, an ideal starting time, a latest starting time, and a duration.
Often, the ideal starting time parameter does not exist; in this case, the earliest starting time is also the ideal
starting time. A portion of this specific Spaceworld plan is illustrated in Figure 1. Each box in the figure
represents a goal in the plan. The first line in a box is the name of the goal. The second line labelled
"start:" indicates the early, ideal, and latest starting times in seconds respectively. The third line labelled
"duration:" indicates the duration in seconds. The arrows in the plan represent dependency relationships or
the flow of execution. For example, the platform-damping - 2 goal must finish executing before the
shutter.camera(1) goal can begin executing.

A goal in the plan cannot be executed until two constraints have been satisfied - the dependency con-
straint and the starting time constraint. First, all goals which precede a given goal G in time must have
finished executing before G can begin executing. Once this dependency constraint has been satisfied, the
starting time constraint must be satisfied. Optimally, a goal should begin execution at its ideal starting time
or, if that is not possible, at the earliest time thereafter up to and including the latest starting time. If the
latest starting time is reached and the dependency constraint has not yet been satisfied then that goal will
never be executed.

The MIRRORS/II specification of the self-processing network used to implement the execution of the
Spaceworld plan discussed in [4] is pictured in Figure 2. Each goal in the plan is represented as a node in
a self-processing network (all statements beginning with "[node" and ending with "I"). All the goals in the
plan share the same parameters so their corresponding nodes are grouped into a single set (lines 1-22).
Each node has two user-defined attributes - start and duration. The start attribute is a triple of values
representing the earliest, ideal, and latest starting times for a goal in the plan. For example, the triple
representing the earliest, ideal, and latest stopping times respectively for node shutter-camera(1 } is (2400
2500 2550). All times in the plan are given in seconds relative to the starting time of the plan. The goal
duration is a number representing the time in seconds it takes to complete the execution of the goal. Con-
nections between the nodes represent the time sequence dependency relationships. For example, the
statement [node turn-on-transmitter . . . (plan transmit picture)] in Figure 2 indicates that node
turn-on-transmitter connects to node transmit picture. TEis connection indicates that execution of the
turn - - on transmitter goal must be completed before the execution of the transmit-picture goal can begin.

;--- Set containing all the goals (nodes) in a non-hierarchical Spaceworld plan

[set plan (contains
calibrate gyros change data mode{ 1 } change data mode(2)
change data mode(3}~han~e-data-mode{4}~lear~tape
consolidate-t?ipe{l} consolidate_tape(2} datamode - - ok 1
datamode-ok-2 datamode-ok-3
datamode-ok-4 datamode-ok-5 gyros rev up high-speed-slew
medium speed slew platform damping 1 platform damping - 2
playback(l} playback(2) poszon taperl} position~tape(2)
position-tape(3) record-picture rdl set-filter{ 1 } set-filter(2)
shutter-camera{ 1 } shutter-camera(2) start-recording{ 1 }
start-recording(2) transmit-picture
turn-off camera turn-off-gyros turn-off heaters
turn-offItape-recorder turn-on-cameraturn on gyros
turn-on-heaters turn-on-transmitter viewing1 }viewing(2}
beg in-eart h-occu Itat ion end-eart h-occult at ion
datarate - change-1 datarate - change - 2 datarate - change - 3)

(initact 0.0)

Figure 2: An abridged MIRRORS/II specification file for the self-processing network of the complete
Spaceworld plan. Some details were omitted for brevity. (Page 1 of 3.)

64

(attribute start dynamic optional) ;--- Definition of node attributes needed for this model.
(attribute duration dynamic optional)
(attribute type dynamic)
(met hod plan) ;--- Marker passing activation method for

;--- non-hierarchical plans.
(connects (plan oto incoming optional)] ;--- Nodes in this set connect to other nodes in this set.

I ;--- The following node statements give detailed node attribute information for
;--- each node as well as describing the node connections in the network.
;--- Duration times and start times are given in seconds.

[implicit (member plan)]

[node calibrate’ gyros (type action)]
[node change-data-mode(1 } (start (0 nil 2255.76))(duration 300)(type action)

(plan datamode-ok-3)]

[node datamode-ok-3 (start (2405.76 nil 2555.76))(duration O)(type inference)
(plan transmit picture)]

[node datamode-ok-4-(type inference)]
[node datamode-ok-5 (type inference)]
[node gyros-rev-up (type event)]
[node high-speed-slew (start (2405.76 nil 880l))(duration 99)(type action)

[node medium-speed-slew (start (0 nil 2370))(duration 80)(type action)

Inode platform damping-1 (start (2504.76 nil 8000))(duration 300)(type event)

[node platform-damping 2 (start (80 nil 2450))(duration 1 OO)(type event)

[node playback(1) (start (20001 nil 22757.43))(duration 40)(type action)

[node playback(2) (start (201 70.29 nil 22926.71))(duration 73.28571)(type action)

[node position tape{l} (start (0 nil 7958.617))(duration 7.142857)(type action)

(plan (/ platform-damping-1 viewing(2}))]

(plan (/ platform-damping-2 viewing{ 1 }))I

(plan shutter-camera{2})]

(plan shutter-cahera{l})]

(plan (/ consolidate-tape(1) position_tape(3}))]

(plan (/ consolidate_tape{2} datarate-change-3))I

(plan aart-recording(l })]

[node set-filter{ 1 } (start (0 nil 2533.4))(duration 16.6)(type action)
(plan shutter-camera(1 })]

[node set-filter(2) (start (2405.76 nil 91 76.5))(duration 23.5)(type action)
(plan shutter_carnera(2))]

[node shutter-camera(1) (start (2400 2500 255O))(duration 5.76)(type action)
(plan (/ high-speed-slew set-filter(2) transmit-picture))]

[node shutter-camera(2) (start (9000 9000 9200))(duration 5.76)(type action)
(plan record-pictu re)]

[node start-recording(1) (start (2948.76 nil 7965.76))(duration l)(type action)
(plan roll)]

[node start-recording(2) (start (9004.76 nil 9204.76))(duration l)(type action)
(plan re co r d g ict u re)]

Figure 2: An abridged MIRRORS/II specification file for the self-processing network of the complete
Spaceworld plan. Some details were omitted for brevity. (Page 2 of 3.)

[node transmit-picture (start (2405.76 nil 2555.76))(duration 144)(type event)
(plan (/ change-data-mode(2) begin-earth-occukation))]

[node turn-on-camera (start (0 nil 2520))(duration 30)(type action)
(plan shutter-camera(1 })]

[node turn-on-gyros (type action)]
[node turn-on-heaters (type action)]
[node turn-on-transmitter (start (0 nil 2255.76))(duration 300)(type action)

[node viewing(1 } (start (2400 nil 2550))(duration O)(type inference)
(plan transmit-picture)]

(plan shutter-camera(1 })]

[node dataratelchange-1 (start (1000 nil 1 000))(duration 300)(type event)
(plan (/ viewing{ 1 } datamode-ok-3 start-recording{ 1 }))I

;--- Control specification
[co nt ro I ALTC 0 NTR OL]
[transcript plan]
[events (clamp)(show)]
:--- Start the nodes in the network which have no predecessor nodes.
[clamp

[clamp

(from 0 thru 1) (plan (&
medium-speed-slew
turn-on-camera
set_filter{l}
change data-mode{ 1 }
t urn-onIt ransmitt e r
position-tape{l }))
1.01

(froh 1000 thru 1001) (plan datarate - change - 1) 1.01
[run 250021
[exit]

Figure 2: An abridged MIRRORS/II specification file for the self-processing network of the complete
Spaceworld plan. Some details were omitted for brevity. (Page 3 of 3.)

A marker-passing paradigm was used as the spreading activation method for this self-processing net-
work. Basically, a node representing a goal in a plan passes a marker to the nodes to which it sends outgo-
ing connections, representing goals in the plan which are dependent on the completion of the sending node,
when it has finished executing. Once a node which has not executed yet has received markers from all the
nodes from which it receives incoming connections thereby satisfying the dependency constraint, and the
starting time constraint has been satisfied, the node can begin executing. Nodes which do not have any
dependency constraints can begin executing as soon as their starting time constraints are satisfied.

Using the network specification shown in Figure 2 and the marker-passing method described above
the Spaceworld plan executed successfully, taking advantage of the parallelism inherent in the plan. The
results of this execution can be seen in Figure 3. The output is composed of messages generated by
nodes; each node prints a message to indicate when it began executing and when it stopped executing.
Figure 3 shows that goals in the plan which are independent of each other are executed in parallel while
other goals which must be executed in a specific order are executed sequentially. For example the nodes

66

turn-on-camera and turn-on transmitter both begin executing at the same time indicating that they are not
dependent on each other and can be executed in parallel. Also, observe by comparing the network
specification in Figure 2 to the output in Figure 3 that the starting time constraints of each goal have been
satisfied and the duration time of each goal is accurate.

Beginning simulation, will stop at iteration 25002
Starting action change-data-mode(1 } at time 0.
Starting action medium-speed-slew at time 0.
Starting action position tape(1) at time 0.
Starting action set-fiIter(l} at time 0.
Starting action turn-on-camera at time 0.
Starting action turn on-transmitter at time 0.

Finished action pkition-tape(1) at time 7.
Finished action set-fiIter(1) at time 16.
Finished action turn-on-camera at time 30.
Finished action medium-speed slew at time 80.

Starting event platform damping-2 at time 80.
Finished event platform-damping 2 at time 180.
Finished action change data mode(1) at time 300.
Finished action turn on-transmitter at time 300.

Starting event datarat6-c6ange-1 at time 1000.
Finished event datarate change 1 at time 1300.

Starting inference viewingrl } at time 2400.
Finished inference viewing(1) at time 2400.

Starting inference datamode-ok-3 at time 2405.
Finished inference datamode-ok-3 at time 2405.

Starting action shutter camera(1) at time 2500.
Finished action shutter camera(1) at time 2505.

Starting action high spee?i-slew at time 2505.
Starting action set filter(2) at time 2505.
Starting event transmit-picture at time 2505.

Finished action set fiIter(2) at time 2528.
Finished action high speed slew at time 2604.

Starting event platform-damping-1 at time 2604.
Finished event transmitgicture at time 2649.

Starting action change-data-mode(2) at time 2649.
Finished event platform damping 1 at time 2904.

Starting action start-recor&tg{ l} attime 2948.
Finished action change data-mode(2) at time 2949.
Finished action start-recording{ 1 } at time 2949.

Starting action roll at time 2949.
Finished action roll at time 3879.

Starting inference viewing(2) at time 3879.
Finished inference viewing(2) at time 3879.

Starting action change-data-mode(3) at time 3888.
Finished action change data mode(3) at time 4188.

Starting event begin-eart6 occultation at time 5000.
Finished event begin-ea?h-occultation at time 5001.

Starting event datarate change 2 at time 7000.
Finished event datarate change-2 at time 7300.

Starting action shutter-camera(2) at time 9000.

Figure 3: Output of the self-processing network for non-hierarchical plan execution. (Page 1 of 2.)

67

Starting action start-recording(2) at time 9004.
Finished action shutter-camera(2) at time 9005.
Finished action start-recording(2) at time 9005.

Starting event record-picture at time 9005.
Finished event record-picture at time 9045.

Starting action change-data-mode(4) at time 9053.
Starting action turn-off-tape-recorder at time 9053.

Finished action turn-off-tape-recorder at time 9054.
Starting action position-tape(2) at time 9054.

Finished action position-tape(2) at time 9094.
Finished action change-data-mode(4) at time 9353.

Starting event end-earth-occultation at time 20000.
Finished event end-earth-occultation at time 20001.

Starting action playback{ 1) at time 20001.
Finished action playback(1) at time 20041.

Starting action consolidate-tape{ 1 } at time 20049.
Starting action position-tape(3) at time 20049.

Finished action consolidate-tape{ 1 } at time 20049.
Finished action position-tape(3) at time 201 70.

Starting action playback(2) at time 201 70.
Finished action playback(2) at time 20243.

Starting action consolidate-tape(2) at time 20243.
Finished action consolidate-tape(2) at time 20243.

Starting event datarate-change-3 at time 23000.
Finished event datarate-change-3 at time 23300.

Starting inference clear-tape at time 25000.
Finished inference clear - tape at time 25000.

Figure 3: Output of the self-processing network for non-hierarchical plan execution. (Page 2 of 2.)

V. Hierarchical Plan Execution
While non-hierarchical plans like that considered above order goals at a single level of abstraction,

hierarchical plans consist of multiple levels of abstraction where each level "deeper" in the plan represents a
more detailed level of abstraction. Based on the "lattice controller" described in [7] we were inspired to
extend our research to include hierarchical plan execution. Hierarchical plans are generated by some AI
planning systems so any general purpose plan execution scheme must be able to handle them. Hierarchical
plans avoid some aspects of the computational complexity arising in real-world applications and are there-
fore of great value.

To develop a hierarchical plan to use for this research we added higher levels of abstraction to a sub-
set of Vere's Spaceworld plan. The resulting plan can be seen in Figure 4. Each higher-level goal in the
plan can be decomposed into more detailed goals. For example, the highest level goal in the plan is "Take
a picture of the satellite Clotho" (take-picture-clotho). This goal can be broken down into the more detailed
goals of "Photograph the satellite" (photograph-satellite) and "Transport the picture to earth"
(transmit picture-to-earth). Further levels of abstraction are illustrated in Figure 4. Goals in Figure 4 which
have a numeric duration time are goals from the original non-hierarchical plan. The goals added to form the
hierarchical plan do not have a specified duration time since their duration time is dependent on the starting
and duration times of the goals one level lower in the hierarchy. Starting times of the higher-level goals
were calculated based on the earliest early starting time and earliesf latest starting time of goals of which
the higher level goals are composed. For example, the early starting times of the nodes which are "chil-
dren" of node photograph-satellite in the hierarchy are 0, 0, 0, 0, and 2400 so the early starting time of
photograph satellite node is 0 and the latest starting times of the children nodes are 2520, 2520, 2370,
1000, and 2550 so the latest starting time of the photograph-satellite node is 1000.

Nodes in the hierarchical planning network have two new node attributes, parent and depend, in addi-
tion to the start and duration attributes used in the non-hierarchical plan network. The parent attribute

68

+:,...,,
:-

ir ,-,.-

k

4

....

+

I

indicates what node or nodes are "above" a given node in the plan hierarchy (the solid lines in Figure 4).
The depend attribute indicates nodes in the hierarchy which depend on the given node's execution comple-
tion to begin their own execution (the dotted lines in Figure 4). This order-dependent information is
represented by node connections in both the non-hierarchical and hierarchical plan network. However, in
the hierarchical plan, network node connections are also used to indicate more detailed goals which com-
bine to represent the "parent" goal node. For example, the take-picture-clotho node connects to the
photograph-satellite and transmit-picture-to-earth nodes since the latter two nodes represent a finer level of
abstraction of the "parent" goal node take-picture-clotho (see Figure 5) .

;--- Set containing the goals (nodes) in a hierarchical sebset of a Spaceworld plan.

[set plan (method hplan)
(contains

;--- Activation method for hierarchical plans.

take-picture-clotho photograph-satellite
t ransmit-pict u re-to-eart h turn-on-camera set-f i It er{ 1 }
ensure-still-platform ensure nonobstructed-view
shutter-camera(1 } ensure-datamode-ok transmit-picture
medium-speed-slew platform-damping-2 datarate-change-1 viewing(1 })

(attribute start dynamic)
(attribute duration dynamic optional)
(attribute parent dynamic optional)
(attribute depend dynamic optional)
(attribute type dynamic)
(connects (plan oto incoming optional))] ;--- Nodes in this set connect to other nodes in this set.

;--- Definition of node attributes needed for this model.

;--- The following node statements give detailed node attribute information
;--- for each node as well as describing the node connections in the network.

[implicit (member plan)]

[node take-picture-clotho (type action)(start (0 nil 1000))

[implicit (parent (take-picture-clotho))]
[node photograph-satellite (type action)(start (0 nil 1000))

(plan (/ photograph-satellite transmit-picture-to-earth))]

(depend (transmit-picture))
(plan (/ turn-on-camera set-filter(1 } ensure-still-platform

[node transmit-picture-to-earth (type action)(start (0 nil 2405))
(plan (/ ensure-datamode-ok transmit-picture))]

ensure-nonobstructed-view shutter-camera{ 1 } transmit-picture))]

[implicit (parent (photograph-satellite))]
[node turn on camera (type action)(start (0 nil 2520))(duration 30)

(deped (shutter-carnera(1 }))
(plan shutter-camera(1 })]

[node set-filter{l} (type action)(start (0 nil 2533))(duration 16)
(depend (shutter-carnera(1)))
(plan shutter camera(l})]

[node ensure-stillglatform (type action)(start (0 nil 2370))
(depend (shutter-camera(1)))
(plan (/ medium-speed-slew platform-damping-2 shutter-camerail }))I

Figure 5 : A MIRRORS/II specification file for the self-processing network of the hierarchical plan
shown in Figure 4. (Page 1 of 2.)

70

[node ensure nonobstructed view (type action)(start (0 nil 1000))

[node shutter camera{l} (type action)(start (2400 2500 2550))(duration 5)

(depgnd (shutter-camera(1 }))
(plan (/ medium-speed-slew datarate-change-1 viewing{ 1 } shutter-camera{ 1 }))I
(dept%i (transmit-picture))
(plan transmit-picture)]

[implicit (parent (transmit-picture-to-earth))]
[node ensure-datamode-ok (type action)(start (0 nil 2405))(duration 2405)

(depend (t ransmit-picture))
(plan transmit-picture)]

[node transmit-picture (type action)(start (2405 nil 2555))(duration 144)]

[node mediumLspeed-slew (type action) (start (0 nil 2370))(duration 80)
(parent (ensure-still-platform ensure-nonobstructed-view))
(depend (platform-damping 2 viewing{ 1 }))
(plan (/ platform damping Fviewing{ 1 }))I

[node platform-dampingz2 (type action)
(start (80 nil 2450))(duration 100)
(parent (ensure~still~platform))]

[implicit (parent (ensure nonobstructed-view))]
[node datarate change-- (type event)(start (1 000 nil 1000))(duration 300)

[node viewing{ l} (type inference)(start (2400 nil 2550))(duration O)]

t control spec
[events (inpu 1) (show)]
[control ALTCONTROL]
;--- Start the top-level node in the hierarchy
[input (from 0 thru l)(plan take-picture - clotho) 1.01
[transcript hplan]
[run 26551
[exit]

(depend (viewing{l}))(plan viewing{l})]

--______

Figure 5: A MIRRORS/II specification file for the self-processing network of the hierarchical plan
shown in Figure 4. (Page 2 of 2.)

The marker passing algorithm used for hierarchical plan execution differs slightly from the one used for
non-hierarchical plan execution. In hierarchical plan execution, goal execution begins with the node at the
top-most level of abstraction. Once a parent node begins executing it sends a marker to each of its "child"
nodes. Each "child" node must receive a marker from each node on which it depends and from it's parent
node before it can begin executing; it is not appropriate to begin executing nodes at lower levels of the
hierarchy if the conditions for executing their parent goals at higher levels of the hierarchy have not been
met. Once a "child" node has completed executing, it sends a marker to its "parent" node indicating that it
is done and to any other nodes which depend on the completion of its execution. All the child nodes (those
one level lower in the hierarchy) must complete executing before the parent node's execution can be con-
sidered complete. The starting time constraints remain the same.

Using the self-processing network shown in Figure 5 and the marker-passing method described above,
the hierarchical plan executed successfully. The results are shown in Figure 6. You can see that the top-
most node began executing first and finished executing last because it could not complete executing until all
its lower-level detail nodes had finished executing. Many of the goals were executed in parallel. Also note
that the necessary sequential processing was maintained. For example, the transmit-picture goal did not
begin executing until the photograph-satellite node was finished executing.

71

Beginning simulation, will stop at iteration 2655
Starting action take-picture-clotho at time 0.
Starting action photograph-satellite at time 0.
Starting action transmit-picture-to-earth at time 0.
Starting action turn-on-camera at time 0.
Starting action set-filter(1) at time 0.
Starting action ensure-still-platform at time 0.
Starting action ensure-nonobstructed-view at time 0.
Starting action ensure-datamode-ok at time 0.
Starting action medium-speed-slew at time 0.

Finished action setJilter{l} at time 16.

Finished action turn-on-camera at time 30.
Finished action medium-speed-slew at time 80.

Starting action platform-damping-2 at time 80.
Finished action platform-damping-2 at time 180.
Finished action ensure-still-platform at time 181.

Starting event datarate-change-1 at time 1000.
Finished event datarate-change-1 at time 1300.

Starting inference viewing{l} at time 2400.
Finished inference viewing{l] at time 2400.
Finished action ensure-nonobstructed-view at time 2402.
Finished action ensure-datamode-ok at time 2405.

Starting action shutter-camera(1 } at time 2500.
Finished action shutter-camera(1 } at time 2505.
Finished action photograph-satellite at time 2506.

Starting action transmit picture at time 2506.
Finished action transmit-picture at time 2650.
Finished action transmit-picture-to-earth at time 2651.
Finished action take-picture-clotho at time 2652.

Figure 6: Output of the self-processing network for hierarchical plan execution.

VI. Discussion
Along with recent related work [7], this study demonstrates for the first time that plan execution, a task

usually solved using traditional AI problem-solving techniques, can be accomplished using a self-processing
network. The distributed processing approach used here allows many plan steps to be executed in parallel
while still preserving the essential sequential aspects of the plan execution. The fact that self-processing net-
works have been applied to various space-related applications [5,6] in addition to the one discussed here
demonstrates the general aplicability of this approach to planning and control problems relevant to space-
craft activities. A logical next step might be to implement a self-processing model which could execute plans
which are dynamically changing during the period of execution.

This work also demonstrates that MIRRORS/II is a powerful environment for the
developmentlevaluation of self-processing systems in general. It allowed us to develop this plan execution
model in a very short amount of time and to implement marker passing processing paradigms as needed.
The design of MIRRORS/II and all previous work with MIRRORS/II had been limited to connectionist models
and had not considered the possibility of using methods like marker passing. The ease with which
MIRRORS/II supported marker passing methods without any alterations to MIRRORS/II itself suggests that it
will prove quite robust as a software environment for future automation research. A logical next step might
be the development of other parallel AI methods in the context of MIRRORS/II.

Acknowledgements: Supported in part by NASA award NAG1-885 and in part by NSF award lRl-8451430.

72

VII. References

[l] D’Autrechy, C.L., et al., A General-Purpose ‘Environment for Developing Connectionist Models, Simula-
tion, 51, 1988, 5-19.

[2] D’Autrechy, C.L., et al., MIRRORSIII Reference Manual, 1988.

[3] Reggia, J. & Sutton, G., Self-Processing Networks and Their Biomedical Implications, Proc. of the I€€€,
76, 1988, 680-692.

[4] Vere, S., Planning in Time: Windows and Durations for Activities and Goals. I€€€ Trans. Pat. Anal. &
Mach. Intel., 1988.

[5] Whitfield, K., et al., A Cornpetition-Based Connectionist Model for Dynamic Control, in this Proceedings,
1989.

[6] Peng, Y . and Reggia, J., A Connectionist Model for Diagnostic Problem Solving, /E€€ Trans. Sys., Man
and Cyber., 1989, in press.

[7] Sliwa, N. and Soloway, D., A Lattice Controller for Telerobotic Systems, American Controls Conference,
1987.

7 3

