188 research outputs found

    Radar Signal Processing for Interference Mitigation

    Get PDF
    It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically

    Mathematical optimization and game theoretic methods for radar networks

    Get PDF
    Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint

    Overview of frequency diverse array in radar ECCM applications

    Get PDF

    The Bi-directional Spatial Spectrum for MIMO Radar and Its Applications

    Get PDF
    <p>Radar systems have long applied electronically-steered phased arrays to discriminate returns in azimuth angle and elevation angle. On receiver arrays, beamforming is performed after reception of the data, allowing for many adaptive array processing algorithms to be employed. However, on transmitter arrays, up until recently pre-determined phase shifts had to applied to each transmitter element before transmission, precluding adaptive transmit array processing schemes. Recent advances in multiple-input multiple-output radar techniques have allowed for transmitter channels to separated after data reception, allowing for virtual non-causal "after-the-fact" transmit beamforming. The ability to discriminate in both direction-of-arrival and direction-of-departure allows for the novel ability to discriminate line-of-sight returns from multipath returns. This works extends the concept of virtual non-causal transmit beamforming to the broader concept of a bi-directional spatial spectrum, and describes application of such a spectrum to applications such as spread-Doppler multipath clutter mitigation in ground-vehicle radar, and calibration of a receiver array of a MIMO system with ground clutter only. Additionally, for this work, a low-power MIMO radar testbed was developed for lab testing of MIMO radar concepts.</p>Dissertatio

    Multibeam radar system based on waveform diversity for RF seeker applications

    Get PDF
    Existing radiofrequency (RF) seekers use mechanically steerable antennas. In order to improve the robustness and performance of the missile seeker, current research is investigating the replacement of mechanical 2D antennas with active electronically controlled 3D antenna arrays capable of steering much faster and more accurately than existing solutions. 3D antenna arrays provide increased radar coverage, as a result of the conformal shape and flexible beam steering in all directions. Therefore, additional degrees of freedom can be exploited to develop a multifunctional seeker, a very sophisticated sensor that can perform multiple simultaneous tasks and meet spectral allocation requirements. This thesis presents a novel radar configuration, named multibeam radar (MBR), to generate multiple beams in transmission by means of waveform diversity. MBR systems based on waveform diversity require a set of orthogonal waveforms in order to generate multiple channels in transmission and extract them efficiently at the receiver with digital signal processing. The advantage is that MBR transmit differently designed waveforms in arbitrary directions so that waveforms can be selected to provide multiple radar functions and better manage the available resources. An analytical model of an MBR is derived to analyse the relationship between individual channels and their performance in terms of isolation and phase steering effects. Combinations of linear frequency modulated (LFM) waveforms are investigated and the analytical expressions of the isolation between adjacent channels are presented for rectangular and Gaussian amplitude modulated LFM signals with different bandwidths, slopes and frequency offsets. The theoretical results have been tested experimentally to corroborate the isolation properties of the proposed waveforms. In addition, the practical feasibility of the MBR concept has been proved with a radar test bed with two orthogonal channels simultaneously detecting a moving target

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    Coherent FDA Receiver and Joint Range-Space-Time Processing

    Full text link
    When a target is masked by mainlobe clutter with the same Doppler frequency, it is difficult for conventional airborne radars to determine whether a target is present in a given observation using regular space-time adaptive processing techniques. Different from phased-array and multiple-input multiple-output (MIMO) arrays, frequency diverse arrays (FDAs) employ frequency offsets across the array elements, delivering additional range-controllable degrees of freedom, potentially enabling suppression for this kind of clutter. However, the reception of coherent FDA systems employing small frequency offsets and achieving high transmit gain can be further improved. To this end, this work proposes an coherent airborne FDA radar receiver that explores the orthogonality of echo signals in the Doppler domain, allowing a joint space-time processing module to be deployed to separate the aliased returns. The resulting range-space-time adaptive processing allows for a preferable detection performance for coherent airborne FDA radars as compared to current alternative techniques.Comment: 11 pages, 9 figure

    Random Phase Center Motion Technique for Enhanced Angle-Doppler Discrimination Using MIMO Radars

    Get PDF
    A random Phase Center Motion (PCM) technique is presented in this paper, based on Frequency Modulated Continuous Wave (FMCW) radar, in order to suppress the angle- Doppler coupling in Time Division Multiplex (TDM) Multiple- Input-Multiple-Output (MIMO) radar when employing sparse array structures. The presented approach exploits an apparently moving transmit platform or PCM due to spatio-temporal transmit array modulation. In particular, the work considers a framework utilizing a random PCM trajectory. The statistical characterization of the random PCM trajectory is devised, such that the PCM and the target motion coupling is minimal, while the angular resolution is increased by enabling the virtual MIMO concept. In more details, this paper discusses sidelobe suppression approaches within the angle-Doppler Ambiguity Function (AF) by introducing a phase center probability density function within the array. This allows for enhanced discrimination of multiple targets. Simulation results demonstrate the suppression angle- Doppler coupling by more than 30 dB, even though spatiotemporal transmit array modulation is done across chirps which leads usually to strong angle-Doppler coupling

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF
    corecore