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Abstract

Radar systems have long applied electronically-steered phased arrays to discriminate

returns in azimuth angle and elevation angle. On receiver arrays, beamforming is

performed after reception of the data, allowing for many adaptive array process-

ing algorithms to be employed. However, on transmitter arrays, up until recently

pre-determined phase shifts had to applied to each transmitter element before trans-

mission, precluding adaptive transmit array processing schemes. Recent advances in

multiple-input multiple-output radar techniques have allowed for transmitter chan-

nels to separated after data reception, allowing for virtual non-causal (“after-the-

fact”) transmit beamforming. The ability to discriminate in both direction-of-arrival

and direction-of-departure allows for the novel ability to discriminate line-of-sight re-

turns from multipath returns. This works extends the concept of virtual non-causal

transmit beamforming to the broader concept of a bi-directional spatial spectrum,

and describes application of such a spectrum to applications such as spread-Doppler

multipath clutter mitigation in ground-vehicle radar, and calibration of a receiver

array of a MIMO system with ground clutter only. Additionally, for this work, a

low-power MIMO radar testbed was developed for lab testing of MIMO radar con-

cepts.
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1

Overview

In radar systems, propagation is often assumed to be line-of-sight. This assumption

is often true for radars monitoring the sky, or for airborne radar surveying non-urban

terrain. However, in certain environments, such as a ground-vehicle-mounted radar in

an urban environment, an airborne or helicopter-mounted radar surveying an urban

environment, or a radar used indoors, multipath propagation becomes a significant

effect. Multipath propagation, by definition, is a propagation path resulting from

scattering off of two or more scatterers. Multipath propagation can be especially

inhibiting when it becomes spread in Doppler, as most radars discriminate targets

(backscatter off of scatterers of interest) from clutter (backscatter off of scatterers not

of interest; often times these include the ground, walls and ceilings, environmental

obstructions, etc.) from their respective Doppler shifts. Line-of-sight backscatter off

of stationary clutter either has zero-Doppler shift (if the radar platform is stationary),

or an easily modeled and predictable relationship between Doppler shift, azimuth

angle, and elevation angle (if the radar platform is moving). However, multipath

propagation off of clutter is highly environment-specific and may be very difficult to

model. If either the radar or the clutter has a non-zero velocity, then the resulting

1



multipath will become shifted or spread in Doppler, and has the potential to cause

false alarms or to obscure legitimate targets.

Recent developments in multipath-input multipath-output (MIMO) radar have

shown promise in both mitigating and characterizing multipath propagation. These

developments will be discussed in detail in Chapter 2, which provides a thorough liter-

ature review of MIMO radar. A MIMO radar is a radar which has multiple receiver

channels and multiple transmitter channels, and in which each of the transmitter

channels is excited with a waveform that is orthogonal to each of the waveforms

exciting the other transmitter channels. Because the transmitted waveforms are or-

thogonal, they can be separated after reception with signal processing techniques,

such as matched filtering. One novel application of MIMO radar is often referred

to as “virtual non-causal transmit beamforming”. Beamforming is the process of

forming a weighted sum of multiple array elements to emphasize or suppress spe-

cific spatial frequencies (which correspond to spatial angles). On the receiver side,

beamforming is performed after transmission and reception, and many beamforming

techniques have developed, both adaptive and non-adaptive. On the transmit side,

before the advent of MIMO radar, beamforming had to be performed before trans-

mission, that is, a predetermined set of weights were applied to each transmitter

channel before transmission. MIMO radar allows for the multiple transmit channels

to be separated after transmission and reception via signal processing techniques,

and thus transmit beamforming weights can be applied “after-the-fact” (hence the

name “non-causal transmit beamforming”). Receive beamforming discriminates in

direction-of-arrival (DoA), and transmit beamforming discriminates in direction-of-

departure (DoD). Any line-of-sight propagation path has a DoA that is identical to

its DoD. Therefore, joint transmit-receive beamforming, made possible via MIMO

radar, can discriminate between returns that propagated line-of-sight versus returns

that did not. With this ability, multipath propagation returns can be identified and

2



suppressed.

The work of this dissertation can be divided into roughly four components. The

first, defines the joint transmit-receive “bi-directional spatial spectrum” made pos-

sible by MIMO radar. The bi-directional spectrum is a function of DoA angle and

DoD angle and is property of a propagation environment. A MIMO radar system

can be used to estimate the bi-directional spatial spectrum for a given environment.

Combined with traditional radar range and Doppler processing, a comprehensive

view of the environment can be obtained. In this domain, spectral components in

which the DoD angle equals the DoA angle correspond to line-of-sight propagations,

and components in which the DoD angle does not equal the DoA angle correspond to

multipath propagations. Thus, adaptive beamformers in this bi-directional spatial

domain can be designed to suppress multipath propagations, particularly multipath

clutter. One particularly useful application of the bi-directional spatial spectrum is

the ability to estimate the rank of the clutter covariance matrix, which is essential

to designing partially adaptive beamforming algorithms.

The second segment of this work focuses on applying multipath clutter suppres-

sion algorithms to ground-vehicle-mounted ground-moving-target-indicator (GMTI)

radars. GMTI radars are radars whose purpose is to detect and track moving targets

on the ground. (The ’G’ in GMTI refers to the target’s location, not that of the radar.

In practice, most GMTI radars are mounted to aircraft). On ground vehicles in urban

environments, GMTI radar is precluded by the prevalence of multipath propagation

off of a variety of objects (buildings, highway guardrails, parked cars, etc.), and

since the vehicle is moving, these multipath clutter returns are spread in Doppler.

With the ability of MIMO radar to suppress multipath propagation returns, this

problem is mitigated. One issue with MIMO radars, is that due to the high number

of degrees of freedom, very large training data sets are required to implement fully

adaptive algorithms. This work proposes a partially adaptive multipath suppres-

3



sion algorithm with realistic training requirements, based off of work proposed for

non-MIMO radar systems. Simulation results are presented which demonstrate that

this algorithm with a MIMO radar performs significantly better than a traditional

non-MIMO radar due to the ability to suppress the multipath.

The third segment exploits a feature of the bi-directional spatial spectrum for

array calibration. Array calibration typically requires artificial point sources to be

placed in precisely known locations around the array, and to calibrate the array based

off of these known sources. This process can be tedious, and in certain scenarios

artificial point sources may not be available. Since MIMO radar allows for after-the-

fact beamforming on both transmit and receive, ground clutter can be exploited as a

source of opportunity for calibration. Ground clutter typically exists at all azimuth

angles surrounding the array. Barring the presence of large, close by scatterers,

backscatter, ground clutter propagates line-of-sight. (It is important to note that

the desired application for this segment of the work is different from the that of the

previous section. In the previous segment, the application was a moving vehicle in

a multipath-rich environment. The application for this segment, MIMO-based array

calibration, the desired application is a stationary radar in a relatively multipath-

free environment.) In either the transmit or receive spatial domains, ground clutter

appears at all angles, but in the joint bi-directional domain ground clutter appears

along the “direct-path diagonal” of the two-dimensional surface. This sidelobes of

this diagonal provide a metric to be calibrated against, and thus calibration scheme

is proposed for a MIMO radar system without the need for artificial point targets is

proposed.

The fourth segment of this work describes the development of a low-power,

portable, S-band MIMO radar testbed with 16 receiver channels and 4 MIMO trans-

mitter channels. This system was developed by the author in conjunction with

STRAD Corporation (based in Chapel Hill, North Carolina), and professors Jeffrey

4



Krolik and Matthew Reynolds at Duke University. Custom radio frequency (RF)

transmitter and receiver boards were designed and fabricated, and integrated with

an off-the-self National Instruments Data Acquisition (boards). A custom, portable,

and attractive enclosure was designed to house all of these components. The device,

named the STRADAR, can be controlled via any personal computer (PC) running

the MATLAB software package, making it an accessible tool for research. Details of

the system, its capabilities, and some sample uses are documented.

The overarching theme of this work is the use of MIMO radar to differentiate

between line-of-sight propagations and multipath propagations. The novel contribu-

tions of this work are:

1. Development of a statistical definition of the bi-directional spatial spectrum

and how it relates to MIMO radar, including the ability to estimate the rank

of the clutter covariance matrix

2. Development of a partially adaptive multipath suppression algorithm using

MIMO radar and realistic training requirements

3. Development of a calibration scheme based off of ground clutter via MIMO

radar

4. Development of a low-power, portable, MATLAB-compatible, S-band MIMO

radar testbed with 16 receiver channels and 4 transmitter channels

The remainder of this dissertation is organized as follows: Chapter 2 is an in-

depth review of the concept of MIMO radar in the technical literature. Chapter 3 is

a discussion of the MIMO bi-directional spatial spectrum. Chapter 4 is a discussion

of the problem of multipath clutter for ground-vehicle-mounted GMTI radars, and

proposes a partially adaptive algorithm to suppress multipath clutter. Chapter 5

proposes a calibration scheme using MIMO radar and ground clutter. Chapter 6

5



describes the STRADAR testbed system and real results collected from the system.

Chapter 7 describes a set of experiments performed with the STRADAR. Chapter 8

is the conclusion.
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2

Multiple-input multiple-output (MIMO) radar

The concept of a multiple-input multiple-output (MIMO) radar system was first

proposed in 2004 in [1]. Since then, substantial research has been conducted on the

concept. This chapter will present an overview of radar signal processing principles,

an overview of the concept of MIMO radar, and a review of the technical literature

relating to MIMO radar.

2.1 Linear Frequency Modulated Continuous Wave Radar

One common radar waveform is the linear frequency-modulated waveform, sometimes

referred to a chirp. A LFM waveform is a sinusoid with a frequency that changes

linearly with time. This waveform has the form:

xpptq � e
j2πpfc�B

2
qt�jπ B

T0
t2

0 ¤ t   T0 (2.1)

where fc is the RF center frequency (Hz), B is the RF swept bandwidth (units of

Hz), T0 is the time duration of one chirp (units of s), and t is the time variable (units

of s). Radars typically repeat waveforms periodically. A train of M LFM waveforms
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Frequency
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Time within a pulse
Is referred to as “fast-time”

Time across pulses
Is referred to as “slow-time”

LFM Chirp Train
Blue = transmitted signal
Red = received signal

Target 
Time Delay

Figure 2.1: LFM Waveform in the Time-Frequency Domain

has the form:

xptq �
M�1̧

m�0

xppt�mTpq (2.2)

where Tp is referred to as the waveform repetition interval (WRI, units of s). The

ratio of T0
Tp

is referred to as the duty cycle and often expressed as a percentage.

In continuous wave (CW) systems the duty cycle is 100%, and thus T0 � TP . The

quantity 1
WRI

is referred to as the waveform repetition frequency (WRF, units of Hz).

The quantity MTp is referred to as the coherent processing interval (CPI, units of s)

or the coherent integration time (CTI, units of s). In common radar terminology, time

within a single pulse is referred to as “fast-time” and time across pulses is referred

to as “slow-time”. An illustration of the waveform xptq (2.2) in time-frequency space

and the notion of “fast-time” and “slow-time” is shown in Figure 2.1.

The received return can be modeled as the sum of many point scatterers. The

return from each point scatterer is the transmitted waveform delayed and Doppler-
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shifted. The time delay is proportional to the slant range of the point scatterer.

If the waveform is sufficiently narrowband pB ! fcq, and the maximum scatterer

velocity is much less than the speed of light, the Doppler shift can be modeled as a

frequency modulation that is proportional to the scatterer’s tangential velocity. The

radar received signal is:

yptq �
¸
i

αixpt� τiqej2πFDit (2.3)

where αi is a complex amplitude coefficient that is proportional to the radar cross-

section (RCS) of the ith point scatterer, τi is the time delay of the return from the

ith point scatterer, and FDi is the Doppler shift associated with ith point scatterer.

The range of the ith scatterer is proportional to its time delay: ri � cτi
2

, where c is

the speed of light. The standard radar detector is the matched filter, which is the

optimal detector for a signal in the presence of uncorrelated random noise. For a

single point scatterer, the matched filter output will have a peak at the time delay

associated with the scatterer. To account for Doppler shift, a matched filter can

be designed for each hypothesized Doppler shift. A surface can be formed from the

matched filter outputs:

zpt, FDq �
» 8
�8

ypsqx�ps� tqe�j2πFDisds (2.4)

The amplitude of this surface is referred to as an amplitude-range-Doppler (ARD)

surface. In systems without full digital signal processing available across the entire

bandwidth, sub-optimal techniques that can be implemented in analog circuitry can

be employed instead. These techniques will be discussed later in Chapter 6, which

covers the experimental apparatus fabricated for this work.

An important metric for radar waveforms is the ambiguity function. The ambi-
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guity function is defined as the magnitude of the output of matched filter designed

for a waveform xptq, when the input is the function xptq with a Doppler shift:

Apt, FDq �
����
» 8
�8

xpsqej2πFDsx�ps� tqds
���� (2.5)

Note that ambiguity function of (2.5) is very similar to the matched filter output

of (2.4). From the ambiguity function, important radar parameters such as range

resolution, Doppler resolution, and the presence and location of any ambiguities in

range and/or Doppler can be derived. It is well-known [2] that the ambiguity function

of the single LFM pulse of (2.1), demodulated to baseband, is:

ALFMpt, FDq �
����sinpπpFD �Bt{T0qpT0 � |t|qq

T0πpFD �Bt{T0q
���� � T0 ¤ t ¤ T0 (2.6)

The ambiguity function of the waveform train of (2.2) is:

Atrain �
M�1̧

m��pM�1q
ALFMpt�mTp, FDqejπFDpM�1�mqTp sinpπFDpM � |m|qTp

sinpπFDTpq (2.7)

From the ambiguity function, it can be determined that for the LFM chirp train

waveform of (2.2), the range resolution ∆r � c
2B

, the Doppler resolution ∆FD �
1

MTp
� 1

CPI
, the maximum unambiguous range Rmax � cTp

2
, and the maximum

unambiguous Doppler FD,max � 1
2Tp

� WRF
2

.

The preceding section consists of commonly known radar signal processing tech-

niques. More details can be found in [2–4].

2.2 Multiple-input Multiple-Output (MIMO) Radar

Radar systems often employ electronically-steered antenna arrays to be able to dis-

criminate in spatial frequency, which corresponds to spatial angle. A special case
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of an array is a multiple-input multiple-output (MIMO) system. A MIMO has sys-

tem has both multiple receiver elements and multiple transmitter elements, and each

transmitter element is fed with a waveform that is orthogonal to all of the waveforms

fed to the other transmitter elements. Mathematically, two waveforms s1ptq and s2ptq
are orthogonal if:

» 8
�8

s1ptqs�2ptq � 0 (2.8)

It is important to note that in radar, the received waveforms return time-delayed

and Doppler-shifted, and no two waveforms are orthogonal for all possible time delays

and all possible Doppler shifts. However, there does exist sets of waveforms which

achieve orthogonality for some limited set of time delays and Doppler shifts. The

orthogonality condition allows the various transmitter channels to be separated after

reception. If identical waveforms were fed to each of the transmitter elements, there

would be no method of separating the signals from the different transmitter elements.

Two intuitively simple ways of achieving waveform orthogonality are to stagger

the waveforms in time or in frequency. With time-staggering, each waveform is time-

delayed by a unique amount of time. With frequency staggering, each waveform is

modulated by an unique frequency shift. Since radar returns are time-delayed and

Doppler-shifted, the time-staggered waveforms are orthogonal for all scatterer delays

less than the minimum difference in pre-applied time delays, and the frequency-

staggered waveforms are orthogonal for all scatterer Doppler shifts less than the

minimum difference in pre-applied frequency modulations. In [5], a set of MIMO

waveforms were proposed that did not change the waveform structure within a pulse.

Instead, a linear phase modulation was applied across pulses (“slow-time”), and the

slope of the phase modulation was different for each channel. Due to the vast dif-

ference of scale between “fast-time” and “slow-time” (τ Î Tp) this has the effect
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Figure 2.2: MIMO Time-Staggered Ambiguity Function

of imposing a different Doppler-shift onto each channel, while not changing the RF

bandwidth and center frequency. These waveforms were called the “SLO-MO” wave-

forms (short for “slow-time MIMO”). The major advantage of both time-staggered

and SLO-MO waveforms is that the radar receiver hardware does not need to be mod-

ified to handle these waveforms. Fig. 2.2 shows the normalized ambiguity function

of the time-staggered MIMO waveforms, and Fig. 2.3 shows the normalized ambi-

guity of the SLO-MO waveforms. Observe that the time-staggered waveforms are

separated in time delay and that the SLO-MO waveforms are separated in Doppler

shift.

2.3 Review of MIMO Radar in the Technical Literature

Many different applications of MIMO radar have been proposed in the technical

literature. Broadly speaking, the existing literature in MIMO radar can be divided

into four categories:
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Figure 2.3: MIMO SLO-MO Ambiguity Function

• MIMO waveform design and analysis proposes and analyzes the perfor-

mance of various MIMO waveforms

• MIMO radar with widely separated antennas for spatial diversity

studies the scenario in which the individual transmit and receive elements are

separated by large distances. In this situation, MIMO radar can be used to

exploit spatial diversity for improved target detection.

• MIMO radar with co-located antennas for aperture synthesis uses

MIMO radar with co-located transmit and receive arrays to virtually extend

the array aperture. This application of MIMO radar can result in improved

spatial resolution and/or lower spatial sidelobes using sparsely populated ar-

rays, compared to the performance of traditional arrays.

• MIMO radar with co-located antennas for non-causal transmit beam-

forming uses MIMO radar with co-located transmit and receive arrays to per-

form non-causal (“after-the-fact”) adaptive beamforming on the transmit side

13



Each of these categories will be briefly summarized. The application of MIMO

radar most relevant to this work, MIMO radar with co-located antennas for non-

causal transmit beamforming, with be discussed last in more detail.

2.3.1 MIMO waveform design and analysis

Yang and Blum provide a technique for generating MIMO waveforms for multistatic

radar systems by maximizing the mutual information between the waveform and the

target’s impulse response, which they show is equivalent to minimizing the mean

square error of the estimated target impulse response [6]. Since target impulse re-

sponses vary, they extended their method to a robust “mini-max” criterion which

minimizes the maximum mean squared error over a set of targets [7]. Yang, Blum,

He, and Fuhrmann update their previous work to include structural constraints on

the MIMO waveforms and propose an alternative projection algorithm to solve for

the waveforms [8]. Friedlander introduced a technique to generate optimal MIMO

waveforms based upon target and clutter statistics [9]. San Antonio and Fuhrmann

extended Woodward’s radar ambiguity function to MIMO radar [10], and have an-

alyzed the effect of waveform correlation on the MIMO transmit beamforming [11].

Abramovich has determined bounds on the volume and height of the MIMO ambigu-

ity function [12, 13]. Deng used simulated annealing to generate polyphase codes that

have low sidelobes [14]. Mecca, Krolik, and Robey developed the previously men-

tioned slow-time MIMO (“SLO-MO”) waveforms [5, 15–18]. Frazer, Abramovich,

and Johnson [19–21] have noted that certain MIMO waveforms may cause VSWR

(voltage standing wave ratio: a measurement of how much power is reflected back

from the transmitter antennas to the amplifiers) issues, and therefore MIMO wave-

form design must take this into account. Li, Xu, Stoica, Forsythe, and Bliss [22]

analyzed the effect of range compression on the optimal MIMO waveforms. Chen

and Vaidyanathan [23] derive additional properties of the MIMO ambiguity function
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and a method to design MIMO waveforms to optimize the MIMO ambiguity func-

tion. They also propose a method [24] to generate MIMO waveforms that optimize

the signal-to-interference-plus-noise-ratio (SINR) of an extended target in clutter

given prior knowledge of the target and clutter statistics. Forsythe and Bliss analyze

the performance of various MIMO waveforms for MIMO GMTI in the presence of

clutter, and how the waveform selection is limited by that performance [25]. Tang,

Tang, and Peng propose a method for generating MIMO waveforms in the presence

of colored noise [26, 27]. Rabideau proposes a metric to quantify the clutter cancel-

lation performance of MIMO waveforms [28]. Babur, Krasnov, Yarovoy, and Aubry

analyze the orthogonality of time-staggered LFM waveforms [29].

2.3.2 MIMO radar with widely separated antennas for spatial diversity

Fishler, Haimovich, et al. have proposed what they term “Statistical MIMO Radar”

[1, 30–33] to improve radar target detection for multistatic radar systems. Multistatic

radar systems are defined as radar systems with transmitter and receiver elements

widely separated from each other. Target detection performance is reduced by fluc-

tuations of the target’s RCS (radar cross section) [2–4]. Target RCS fluctuations are

often characterized by a probabilistic Swerling model. The proponents of multistatic

MIMO radar make an analogy between target RCS fluctuations in radar and channel

fading in communications, and propose a solution based on the MIMO communica-

tions concept. They propose using a set of widely spaced transmit elements and

receive elements, and transmitting orthogonal waveforms on each of the the transmit

elements. They claim that each transmitter-receiver pair constitutes an independent

radar. The data from the “independent radars” are then treated as independent

observations to improve the performance of a traditional Bayesian detector. Since

the data from each transmitter-receiver pair is processed non-coherently, there is no

SNR gain from traditional, coherent array processing techniques.
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MIMO radar for spatial diversity has come under criticism by some in the radar

community. In [34], Chernyak states that many of the concepts proposed were al-

ready commonly known in the multistatic radar community and multistatic MIMO

is simply a particular case of the more general multistatic radar concept. He also

points out that the energy gain achieved by fluctuation smoothing saturates after

the number of transmitter-receiver combinations is about five , which can easily be

achieved with a single transmitter and a few receivers, and thus there is no need for

MIMO. Additionally, he questions the reasoning behind the uncorrelated assump-

tion and the narrowband assumption that Fishler, et al. employ. Overall, Chernyak

states that the work proposed in [1, 30–33] has numerous flaws because it simply

translates the MIMO communications concept to radar without taking into account

the differences in the radar scenario, and presents “new” conclusions which have been

known in the radar field for many years.

2.3.3 MIMO radar with co-located antennas for aperture synthesis

An application of MIMO radar with co-located antennas is the improvement of spatial

resolution and sidelobes for direct-path propagation. Forsythe and Bliss [35, 36] and

Robey [37] have explored this aspect of MIMO radar. The MIMO virtual aperture

can be calculcated by performing the convolution of the real antennas positions of

both the transmitter and the receiver. For example, assume a MIMO radar system

has a 3-element receive array with Nyquist spacing of λ/2. Represent this array as

{1 1 1}, where each entry represents the number of antennas at a location on a λ/2

grid. If the transmit array also has 3 elements spaced at λ/2, then the MIMO virtual

aperture is {1 2 3 2 1}. In this example, some locations are overrepresented and the

full advantage of MIMO is not realized. Following from the above logic, it should be

possible to use sparse arrays to obtain a wide MIMO aperture. For example, assume

a MIMO system with a 4-element receive array spaced at λ/1, represented by {1 1

16



1 1}. The transmit array is sparse and spaced by the length of the receive array,

given by {1 0 0 0 1 0 0 0 1 0 0 1}. Then the MIMO virtual aperture is {1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1}, which is a 16 element array with the elements spaced at λ/2.

However, only 8 physical antennas (4 transmit, 4 receive) are needed to achieve this

aperture. Bliss et. al [38–41] applied this concept to MIMO ground-moving target-

indicator (GMTI) with space-time adaptive processing (STAP) radar to improve

spatial resolution. Chen and Vaidyanathan [42], Chong et. al. [43], and Wang and

Lu [44] also explore MIMO with space-time adaptive processing. Critically, all of the

preceding papers assume direct-path propagation only and no significant multipath.

Sun et. al [45, 46] and Ahman et. al. [47] use co-located MIMO radar to obtain

better spatial resolution on the synthetic aperture radar (SAR) application. The

concept of combined transmit/receive beamforming has been explored before in the

concept of coarrays and subarrays ([48],[49]). The advantage of MIMO is that it

allows for the weights to be applied in digital processing after reception.

Additionally, Li and Stoica [50] have shown the MIMO radar allows for improved

parameter identifiability (more parameters can be identified due to more data points

collected), the direction application of adaptive non-parametric parameter estimation

algorithms (due to improved covariance matrix estimation due to more data points),

and the flexibility of transmit beampatterns.

2.3.4 MIMO radar with co-located antennas for non-causal transmit beamforming

The application MIMO radar that is examined in this work is sometimes referred

to as “non-causal” transmit beamforming. Traditionally, when performing transmit

beamforming, the transmit weights must be applied to the waveforms before trans-

mission. With MIMO radar, virtual transmit beamforming can be performed after

reception on the received data. Because the MIMO waveforms are orthogonal, the

transmit channels can be separated at the receiver. Transmit beamforming weights
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can be applied to the transmit channels after reception. As MIMO waveforms are

orthogonal, the instantaneous transmit beampattern is constantly changing, and

thus energy propagates in all directions, making after-the-fact transmit beamform-

ing possible. However, there is a loss of energy compared to the case where the

transmit beamforming was performed before-the-fact, as the energy is not focused

in one direction. MIMO non-causal transmit beamforming has the key ability to

design a different transmit beamformer as a function of range, something that is not

possible with traditional transmit beamforming. Additionally, joint non-separable

transmit-receive beamformers can be designed, also as a function of range.

Frazer, Abramovich, and Johnson [12, 13, 19–21, 51–54] have used this technique

in OTH (over-the-horizon) radar. In OTH radar, the platform is stationary but mov-

ing layers of the ionosphere introduce Doppler-spread on backscatter from the ground

which travels back to the receiver via multiple paths, which may include the arrival

angle of target of interest. In this case, non-causal transmit beamforming provides

a means of suppressing receive-mainlobe Doppler-spread clutter by placing a virtual

transmit null in one or more direction-of-departure (DoD) which is adapted as a

function of slant range. An important feature of the OTH radar problem which can

significantly simplify implementation and training of the MIMO radar beamformer

weights is the nominally discrete nature of multipath propagation via different layers

of the ionosphere at any given slant range. A method for snapshot-starved training

in MIMO radar which imposes a Kronecker structure on the bi-directional transmit-

receive beamformer is proposed in [54]. Imposing a Kronecker structure on the

beamformer reduces the degrees of freedom from Nr � Nt to Nr � Nt, however, it

forces the beamformer to be separable in transmit and receive. Such an approach

is appropriate for applications where there are limited and discrete modes of propa-

gation, such as OTH radar, and therefore the multipath is approximately separable

at a single range bin. However it is not appropriate for applications where the mul-
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tipath propagation forms a continuum of DoA and DoD angles. Additionally, the

Kronecker MIMO beamformer may overly restrict the number of degrees of adaptive

freedom below the rank of the clutter covariance matrix in scenarios with significant

multipath propagation.

Mecca, Krolik, and Robey [5, 15–18, 55] and Hickman and Krolik [56] have pro-

posed using slow-time MIMO waveform for MIMO non-causal transmit beamform-

ing and have extended this to MIMO space-time adaptive processing (STAP). STAP

[57] jointly processes slow-time samples and receiver channels, which is advantageous

when clutter and interferers are not separable in angle-Doppler space. MIMO STAP

joint process slow-time samples, receiver elements, and transmit elements. MIMO

non-causal transmit beamforming has also been proposed as a means of suppressing

multipath-induced artifacts in synthetic aperture radar imaging [58]. With complete

knowledge of the clutter and noise covariance matrices, fully adaptive MIMO STAP,

which is adaptive over transmit, receive, and Doppler, is the theoretically optimal

solution for improving signal-to-clutter-plus-noise ratio (SCNR). However it requires

an excessive amount of training data due to the large number of degrees of freedom

(M � Nr � Nt, where M is the number of slow-time pulses, Nr is the number of

receivers, and Nt is the number of transmitters). Fully adaptive MIMO STAP also

requires training over adjacent range bins, which are assumed to have the same clut-

ter statistics as the range bin under test. In many multipath scenarios, however, it

is inappropriate to train over range bins because the multipath clutter varies with

range.

The dissertation utilizes the concept of non-causal transmit beamforming to mit-

igate spread-Doppler multipath clutter in the scenario in which (a) multipath prop-

agation forms a continuum of DoA and DoD angles, (b) the multipath clutter varies

with range, and (c) limited training snapshots are available. The proposed scenario

is of a ground-vehicle driving in an urban environment implementing GMTI radar.
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The next two chapters will explain this scenario in detail.

2.4 Summary

This chapter has explained the basics of LFM radar and MIMO radar. Additionally,

a review of MIMO radar in the technical literature was presented. The next chapter

focuses on the MIMO signal model and the development of a MIMO bi-directional

spectrum to characterize multipath.
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3

Signal Model and the MIMO Bi-directional
Spectrum

This chapter will describe the MIMO signal model that is the framework for the

remainder of this work. It will also introduce the concept of the MIMO bi-directional

spatial spectrum, an analytical tool to characterize multipath propagation.

3.1 Slow-Time MIMO Model

Assume a radar system with Nt transmit elements and Nr receive elements. Each

transmit element is excited by a pulse train consisting of M pulses, each of which

have a duration of Tm. It is assumed here that the signal is sufficiently narrowband,

i.e. β
fc
! 1, where β is the RF bandwidth and fc is the RF carrier frequency. With-

out loss of generality, assume MIMO is implemented using the SLO-MO waveforms

(previously mentioned in Chapter 2). The transmitted signal from the lth transmit

element is shown in (3.1).

ulptq �
M�1̧

m�0

uppt�mTpq exppj2π l

NtTp
tq (3.1)
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where upptq is the transmitted waveform. To model the return, consider a single

signal component leaving the transmitter with the spatial frequency of kt, which is

scattered back to the receiver with spatial frequency of kr and a Doppler shift of fd.

After the component is pulse-compressed, range-gated, and the MIMO channels are

separated (by demodulating and filtering in slow-time), the mth pulse from the nth

receive element and the lth transmit element is:

vlmn � ejk
T
r xrne�jk

T
t xtlej2πfdm (3.2)

where xrn is the position of the nth receive element and xtl is the position of the lth

transmit element. A negative sign compensates for the difference between incoming

(receive) and outgoing (transmit) angles. For a single pulse, the signal in (3.2) can be

represented by a vector, which is the Kronecker product of the transmit and receive

wavefront vectors. The complete vector is:

vpkr,ktq � vt pktq b vr pkrq (3.3)

vrpkrq �
�
ejk

T
r xr1 , ..., ejk

T
r xrNr

�T

vtpktq �
�
e�jk

T
t xt1 , ..., e�jk

T
t xtNt

�T
(3.4)

The combination of outgoing and incoming plane-waves defines a “bi-directional

wavefront”. In general, the radar return can be represented as a sum of individual

bi-directional wavefront vectors. The components of the return can be characterized

as targets, clutter, and noise (jamming is not considered in this work). Furthermore,

the clutter returns can be divided into types: direct-path clutter and multipath

clutter. For direct-path clutter, the direction-of-arrival spatial frequency kr equals

the direction-of-departure spatial frequency kt, whereas for multipath clutter the two

directions are different. The complete radar return can then be described by the data
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vector z given by:

z � zs � zcd � zcm � zn (3.5)

where zs represents the target return, zcd represents the direct-path clutter return,

zcm represents the multipath clutter return, and zn represents uncorrelated noise.

Assume each component is the sum of one or more bi-directional wavefront vectors

with zero-mean complex Gaussian amplitudes. The complete (target-plus-clutter-

plus-noise) covariance matrix is shown by:

Rz � Rs �Rcd �Rcm �Rn (3.6)

where the target-free (clutter-plus-noise) covariance matrix, RI , is the sum of the

direct-path clutter, multipath clutter, and uncorrelated noise covariance matrices:

RI � Rcd �Rcm �Rn (3.7)

The target signal’s covariance matrix for a target with spatial frequencies ks and

radar cross-section (RCS) σ2
s is modeled as a rank-one outer product.

Rs � σ2
svpks,ksqvHpks,ksq (3.8)

The target is assumed to arrive by direct-path only; therefore kR � kT . Similarly,

the direct-path clutter covariance matrix can be expressed as:

Rcd �
»
kPKcd

σ2
cdpkqvpk,kqvHpk,kqdk (3.9)

where σ2
cd represents the RCS of the clutter patch at spatial frequency k and Kcd is the

set containing all spatial frequencies for which direct-path clutter exists. Because this

term represents the direct path clutter, the transmit and receive spatial frequencies

are equal. The multipath clutter covariance matrix is:

Rcm �
»
kr.ktPKcm

σ2
cmpsqvpkr,ktqvHpkr,ktqdkrdkt (3.10)

23



Point Scatterer Specular Plane Rough Surface

Figure 3.1: Three Types of Scatterers

where σ2
cm represents the RCS of the multipath clutter patch at receive spatial fre-

quency kr and transmit spatial frequency kt. Kcm is the set containing all transmit-

receive spatial frequency combinations that exist. Using the principles of physical

optics, multipath occurs when a transmit wavefront comes in contact with more than

one scatterer before returning to the receiver. Scatterers can be generalized into three

categories: point scatterers, specular planes, and rough surfaces. Fig. 3.1 illustrate

these types. Point scatterers scatter the incoming wavefront in all directions spheri-

cally. Specular planes reflect a planar wavefront to a new direction defined by Snell’s

law. Rough surfaces scatter the incoming wavefront in all directions in front of the

surface (half-spherically). In most radar applications, ground clutter is considered to

be a rough surface. The noise is considered to be uncorrelated between all transmit

and receive elements. The noise covariance matrix is:

Rn � σ2
nI (3.11)

3.2 Bi-directional Spatial Spectrum

In [59], the concept of MIMO space-time adaptive processing for multipath clutter

mitigation is addressed. MIMO STAP is adaptive in three dimensions: Doppler,
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receive, and transmit. It is mentioned that by taking a slice of the Doppler-receive-

transmit cube at a single Doppler cell, one could form a “transmit-receive directional-

ity spectrum (TRDS)”, and an estimate of this TRDS could be formed using standard

spectral estimation techniques. The discussion in [59] assumes range-Doppler pro-

cessing has already occurred and one range-Doppler cell is under investigation and

assumes the covariance matrix is known.

This section generalizes that concept further, by defining a bi-directional spatial

spectrum, (where the two directions are direction-of-arrival (DoA) and direction-of-

departure (DoD)) for a given environment and generating techniques to estimate this

spectrum, especially when a limited number of snapshot observations are available.

This spectrum can be then be used not only for mitigating multipath clutter, but

for mapping the multipath channel properties of a given environment, which could

then be exploited. In [60] and [61], traditional beamforming and array processing

are viewed as special cases of a spatial filter. MIMO beamforming, which jointly

operates on transmit and receive, can be interpreted as a bi-directional spatial filter,

and both adaptive (as this paper addresses) and non-adaptive bi-directional filters

can be formulated and the bi-directional filter response analyzed.

The bi-directional wavefront was defined in (3.3). The concept of a bi-directional

wavefront assumes a closed system, that is, all energy in the system originates from

the transmitters (with the exception of uncorrelated sensor noise). In general, a

bi-directional field, s pxr,xtq, is defined as a weighted integral of bi-directional wave-

fronts:

s pxr,xtq �
»
Fs pkr,ktq exp

�
j
�
kTr xr � kTt xt

��
dkrdkt (3.12)

where xr represents receiver space, xt represents transmit space, and Fs pkr,ktq is

the bi-directional Fourier transform. Imposing the wide-sense stationary condition

on the bi-directional field, bi-directional wavefronts with different transmit-receive
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combinations are uncorrelated:

E rFs pkr1,kt1qF �
s pkr2,kt2qs � (3.13)

"
E
�|Fs pkr1,kt1q|2� if kr1 � kr2 and kt1 � kt2

0 otherwise

where E r s is the expected value. Then, the bi-directional power spectral density

is:

S pkr,ktq � E
�|F pkr,ktq|2� (3.14)

The bi-directional power spectral density can also be defined in terms of the bi-

directional autocorrelation function. Assuming the field is wide-sense stationary, the

bi-directional auto-correlation function is:

r pmr,mtq � E rs pxr �mr,xt �mtq s� pxr,xtqs (3.15)

and the bi-directional power spectral density can be expressed as:

S pkr,ktq �
»
r pmr,mtq exp

�
j
�
kTr xr � kTt xt

��
dkrdkt (3.16)

The bi-directional field exists for all potential receiver and transmitter locations,

therefore, it is only a function of the environment and not a function of element

locations. However, in practice, the field can only be measured at discrete receiver

and transmitter element locations. Consider a system with Nr receiver elements

located at xr1, . . . ,xrNr and Nt transmitter elements located at xt1, . . . ,xtNt . Define

the Nr-by-Nt data matrix Z as:

Z �

�
�� s pxr1,xt1q � � � s pxr1,xtNtq

...
. . .

...
s pxrNr ,xt1q � � � s pxrNr ,xtNtq

�
�� (3.17)

and the NrNt data vector z

z � vec pZq (3.18)
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Without loss of generality, assume both the transmit and receive arrays are uniform

linear arrays operating in one-dimensional space, with inter-element spacings of ∆t

and ∆r respectively. The bi-directional covariance matrix Rz � E
�
zzH

�
is a block

Toeplitz matrix:

Rz �

�
�� Rr,t�0 � � � Rr,t�Nt�1

...
. . .

...
Rr,t��pNt�1q � � � Rr,t�0

�
�� (3.19)

and each sub-matrix Rr,t�k is a Toeplitz matrix:

Rr,t�k �

�
�� rkp0q � � � rk ppNr�1q∆rq

...
. . .

...
rk p�pNr�1q∆rq � � � rk p0q

�
�� (3.20)

where rk pmrq � r pmr, k∆tq are values of the bi-directional auto-correlation function

of (3.15).

The bi-directional covariance matrix Rz is Toeplitz-block Toeplitz, that is, it is

a block Toeplitz matrix composed of Toeplitz submatrices. An estimate of the bi-

directional spectrum can be formed with the bi-directional wavefront vector that was

defined in (3.3) and the bi-directional covariance matrix from (3.19):

Ŝ pkr,ktq � vH pkr,ktqRzv pkr,ktq (3.21)

or from the bi-directional wavefront vector and the the bi-directional data vector

from (3.18):

Ŝ pkr,ktq �
��vH pkr,ktq z��2 (3.22)

Additionally, with knowledge of the bi-directional covariance matrix, other multi-

dimensional spectral estimation techniques can be used to estimate the bi-directional

spectrum, many of which are described in [62]. Bi-directional beamforming forms

a weighted sum of the bi-directional field sampled at the transmitter and receiver
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locations. The bi-directional beamformer output is:

y �
Nŗ

nr�1

Nţ

nt�1

wnr,nts pxrnr ,xtntq (3.23)

Substituting (3.12) into (3.23) and rearranging yields:

y �
» 8
�8

Fs pkr,ktqFw pkr,ktq dkrdkt (3.24)

where

FW pkr,ktq �
Nŗ

nr�1

Nţ

nt�1

w�nr,nt
exp

�
j
�
kTrnxr � kTtmxt

��
(3.25)

is the bi-directional response for a given set of weights, and Sw � |Fw|2 is the bi-

directional beampattern. If the beamforming weights wnr,nt are collected into a

NrNt-length vector w, then the bi-directional beampattern can be expressed as:

SW pkr,ktq �
��wHv pkr,ktq

��2 (3.26)

From (3.24) and (3.25), it is revealed that MIMO bi-directional beamforming is a

realization of a bi-directional spatial filter, similar to the observation that beamform-

ing has been shown to be a realization of a spatial filter [61]. In a given situation,

the bi-directional spatial spectrum estimate can be used to characterize multipath

propagations. However, a SIMO (single-input, multiple-output), which has multiple

receiver channels but only one distinguishable transmitter channel, cannot distin-

guish multipath propagations from direct-path propagations. Note that the SIMO

covariance matrix and data vector can be expressed as a transformation of the MIMO

bi-directional covariance matrix:

RSIMO � HRzH
H and zSIMO � Hz (3.27)
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where the Nr-by-NrNt transformation matrix H is a horizontal concatenation of Nt

Nr-by-Nr identity matrices:

H � rINrINr � � � INrs (3.28)

Alternatively, the transformation matrix H could be defined as a matrix that only

considers the data from a single transmitter element and ignores the others. The

following transformation matrix deletes all data from all transmitter channels except

for the first one:

H � rINr0 � � �0s (3.29)

In a SIMO system, the signals from the transmitter elements are not separable, so

the sum of the return from all transmitter elements appear at each receiver element,

and the system loses the ability to discriminate in transmit spatial frequency kt.

Consider a scenario in which there are two transmit-receive propagation wavefronts.

The first wavefront, v pkr � k0,kt � k0q, is a direct-path wavefront in which kr =

kt. The second wavefront v
1 pkr � k0,kt � k1q, is a multi-path wavefront in which

kr � kt. Note that both wavefronts have the same receive spatial frequency kr, but

different transmit spatial frequencies kt. In a MIMO bi-directional system, these

two wavefronts would be viewed as uncorrelated returns and they would appear as

two distinct peaks in the bi-directional spectrum. In a SIMO system, which can

only discriminate in kr, these two wavefronts would be indistinguishable and would

appear as one peak on a one-dimensional spatial spectrum.

Additionally, the bi-directional beampattern can be formulated for any MIMO

beamformer, whether or not the MIMO beamformer was designed for multipath sup-

pression or under the framework described here. For example, another common use of

MIMO co-located arrays is for aperture synthesis [35, 36, 50]. These applications are

not concerned about multipath, but the bi-directional beampattern can be generated

for these beamformers. Looking upon the “direct-path diagonal” (where kr � kt) of
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the bi-directional beampattern provides the synthesized virtual one-directional array

pattern for direct-path signals.

In this work, the bi-directional spectrum estimate will be used to characterize

multipath propagation, and the bi-directional beampattern will be used to analyze

the MIMO beamformers that are formulated to counteract the multipath. One par-

ticular useful application of the bi-directional spectrum is the ability to estimate the

rank of the MIMO bi-directional covariance matrix.

3.3 Rank of the Bi-Directional Clutter Covariance Matrix

In the previous section, the concepts of the bi-directional spatial field and the bi-

directional spatial spectrum were introduced. In chapter 4, a partially-adaptive

algorithm for multipath clutter mitigation will be introduced. A key factor in the

feasibility of any partially adaptive algorithm is the rank of the interference covari-

ance matrix, as the interference rank determines the number of adaptive degrees of

freedom needed to suppress it. Ideally, the number of adaptive degrees of freedom

should be greater than or equal to the rank of the clutter covariance matrix. Due

to the fact that multipath models are highly environment-dependent, it is unlikely

to be able to derive a simple formula for the rank of the multipath clutter, such as

Brennan’s rule [63] for direct-path clutter in SIMO STAP. In this section, a method

for approximating the rank of the clutter covariance using the bi-directional spatial

spectrum is presented. In [64] and [59], a method to estimate the clutter rank for

unusual geometries or array shapes is presented by counting the number of resolution

cells occupied in the spatial spectrum. In this section this technique will be used

in conjunction with the bi-directional spatial spectrum to estimate the rank of the

bi-directional clutter covariance matrix.

Consider a system with a linear receive array with aperture Lr and a linear

transmit array with aperture Lt. Since both arrays are one-dimensional, the spa-
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tial frequency vectors can be represented with scalar values (i.e. kr � pkrx, 0, 0qT

and kt � pktx, 0, 0qT ). It is useful to consider the normalized spatial frequencies,

k̂rx � krxλ
2π

and k̂tx � ktxλ
2π

, because the normalized spatial frequencies within r�1, 1s
correspond to the visible region, that is, the region of spatial frequencies that cor-

respond to physical propagating waves. The normalized receive spatial frequency

resolution is µr � λ
Lr

and the normalized transmit spatial frequency resolution

is µt � λ
Lt

. There are ηr � ceil
�

2
µr

	
� ceil

�
2Lr

λ

�
receive resolution cells and

ηt � ceil
�

2
µt

	
� ceil

�
2Lt

λ

�
transmit resolution cells. The lthr receive resolution cell

spans

k̂rx,lr P r�1� plr � 1qµr,�1� lrµrs (3.30)

and the ltht transmit resolution cell spans

k̂tx,lt P r�1� plt � 1qµt,�1� ltµts (3.31)

In bi-directional space, the transmit and receive resolution cells overlay to create a

grid with ηrηt rectangular cells. The rectangular cell formed by the lthr receive cell

and the ltht transmit cell can be isolated using the mask function

Klr,lt

�
k̂rx, k̂tx

	
�
"

1 if k̂rx P k̂rx,lr and k̂tx P k̂tx,lt
0 otherwise

(3.32)

For each rectangular cell, define an indicator function G plr, ltq which compares the

maximum value of the bi-directional spectrum (from (3.21) or (3.22)) within that

cell to a threshold Γ:

G plr, ltq �
#

1 if max
�
Klr,ltpk̂rx, k̂txqŜpk̂rx, k̂txq

	
¡ Γ

0 otherwise
(3.33)

An estimate for the rank of the covariance matrix can be formed by summing the
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indicator functions G plr, ltq for each of the ηrηt rectangular resolution cells:

ρ̂ �
ηŗ

lr�1

ηţ

lt�1

G plr, ltq (3.34)

3.4 Example Scenario and Clutter Rank Estimation

To illustrate the estimation of clutter rank, consider a forward-looking radar parallel

to a long, specular reflector, as shown in Fig. 3.2. The specular reflector is assumed

to be infinite in extent, and have a height that is equal to or greater than the

height of the radar. The ground is assumed to be a rough surface. The radar is a

MIMO system with both a forward-looking transmit and receive array. In Cartesian

coordinates, define the receive array to be centered at px � 0, y � 0, z � zrq. Define

the transmit array to centered at px � 0, y � 0, z � ztq and the diffuse ground to be

the plane of pz � 0q. The specular reflector at px � xsq is assumed infinite extent

in the y-domain, and in the z-domain runs from the ground pz � 0q to a height

greater than or equal to maximum height of the arrays pz ¥ maxpzr, ztqq. It will

also be assumed that the transmit antennas, the receive antennas, or both set of

antennas have significant attenuation in their backlobes and therefore no energy will

be transmitted or received to/from the area behind the radar. Define the transmit

azimuth angle φt and receive azimuth angle φr to the be the angles relative to the

line px � 0q in the xy plane. In this frame of reference, the azimuth angle pφ � 0q
refers to the �y direction, the azimuth angle pφ � �π

2
q refers to the �x direction,

and the azimuth angle pφ � �π
2
q refers to the �x direction. The vehicle is assumed

to be traveling in the �y direction at a constant velocity of v.

Clutter can be divided into direct-path clutter and multipath clutter, as in (3.6).

Direct path clutter is the simplest to characterize, as the transmit and receive azimuth

angles are equal to each other: φrx � φtx. However, direct-path clutter only exists

when the departing ray scatters off of the rough ground. If the departing ray reflects
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Figure 3.2: Vehicle Driving Next to a Specular Reflector

off of the specular reflector, then it will not arrive at the receiver along the same

path, as the specular reflector only scatters forward and there is no backscatter.

Direct-path clutter will exist when the following condition is met:

sin pφtxq ¤ 4xsrb�p2rq2 � pzr � ztq2
� �p2rq2 � pzr � ztq2q

� (3.35)

In locations where direct-path clutter exists, and assuming pzr�ztq small, the Doppler

shift of the clutter is:

fd � 2
v

λ
cos pφtxq

d
1�

�
zt�zr

2

�2
r2

(3.36)

Multipath clutter that first reflects off of the specular reflector and then scatters off

of the rough ground exists when the conditions pφtx ¡ 0q AND pφrx   φtxq AND

pφrx ¡ �φtxq are met, and is described by:
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r �
xs

b
1� z2t cos2 φtx

4x2s
ptanφrx � tanφtxq2

|cosφtx ptanφrx � tanφtxq| (3.37)

� 1

2

d
4x2s �

8x2s tanφtx
tanφrx � tanφtx

� 4x2s
cos2 φrx ptanφrx � tanφtxq2

� z2r

exists for pφtx ¡ 0q AND pφrx   φtxq AND pφrx ¡ �φtxq

In locations where this type of multipath exists, the Doppler shift of this type of

multipath clutter is:

fd �v
λ

�
� 2xs cosφtxb

4x2s � z2t cos2 φtx ptanφrx � tanφtxq2
(3.38)

� cosφrxc
1� z2r cos2 φrxptanφrx�tanφtxq2

4x2spcos2 φrxptanφrx�tanφtxq2�2 tanφtx cos2 φrxptanφrx�tanφtxq�1q

�
��


Multipath clutter that first scatters off of the rough ground and then reflects off of

the specular reflector exists when the conditions pφrx ¡ 0q AND pφrx ¡ φtxq AND

pφrx ¡ �φtxq are met, and is described by:

r � 1

2

d
4x2s

cos2 φtx ptanφrx � tanφtxq2
� z2t (3.39)

� 1

2

���� ptanφrx � tanφtxq
tanφrx ptanφrx � tanφtxq

����
b
x2s ptan2 φrx � 1q � z2r ptanφrx � tanφtxq2

� 1

2

d
x2s �

x2s � z2r tan2 φtx
tan2 φrx

exists for pφrx ¡ 0q AND pφrx ¡ φtxq AND pφrx ¡ �φtxq
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In locations where this type of multipath exists, the Doppler shift of this type of

multipath clutter is described by:

fd � v

λ

�
� 2xs cosφtxb

4x2s � z2t cos2 φtx ptanφrx � tanφtxq2
� xs cosφrxa

x2s � z2r tan2 φtx cos2 φrx

�



(3.40)

Minimal energy loss occurs during reflections off of the specular reflector and

thus these two dominant multipath clutter paths will have almost the same energy

as direct-path clutter scattering off of the ground with similar path lengths. Higher-

order multipath paths involving multiple scatterings off of the ground have much

less energy and are therefore ignored. In the examples illustrated here, the receive

array is a uniform linear array with Nr � 16 elements and an element spacing of λ
2
.

The transmit array is a uniform linear array with Nt � 8 elements and an element

spacing of λ
2
. The locations of the specular reflector is xs = 5 m. The height of the

arrays above the ground are zt = 1.25 m and zr = 1.5 m. The velocity of the vehicle

is v = 11 m/s (approximately 25 mph). Some example plots of the bi-directional

clutter loci representing this multipath geometry are shown in Fig. 3.4 for ranges of

10 m, 15 m, 30 m, and 50 m. Observe that the clutter loci vary with range, which

makes MIMO operation a good choice for clutter suppression.

With this unusual and range-varying geometry a simple estimate for clutter rank

estimation can be obtained using the rank estimate from (3.34). The appropriate

resolution cell gridlines from (3.32) have been imposed on Fig. 3.4 which show the

clutter loci. In particular, the clutter rank estimate of (3.34) corresponds to counting

the number of occupied resolution cells, with sizes defined by (3.32). The eigenspec-

tra of the clutter covariance matrix corresponding to the loci of Fig. 3.4 is shown in

Fig. 3.4. The rank estimates by counting the resolution cells are shown as vertical
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Figure 3.3: Bi-directional Clutter Loci

lines. Observe that for each range the rank estimate is very close to the number of

significant eigenvalues. Note that for each range the number of significant eigenvalues

is less than 40 (out of a maximum 128) and therefore the clutter covariance matrix

is approximately low rank. However, the rank is higher than the degrees of free-

dom that would be available if transmit and receive beamforming were performed

independently, which corresponds to a Kronecker MIMO beamformer of the form

w � wt b wr. The number of degrees of freedom in the Kronecker beamformer is

Nr�Nt. In this particular example, Nr � 16 and Nt � 8, and therefore Nr�Nt � 24,
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Figure 3.4: Clutter Eigenspectrum

which is less than the rank of the clutter covariance matrix. In this example, the

low rank of the clutter covariance matrix indicates the number of partially adaptive

bi-directional beamforming weights required to most effectively suppress clutter, i.e.

greater than or equal to the rank of the clutter covariance matrix.

3.5 Summary

The MIMO signal model was defined. The concept of the MIMO bi-directional spec-

trum was introduced and defined, which allows for the characterization of multipath,

and leads to a technique to estimate the rank of the clutter covariance matrix. In the

next chapter, a partially adaptive algorithm will be developed to suppress multipath

clutter, using the rank estimation developed here.
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4

Partially Adaptive MIMO Bi-directional
Beamforming for Multipath Clutter Suppression in

Ground-Vehicle GMTI

Consider again the example problem described in Chapter 3, Section 4: a radar

mounted on a ground vehicle driving parallel to a specular reflector. The illustrative

figure of Fig. 3.2 is reprinted here in Fig. 4.1 for the reader’s convenience. The

goal of the radar is to perform GMTI (ground-moving-target-indicator) to detect

moving targets, such as pedestrians. However, obstacles such as parked cars, high-

way guardrails, and building walls in combination with reflections off of the ground

produce many multipath clutter returns. Since the vehicle is moving, these returns

are spread in Doppler, and may mask a legitimate target or appear as false tar-

gets. However, the previous chapter that multipath returns can be separated from

direct-path returns via the bi-directional spatial spectrum. Therefore, an adaptive

bi-directional beamformer could be designed to suppress the multipath. One major

issue with MIMO radar is the that the large number of degrees of freedom requires a

large amount of training data to estimate interference statistics. This issue is espe-

cially exacerbated on moving platforms, since the environment rapidly changes and
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Figure 4.1: Vehicle Driving Next to a Specular Reflector

therefore there is limited available time to collect snapshots.. However, the previous

chapter demonstrated that the clutter in this scenario is significantly rank deficient

in the bi-directional spatial domain, and therefore not all the degrees of freedom

are required to suppress the multipath clutter. This chapter proposes a partially

adaptive bi-directional beamformer to suppress multipath returns, and simulation

results are presented. (In Chapter 7, experimental results from a real radar testbed

are shown).

4.1 Partially Adaptive Algorithm

From Chapter 3, we have the ability to estimate the rank of the clutter covariance

matrix with the MIMO bi-directional spatial spectrum. Since this rank is signifi-

cantly less than the dimension of the bi-directional clutter covariance matrix (also

shown in Chapter), a partially adaptive algorithm for multipath clutter suppres-

sion is appropriate and will be developed here. If complete omniscient knowledge of

the clutter and noise covariance matrices were available, then the optimum MIMO
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beamformer would be:

wopt � R�1
I v (4.1)

where RI is the target-free covariance matrix from (3.7). In practice, the target-

free covariance matrix is not known. The covariance matrix must be estimated

from data snapshots. As stated previously, in situations involving range-varying

multipath clutter, the standard practice of training over adjacent range bins in not

appropriate. Instead, slow-time pulses at the range bin under test will be used as

training snapshots. The simplest approach would be to use the sample covariance

matrix generated from slow-time pulses:

R̂z � 1

M

M̧

m�1

zmzHm (4.2)

where M is the number of pulses and z is the data vector from (3.5). Given the large

size of the bi-directional covariance matrix (NrNt by NrNt), a very large number of

snapshots would be needed to support this fully adaptive solution, which motivates

the need for a partially-adaptive solution with reduced adaptive the degrees of free-

dom and hence fewer number of snapshots required. The proposed solution takes the

form of a reduced-rank generalized sidelobe canceller. The generalized sidelobe can-

celler [65] consists of a set of non-adaptive quiescent weights to form the mainbeam

and set of adaptive weights to cancel the interference. A blocking matrix is applied

to the adaptive training data which removes the desired signal. Without a blocking

matrix, training data formed from slow-time pulses will include the target signal, and

therefore the blocking matrix is necessary. To reduce the number of adaptive degrees

of freedom, a projection matrix is applied to transform the data into a lower-rank

subspace. A block diagram of this structure in shown in Fig. 4.2. A similar approach

has been proposed for partially adaptive algorithm for SIMO STAP in [66–68].
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To compute partially adaptive weights, consider the bi-directional steering vector

defined in (3.3). The length of the bi-directional wavefront vector vpkr,ktq is NrNt-

by-1. To avoid cancellation, the blocking matrix B must be chosen such that Bv � 0.

The dimension of the blocking matrix B is thus pNrNt � 1q-by-NrNt. At a minimum,

the blocking matrix must be an orthonormal matrix which excludes the subspace of v,

however, more information can be used in its design, which is discussed in the next

subsection. Without a transformation matrix, the fully adaptive two-dimensional

generalized sidelobe canceller (GSC) beamforming weights [65] are given by :

wb �
�
BR̂zB

H
	�1

BR̂zv

wGSC � v �BHwb (4.3)

The number of adaptive degrees of freedom in (4.3) is NrNt � 1. In the previous

section, however, it was shown that the rank of clutter covariance matrix is much

lower than NrNt, and a method was proposed to estimate this rank based on the

environmental scenario. Assume it is known that the rank of the clutter covariance

matrix is less than or equal to P . Then, the pNrNT � 1q-by-P transformation matrix

T can be used to reduce the dimensionality of the data to P , the reduced number

of adaptive degrees of freedom. Since the number of snapshots required for stable

estimates of the weights is roughly twice the number of adaptive degrees of freedom,

the partially adaptive weights save not only computation but also can be estimated

with less training data than fully adaptive methods using (4.2).
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The weights for the reduced subspace two-dimensional generalized sidelobe can-

celler are:

wt �
�
THBR̂zB

HT
	�1

THBR̂zv

wGSC,P � v �BHTwt (4.4)

The transformation matrix T must be chosen to span the subspace of the clutter. In

[66–68] it was shown that the optimum (in terms of signal-to-interference-plus-noise

ratio) choice of the transformation matrix T consists of selecting eigenvectors of the

blocked covariance matrix, Rb � BR̂zB
H , and the most effective adaptive cancel-

lation is obtained using eigenvectors chosen which have the highest cross-spectral

values, i.e. contribution to look direction components. The eigendecomposition of

Rb is:

Rb � UΛU�1 (4.5)

The columns of U are the eigenvectors of Rb, and Λ is a diagonal matrix containing

the eigenvalues of Rb. The ith cross-spectral value qi is defined as:

qi �
�����u

H
i BR̂zv?

λi

�����
2

(4.6)

where uiand λi are the ith eigenvector and eigenvalue of the blocked covariance

matrix, BR̂zB
H . The cross-spectral values represent the strength of each interference

eigenvector after taking the inner product with the steering direction vector. The

columns of the projection matrix T are the P eigenvectors with the highest cross-

spectral values:

T � ruq1,uq2, . . . ,uqP s (4.7)

To maintain optimality, the transformation matrix T of (4.7) must be re-calculated

for each new set of training data. More discussion and a formal proof of the optimality

of the cross-spectral values can be found in [66–68].
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4.1.1 Blocking Matrix Choice

One way to calculate the blocking matrix B is to use the singular value decomposition

(SVD) to find the projection matrix onto the orthogonal subspace v:

rU,S,Vs � svd pvq

B � rU p:, 2 : NrNT qs (4.8)

Note that the eigenvectors corresponding to null space of v are selected. In practice,

the signal wavefront is imperfectly known so it may be necessary to use a more robust

blocking matrix B to prevent nulling of the signal in the training data. If portions of

the signal in the look direction remain after applying B, the beamformer may attempt

to place a null in the mainlobe. Additionally, if there are clutter components close

to the desired transmit-receive look direction (which would by definition be direct-

path or near direct-path clutter components), the adaptive beamformer will attempt

to place nulls near the mainbeam, which may also null the signal. A more robust

blocking matrix can be calculated from:

rU,S,Vs � svd prv1v2 . . .vKsq

B � rU p:, K � 1 : NrNT qs (4.9)

where the steering vectors v1,v2, . . . ,vK are wavefront vectors at the desired steering

point and at neighboring transmit and receive spatial frequencies “close” to the

desired steering point. ”Close” refers to transmit and receive spatial frequencies

of neighboring transmit-receive resolution cells, defined in (3.32). Since all desired

steering directions will be along the direct-path kt � kr, the additional vectors

v2, . . . ,vK should have the property kt � kr. If there is mismatch, the original

blocking matrix in (4.8) may allow the signal through to the adaptive calculation,

causing nulls near or in the main beam. The same result will occur if there are

clutter components very close to the desired transmit-receive look direction. The
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matrix in (4.9), however, will be less sensitive to mismatch and will filter out nearby

clutter components. By adding more constraints to the blocking matrix, the adaptive

degrees of freedom are reduced by K, before the rank-reduction matrix. However,

typically for MIMO applications the remaining number of adaptive degrees of freedom

is still much larger than the clutter rank P .

4.1.2 Algorithm Summary

The complete algorithm will now be summarized. First, form the sample covariance

matrix from slow-time pulses as shown in (4.2). For a given scenario, an estimate of

the bi-directional spectrum can be obtained using (3.21) and the clutter rank, P , can

be estimated using (3.34). For partially adaptive MIMO beamforming, the blocking

matrix B of (4.8) or (4.9) can be used and the optimum transformation matrix T

can be obtained using (4.5), (4.6), and (4.7). Finally, the partially adaptive weights

wGSC,P are computed using (4.4) and applied to the data z from (3.5).

4.2 Simulation Results

To demonstrate the performance of partially adaptive bi-directional MIMO beam-

forming, return to the multipath scenario described at the beginning of this chapter:

a forward-looking radar above the ground next to a specular reflector. Let the radar

be mounted on a ground vehicle driving parallel to the specular reflector, and let

there be a pedestrian who is walking across the street. The goal of the radar is to

detect the pedestrian and alert the driver of his position. Because the pedestrian is

moving, he will be separated in Doppler from the direct-path clutter but is assumed

to be at the same slant range (or delay). However, Doppler-spread multipath clut-

ter can obscure the pedestrian and thus must be suppressed. For this simulation, to

match the radar testbed that will be introduced in Chapter 6, the carrier frequency is

2.4 GHz, and therefore the wavelength is 12.5 cm. The receive array has 16 elements,
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Figure 4.3: Bi-directional Spatial-Doppler Clutter Loci

spaced at λ
2
, and is centered at px � 0, y � 0, z � 1.5 mq. The transmit array has 8

elements, spaced at λ
2
, and is centered at px � 0, y � 0, z � 1.25 mq. The wall exists

at px � 4 mq. The vehicle is driving at a constant velocity of 11 m/s (approximately

25 mph) in the �y direction. The transmit and receive antennas are assumed to

have mainlobes which encompass �90o from the forward direction, φ � 0. For other

radar parameters, assume that after MIMO channel separation, the effective wave-

form repetition frequency (WRF) is 400 Hz (if slow-time MIMO waveforms are the

MIMO waveform choice, then the WRF before MIMO channel separation must be

Nt� fwrf,ef where fwrf,ef is the effective WRF. Refer back to Chapter 2 for more in-

formation). The coherent integration time (CIT) is 0.25 seconds. There is a moving

target at a range of 15 m at an azimuth angle of -10 degrees (kx � sinφ � �0.1736),

moving at a slant velocity of 2.25 m/s (approximately 5 mph) away from the vehicle,
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Figure 4.4: SIMO Uni-directional Spatial-Doppler Clutter Loci

for a net velocity relative to the vehicle of 8.75 m/s (which corresponds to a Doppler

shift of 140 Hz). In the MIMO case, the clutter-to-noise ratio (CNR) is 30 dB and

the signal-to-noise ratio (SNR) is 10 dB. In the SIMO case, to account for the MIMO

SNR loss, the CNR increases to 39 dB and the SNR increases to 19 dB.

Define the transmit azimuth angle φt and receive azimuth angle φr to the be the

angles relative to the line px � 0q in the xy plane. In this frame of reference,

the azimuth angle pφ � 0q refers to the �y direction, the azimuth angle pφ �
�π

2
q refers to the �x direction, and the azimuth angle pφ � �π

2
q refers to the �x

direction. The clutter bi-directional spatial spectrum for this scenario was previously

shown in Fig. 3.3(b). Since the radar is now on a moving platform, the clutter is

now Doppler spread. Fig. 4.2 illustrates the bi-directional-space-time relationship
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Figure 4.5: SIMO Doppler-azimuth with known covariance matrix

between transmit angle, receive angle, and Doppler shift for ranges of 10 m, 15 m,

30 m, and 50 m. Fig. 4.2 shows how a SIMO radar would see the SIMO-space-

time relationship between receive angle and Doppler shift for the same set of ranges.

Observe that the SIMO views of Fig. 4.2 are projections of the three-dimensional

spaces of Fig. 4.2 onto a two-dimensional surface, and that in SIMO view there is

no method to distinguish between direct-path and multipath clutter. Mathematical

expressions for these curves were previously presented in Chapter 3, Section 4.

4.2.1 Known Covariance Matrices

First, for both MIMO and SIMO, bi-directional spectra and clutter suppression with

known covariances are considered. Figure 4.5 shows the result from adaptive SIMO

beamforming. For SIMO beamforming, a fully adaptive generalized sidelobe canceller

[65] was employed on the receive side array only using the maximum number (Nr �
1 � 15) of adaptive degrees of freedom available. Observe that the target cannot

be distinguished due to the multipath clutter components. Figure 4.6 shows the

result from adaptive MIMO bi-directional beamforming with 40 adaptive degrees
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Figure 4.6: MIMO Doppler-azimuth with known covariance matrix

of freedom. 40 adaptive degrees of freedom were chosen because the clutter rank

estimate of (3.34) predicted that the clutter rank would be less than or equal to 40.

Note that the multipath clutter is suppressed and the target is detectable away from

the direct-path clutter ridge. Comparing these two figures to the the clutter loci in

Figure 4.4(b), note that the although target falls along one of the multipath clutter

loci, the MIMO beamformer is able to discriminate it while the SIMO beamformer

cannot.

In the MIMO case, the bi-directional spatial spectrum from (3.21) and the bi-

directional spatial beampattern from (3.25), are shown in Fig. 4.2.1 and Fig. 4.2.1

respectively. Notice that Fig. 4.2.1 has the same shape as the clutter loci from Fig.

3.3(b). The bi-directional spatial beampattern is shown in Fig. 4.2.1. Observe that

it places sharp nulls along the clutter loci.

4.2.2 Estimated Covariance Matrices

Here the more realistic case where the covariance matrix is unknown and must be

estimated from the received data is considered. The covariance matrix is estimated
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Figure 4.7: Bi-Directional Spatial Spectrum

by training over slow-time pulses as in (4.2). The full CIT of 0.25 seconds, providing

M � 100 snapshots, is used as training data. Fig. 4.2.2 shows the SIMO result.

Observe that the MIMO result is still able to identify the target. Fig. 4.2.2 shows

the partially adaptive MIMO result. The clutter rank estimate P of (3.34) was

computed to be approximately 40. Because of direct-path clutter near the target in

the bi-directional spectrum, the robust blocking matrix B of (4.9) was used, choosing

nearby direct-path steering vectors along with the target direction to block. The

transformation matrix T was designed using the process from (4.5), (4.6) and (4.7)

and with P � 40 adaptive degrees of freedom. The partially adaptive MIMO result

still clearly discriminates the target, although the noise floor has been raised versus

the known covariance case. The MIMO adaptive bi-directional beampattern from

(3.25) is shown in Fig. 4.2.2. It is no longer able to place ideal nulls along the clutter,

although it nulls the multipath clutter enough to get the result shown in Figure 4.2.2.

However, the MIMO bi-directional beamforming still drastically outperforms SIMO

beamforming.
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Figure 4.8: Bi-directional Beampattern: Known Covariance Matrix

4.2.3 Monte Carlo Detection Results

To statistically determine how the number of snapshots affects the performance of the

MIMO bi-directional adaptive beamformer, and to compare the MIMO bi-directional

beamformer to the SIMO beamformer, Monte Carlo trials were performed and re-

ceiver operating characteristics (ROCs) were generated. Four cases were run and 500

realizations were generated for each case. The first three cases tested the partially

adaptive MIMO beamformer training over slow-time pulses. The CIT was varied

to vary the number of snapshots available. Case 1 tested the performance with 100

snapshots (CIT = 0.250 s), case 2 tested the performance with 80 snapshots, (CIT

= 0.200 s), and case 3 tested the performance with 50 snapshots (CIT = 0.125 s).

As before, P = 40 adaptive degrees of freedom were used. The fourth case tested

the fully adaptive SIMO beamformer with a known covariance matrix, as this should

provide the upper-bound for SIMO performance. The full CIT = 0.250 s was used

for the SIMO case. The resulting ROC curves are shown in Fig. 4.12. Observe how

all of the MIMO cases perform much better than SIMO, even though the SIMO case
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Figure 4.9: SIMO Doppler-Azimuth Plot with Estimated Covariance Matrices

had a known covariance matrix.

4.2.4 Output SCNR Loss Compared to the Fully Adaptive Solution

To determine the effect of the rank reduction on the output signal-to-clutter-plus-

noise (SCNR), 500 Monte Carlo realizations were performed comparing the SCNR of

the fully adaptive solution (i.e. the solution that does not contain a transformation

matrix T) to the SCNR of the partially adaptive solution. The known covariance

matrices were used, as there would not be enough snapshots available to use the

estimated covariance matrix with the fully adaptive solution. The result was an

average SCNR loss of 0.51 dB incurred by dropping from the fully adaptive solution to

the partially adaptive solution. The SCNR loss is small because the partially adaptive

solution is sufficient to null the multipath clutter. Refer back to the beampattern of

Fig. 4.2.1 and remember this beampattern was computed with the partially adaptive

solution. Compare the partially adaptive beampattern to the bi-directional spatial

spectrum of Fig. 4.2.1 and observe that it places deep nulls in the locations of

the clutter. Since the partially-adaptive beampattern can adequately suppress the
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Figure 4.10: MIMO Doppler-Azimuth Plot with Estimated Covariance Matrices

clutter, there is not much of advantage of going to the fully adaptive solution.

4.2.5 Monte Carlo Detection Results with Random Target Statistics

To illustrate the more general superiority of MIMO over SIMO, Monte Carlo trials

were performed and some of the target statistics were switched from deterministic

values to random variables. The range of the target was kept constant at 15 m,

but the target azimuth angle was made a uniform random variable ranging from -45

degrees to the azimuth angle with which it would intersect the wall (approximately

+15 degrees). The target tangential velocity, relative to the ground, was made a

uniform random variable from +2 miles per hour to +6 miles per hour (which corre-

sponds to +0.88 m/s to +2.69 m/s). The SNR was unchanged (+10 dB for MIMO

and +19 dB for SIMO), and the clutter statistics were unchanged. Fig. 4.13 shows

the resulting ROC curves for MIMO and SIMO. For SIMO, the known covariance

matrix was used to give it the best chance of working. Observe how MIMO performs

drastically superior to MIMO. This results shows that, for a wide variety of target

azimuth angles and tangential velocities, MIMO is superior to SIMO.
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Figure 4.11: Bi-directional Beampattern of the Adaptive MIMO Beamformer: Es-
timated Covariance Matrix

4.3 Summary

Bi-directional adaptive MIMO beamforming has been shown to have the ability to

suppress multipath clutter where SIMO beamforming cannot even in non-separable

multipath scenarios. MIMO beamformers, unlike SIMO, have the ability to discrim-

inate on both the receive side and the transmit side. With the rank of the MIMO

covariance matrix being able to estimated from the method described in Chapter 3,

a partially adaptive multipath clutter suppression algorithm was designed, and the

number of partially adaptive degrees of freedom was chosen to be at least equal to the

rank of the MIMO covariance matrix. Simulation results demonstrated that MIMO

beamforming was able to successfully suppress multipath clutter in a non-separable

multipath scenario.
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Figure 4.12: Receiver Operating Characteristic
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Figure 4.13: Receiver Operating Characteristic with Random Target Statistics
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5

Clutter-based Adaptive MIMO Phased Array
Calibration

Sensor array calibration has been a well-studied problem for several decades, with

most papers focusing on estimating the gains, phases, and mutual coupling parame-

ters of receive arrays [69–76]. Typically, the array calibration problem assumes the

presence of one or more known or uncertain sources of opportunity and involves a

combination of source direction-of-arrival (DoA) and calibration parameter estima-

tion. A variety of sources-of opportunity have been used over the years including

interferers [70], meteor-trails, space-based objects, and ground-clutter [71]. Auto-

calibration techniques [77, 78] offer an alternative approach for array calibration

without the need additional sources-of-opportunity. In essence, auto-calibration or

“self calibration” methods seek to jointly estimate both target and array parame-

ters simultaneously. Most approaches for auto-calibration use some sort of sub-space

fitting [77] which fits the calibration factors to the dominant components of the mea-

sured field. Besides the important question of gain and phase error identifiability

[78], most of these approaches do not directly optimize the sidelobe performance of

the resulting calibrated array. This is despite the fact that sidelobe degradation due
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to miscalibration often impacts detection performance much more than mainlobe

mismatch.

MIMO radar non-causal transmit beamforming has been used successfully to

calibrate a transmit array with a single receiver and a point source in the far field

[19]. The approach proposed here differs from that in [79] in that a point source is

not required for far-field calibration, rather, ground clutter is exploited as a source

of opportunity. Most calibration methods require the presence one or point sources

or point targets in the field. This can be problematic in many scenarios, as point

targets of opportunity may not be available, and it can impractical to introduce

artificial point sources. Additionally, the effects of miscalibration may vary as a

function of look direction. The combination of ground clutter and MIMO radar

present an opportunity to solve this problem. In most scenarios, ground clutter

appears at all azimuth angles. However, with most radar systems, there is no ability

to separate the ground clutter into individual point targets. One application of

MIMO radar allows for this: non-causal transmit beamforming. Non-causal transmit

beamforming, realized through MIMO radar, allows for one to virtually transmit

beamform after signal reception. Steering a transmit beam virtually illuminates one

patch of clutter at a time, thus creating a set of “point responses” for the receive

array at every look direction, and a set of receiver weights for each look direction can

be generated that optimizes the sidelobe response.

This chapter proposes to use signal processing of ground backscatter from MIMO

radar signals in order to estimate direction-dependent array calibration factors. The

key advantage of using MIMO illumination for calibration purposes is that it pro-

vides separable direction of arrival and departure information from clutter sources-

of-opportunity over a wide set of angles with the ability to simultaneously optimize

transmit and receive calibration factors using the same data observation.
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5.1 Signal and Calibration Error Model Model

5.1.1 Signal without Calibration Errors

Consider a MIMO radar system with Nr receiver elements and Nt transmitter el-

ements. A plane wave incident on the receiver array can be represented by the

wavefront vector vr:

vrpkrq �
�
ejk

T
r xr1 , ..., ejk

T
r xrNr

�T
(5.1)

where xrn is the position of the nth receive element and kr is the wavenumber of

the incident received wave. Similarly, a plane wave originating from the transmitter

array can be represented as the wavefront vector vt:

vtpktq �
�
e�jk

T
t xt1 , ..., e�jk

T
t xtNt

�T
(5.2)

where xtl is the position of the lth transmit element. A negative sign compensates for

the difference between incoming (receive) and outgoing (transmit) angles. In general,

the radar return can be represented as a sum of individual wavefront vectors. The

components of the return can be characterized as targets, clutter, and noise. In

this technique, calibration is performed solely on clutter, and there are no targets.

The clutter returns can be divided into types: direct-path clutter and multipath

clutter. For direct-path clutter, the direction-of-arrival spatial frequency kr of each

clutter component equals the direction-of-departure spatial frequency kt, whereas for

multipath clutter the two spatial frequencies are different. This calibration technique

will consider the scenario in which only direct-path clutter exists, and there is no

significant multipath. The receive data vector of direct-path clutter and noise is:

zr � zr,c � zr,n (5.3)
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where zr,c represents the receiver clutter return and zr,n represents uncorrelated noise.

Assume each component is the sum of one or more bi-directional wavefront vectors

with zero-mean complex Gaussian amplitudes. The receiver data covariance matrix

is shown by:

Rz,r � Rr,c �Rr,n (5.4)

The receiver clutter covariance matrix can be expressed as:

Rr,c �
»
kPKc

σ2
c pkqvrpkqvHr pkqdk (5.5)

where σ2
c represents the RCS of the clutter patch at spatial frequency k and Kc is the

set containing all spatial frequencies for which clutter exists. The noise is considered

to be uncorrelated between all elements, and thus noise covariance matrix is:

Rn � σ2
nI (5.6)

On the transmit array, after separating the transmitter channels (via the wave-

form orthogonality property), a transmit data vector can be formed:

zt � zt,c � zt,n (5.7)

where zt,c represents the transmitter clutter return and zt,n represents uncorrelated

noise. Likewise, the transmitter data covariance matrix can be broken down into

clutter and noise:

Rz,t � Rt,c �Rt,n (5.8)

Expressions for the transmitter clutter and noise covariance matrices are analogous to

(5.5) and (3.11) respectively, with the transmit wavefront vector vt of (5.2) replacing

58



the receive wavefront vectors vr.

5.1.2 Signal with Calibration Errors

When calibration errors are present, the ideal wavefront vectors are perturbed.

Sources of calibration errors can be roughly divided into three categories: gain errors

on each element, phase errors on each element, and mutual coupling errors between

elements. Gain and phase errors can be represented by a multiplication by a diagonal

matrix G:

ṽr � Grvr (5.9)

where

Gr � diag
�p1� gr1qejφr1 , p1� gr2qejφr2 , . . . , p1� grNrqejφrNr

�
(5.10)

where grn is the real gain error on the nth receiver element and φrn is the phase error

on the nth receiver element. Mutual coupling can be represented by a multiplication

by a non-diagonal matrix Cr:

Cr �

�
����

1 cr1,2 � � � cr1,pNr�1q
cr2,1 1 � � � cr2,pNr�1q

...
...

. . .
...

crpNr�1q,1 crpNr�1qm2 � � � 1

�
���� (5.11)

where crn,m is the complex mutual coupling coefficient between the nth and the mth

receiver element. As there is no mutual coupling between an element and itself,

the diagonal of Cr is unity. The mutual coupling parameters are dependent of the

physical characteristics of the antenna elements, the RF equipment associated with

each antenna element, and the environmental scenario and thus is difficult to predict.

One proposed model for the mutual coupling matrix subdivides the mutual coupling
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matrix into the Hadamard product of four submatrices [76]. In general, it can be said

that the magnitude of the mutual coupling between any pair of antenna elements is

inversely proportion to the distance between them [80]. Because the mutual coupling

matrix is difficult to model, a method that does not assume a mutual coupling model

or is robust to the mutual coupling model assumptions is desirable.

ṽr � CrGrvr (5.12)

Likewise, the same factors affect the transmit array. Transmit gain and phase

errors can be gathered into a matrix Gt, similar to (5.10), and transmit mutual

coupling can be represented by a matrix, Ct. Then, the perturbed transmit wavefront

vector is now:

ṽt � CtGtvt (5.13)

The receive clutter covariance matrix with the array perturbations is now:

Rr,c �
»
kPKc

σ2
c pkqṽrpkqṽHr pkqdk (5.14)

and the transmitter clutter covariance matrix is now:

Rt,c �
»
kPKc

σ2
c pkqṽtpkqṽHt pkqdk (5.15)

5.2 Clutter-based Adaptive MIMO Phased Array Calibration

This section introduces the algorithm for clutter-based adaptive MIMO phased array

calibration (CAMPAC). The central concept of CAMPAC is as follows: for each de-

sired steering direction, utilize the transmit beamformer to isolate a patch of clutter.

For each direction, there will be a receiver data vector containing one clutter patch.
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From these receive data vectors, form a complete set of estimated receive steering

vectors. Then, for each receive look direction, design beamforming weights to mini-

mize the power in sidelobe regions, using the estimated receive steering vectors.

5.2.1 Steering Vector Estimation

Define the kth snapshot of the MIMO data matrix, Zk, as the Nr-by-Nt matrix

containing the data from the Nr receiver elements and the Nt transmitter elements.

The K data snapshots are taken over range bins. For each look direction ki, the

assumed transmitter steering vector vtpkiq of (5.2) is used to transmit beamform the

data to the desired look direction. Then, the receiver sample covariance matrix for

direction ki is then:

R̂z pkiq � 1

K

Ķ

k�1

Zkv
�
t v

T
t ZH

k (5.16)

where A� represents the conjugate of A, AT represents the non-conjugate transpose

of A, and AH represents the conjugate transpose (Hermitian transpose) of A.

In theory, the receiver sample covariance matrix R̂zpkiq of (5.16) should contain

one dominant clutter component and uncorrelated noise. However, this condition is

only precisely true if the transmit array is identical to the receive array, as R̂zpkiq is

formed from beams of the transmit array. To obtain a steering vector estimate, the

projection scaling method proposed by [81] will be utilized, which is summarized here.

The sample covariance matrix R̂zpkiq is broken down into its eigendecomposition:

R̂z pkiq � UpkiqΛUHpkiq (5.17)

Assuming a relatively high clutter-to-noise ratio (CNR), the clutter eigenvalues

can be separated from the noise eigenvalues via thresholding. The eigenvector matrix

is divided into the clutter subspace and the noise subspace:
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U � rUcpkiq Uns (5.18)

The subspace projection matrix corresponding to the clutter patch subspace of

R̂zpkiq is:

Ppkiq � UcpkiqUH
c pkiq (5.19)

Finally, the estimated receive steering vector v̂r can be formed as the projection of

the assumed receive steering of (5.1) onto the clutter patch subspace:

v̂rpkiq � Ppkiqvrpkiq (5.20)

A steering vector estimate v̂rpkiq for every desired look direction is calculated before

moving on to the next segment of the algorithm.

5.2.2 Receiver Weight Calculation

With receive steering vector estimates for every look direction calculated, receive

beamforming weights for each look direction can be generated. The desired weights

will minimize the power in the sidelobe region, while not distorting the look direction.

The optimization problem to solve is:

min wH
r RSLwr (5.21)

with the constraint ��wH
r v̂rpkiq

�� � 1 (5.22)

where RSL � ASLAH
SL and the columns of the matrix ASL are the estimated steering

vectors of (5.20) corresponding to the locations of the sidelobes:

ASL � rv̂sl1, v̂sl2, . . .s (5.23)
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The solution to this problem is the well known minimum variance distortionless

response (MVDR) [82] solution:

wr � R�1
SLv̂rpkiq

v̂Hr pkiqR�1
SLv̂rpkiq

(5.24)

The algorithm generates a unique set of beamforming weights for each look direc-

tion. Note that the algorithm itself assumes nothing about the miscalibration model.

This is desirable, as miscalibration models that include mutual coupling parameters

are complex and have a large number of unknowns. The algorithm directly calcu-

lates beamforming weights without needing the intermediate step of estimating each

miscalibration term.

5.3 Simulation Results

Simulation results were performed to evaluate the performance of CAMPAC. The

metric of interest is the maximum sidelobe level, as this will most limit detection

performance. To compare performance, a Hamming window applied to the uncali-

brated data will be used as the comparison standard. The desired mainlobe width

selected for CAMPAC was selected to be twice the mainlobe width of a rectangular

window applied to the assumed array manifold vector. This width is approximately

equal to the mainlobe width of a Hamming window. The miscalibration model de-

scribed in Section 5.1.2 will be used to generate the array perturbations. The gain

errors, grn of (5.10) were chosen to be real uniform random variables on the inter-

val
�?

2
2
� 1,

?
2� 1

�
, such that the power gain of each element will range uniformly

from -3 dB to +3 dB. The phase errors φrn of (5.10) were chosen to be real uniform

random variables on the interval
�� π

10
, π
10

�
. The mutual coupling coefficients crn,m of

(5.11) were chosen to be complex zero-mean Gaussian random variables with vari-
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ance σ2 � 1
100

�
λ
2

�2 1
L2
m,n

where Lm,n is the distance between the two elements. With

this choice of variance, elements that have an inter-element spacing of Lm,n � λ
2

will

have an expected mutual coupling magnitude of -20 dB, and the magnitude of the

mutual coupling is inversely proportional to the inter-element spacing. Clutter is as-

sumed to exist at all angles, with a random complex zero-mean Gaussian amplitude.

The specific clutter-to-noise ratio (CNR) will be given for each test case.

Several test scenarios were selected to test the robustness of the algorithm. These

were:

1. Nr � Nt, dr � dt � λ
2

2. Nr � 2Nt, dr � dt � λ
2

3. Nr � 2Nt, dr � λ
2
, dt � λ

4. Nr � Nt, dr � dt � λ
2
, transmit miscalibration added

5. Nr � 2Nt, dr � dt � λ
2
, transmit miscalibration added

For each case, after the receiver weights are generated, the weights were applied

to a point target with a normalized spatial frequency kx
λ
2π
� 0.25. The point target

suffers from the array perturbation. Monte Carlo simulations as a function of num-

ber of snapshots and clutter-to-noise ratio (CNR) were performed. For every case

performed here, the number of receivers Nr � 16.

5.3.1 Case 1 : Equal number of transmitters and receivers

In this case, both arrays have the same number of elements and both arrays are

nominally spaced at the Nyquist interval. An example realization of the point target

response with 100 snapshots and a CNR of 30 dB is shown in Fig. 5.1. Observe

that the sidelobes produced by the CAMPAC weights are significantly lower than
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Figure 5.1: Case 1: Point Target Response

those produced for the Hamming window. Next, 100 Monte Carlo realizations were

run with a CNR of 30 dB and the number of snapshots ranging from 10 to 300. For

every Monte Carlo run, a new realization of both the random clutter amplitudes and

the random miscalibration parameters were generated. Fig. 5.2 plots the maximum

sidelobe level as a function of number of snapshots. The blue curves represent CAM-

PAC and the red curves represent the Hamming window. The solid lines with the

circle markers are the mean value over the realizations, and the dotted lines with the

triangle markers represent the 25% and the 75% percentiles of the Monte Carlo trials.

Observe that CAMPAC rapidly improves with the number of snapshots, and even

with a low number of snapshots, is significantly superior to the Hamming window.

Next, 100 Monte Carlo realizations were run with 100 snapshots and the CNR was

varied from 30 dB to 0 dB. Fig. 5.3 plots the maximum sidelobe level as a function of

snapshots. Again, the blue curves represent CAMPAC and the red curves represent

the Hamming window, and the dotted lines are the the 25% and the 75% percentiles.

Observe that initially CAMPAC performance increases as a function of CNR up

until about 10 dB, and then begins to level off. Also note that the Hamming window
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Figure 5.2: Case 1: Monte Carlo results for maximum sidelobe level as function of
number of snapshots

performance is unchanged as the CNR increases, confirming that the problem with

the Hamming window is not the noise but the miscalibration.

5.3.2 Case 2: Twice as many receivers as transmitters

In this case, the transmit array has half as many elements as the receive array, and

both arrays are nominally spaced at the Nyquist interval. An example realization

of the point target with 100 snapshots and a CNR of 30 dB is shown in Fig. 5.4.

Observe that the sidelobes produced by the CAMPAC weights are significantly lower

than those produced by the Hamming window. 100 Monte Carlo realizations were

run with a CNR of 30 dB and the number of snapshots varying. The result is shown

in Fig. 5.5. Then another set of 100 Monte Carlo realizations were run with 100

snapshots and the CNR varying. The result is shown in Fig. 5.6. Observe that, even

with the number of transmitter elements half of the number of receiver elements,

CAMPAC is significantly superior to the Hamming window, although not quite as

good as CAMPAC in case 1. CAMPAC will eventually fail if the ratio of Nr

Nt
gets
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Figure 5.3: Case 1: Monte Carlo results for maximum sidelobe level as function
CNR

too high. As a thought exercise, consider the case where Nt � 1. In this extreme

case, the transmitter has no ability to discriminate and there is no ability to split

the clutter into discrete patches. However, the result for this case shows CAMPAC

is robust to less extreme differentials.

5.3.3 Case 3: Twice as many receivers as transmitters, and transmit array is un-
dersampled

In this case, the transmit array has half as many elements as the receive array, but

the transmit array elements are spaced at λ intervals whereas the receiver array el-

ements are spaced at λ
2

intervals. This case would be one where CAMPAC would

not be predicted to have difficulties. Remember, CAMPAC utilizes the transmit

beamformer to isolate clutter patches, which are then used to estimate steering vec-

tors. However, the transmit array is undersampled and thus its array pattern will

have grating lobes. Thus, each clutter patch will also contain the return from a

second, aliased clutter patch. An example realization is shown in Fig. 5.7. Observe

the elevated sidelobes, especially around the region of kx
λ
2π

� �0.75, which is the
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Figure 5.4: Case 2: Point Target Response

location of the transmitter grating lobe. 100 Monte Carlo realizations of this case

were run with a CNR of 30 dB and the number of snapshots varying. The result is

shown in Fig. 5.8. Then another set of 100 Monte Carlo realizations were run with

100 snapshots and the CNR varying. The result is shown in Fig. 5.9. Observe the

elevated sidelobe levels compared to cases 1 and case 2. However, also observe that

with sufficient snapshots, CAMPAC is superior to the Hamming window, but not

my as much as in the previous cases.

5.3.4 Case 4: Equal number of transmitters and receivers, and transmit array mis-
calibration added

Case 4 is identical to case 1 such that both arrays have the same number of elements

and Nyquist spacing. However, in this case, array perturbation was added to both the

transmit and receive arrays. The same model described in Section 5.1.2 was used to

generate transmit array perturbation, and the miscalibration parameters were chosen

to be random variables with the same statistics as the receiver miscalibration random

variables . (Refer to the beginning of section for the miscalibration statistics). No
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Figure 5.5: Case 2: Monte Carlo results for maximum sidelobe level as function of
number of snapshots

attempt is made to correct for the transmit calibration errors. The purpose of this

case is to prove CAMSAP is robust to errors in the transmit calibration. In many

scenarios, a user will have the ability to provide their own beamformer weights to

the received data but will have no ability to modify the transmitter. This case

represents that scenario. An example realization is shown in Fig. 5.10. Observe that

CAMPAC is still able to achieve much better sidelobes than the Hamming window.

100 Monte Carlo realizations of this case were run with a CNR of 30 dB and the

number of snapshots varying. The result is shown in Fig. 5.11. Then another set

of 100 Monte Carlo realizations were run with 100 snapshots and the CNR varying.

The result is shown in Fig. 5.12. Again, observe that CAMPAC is robust to transmit

miscalibration errors.

5.3.5 Case 5: Twice as many receivers as transmitters, and transmit array miscal-
ibration added

Case 5 is a repeat of case 2, but with transmit miscalibration added. An example

realization of the point target with 100 snapshots and a CNR of 30 dB is shown in
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Figure 5.6: Case 2: Monte Carlo results for maximum sidelobe level as function
CNR

Fig. 5.13. 100 Monte Carlo realizations were run with a CNR of 30 dB and the

number of snapshots varying. The result is shown in Fig. 5.14. Then another set

of 100 Monte Carlo realizations were run with 100 snapshots and the CNR varying.

The result is shown in Fig. 5.15. Observe that, even with transmit miscalibration

and half the number of transmitters as receivers, with sufficient snapshots CAMPAC

offers superior performance to the Hamming window.

5.4 Summary

Array perturbation and calibration errors significantly increase the sidelobe level

of phased arrays. This paper has shown, that by utilizing a MIMO radar system,

beamforming weights can be generated which drastically reduce the sidelobe level.

The key feature of the technique, as described here, is that relies on stationary

ground clutter alone, and there is no requirement for point sources of point targets

in the field. This chapter has shown the proposed technique, CAMPAC, can handle

situations in which there are fewer transmitter than receivers and when the transmit
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Figure 5.7: Case 3: Point Target Response

array itself has calibration errors.
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Figure 5.8: Case 3: Monte Carlo results for maximum sidelobe level as function of
number of snapshots
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Figure 5.9: Case 3: Monte Carlo results for maximum sidelobe level as function
CNR
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Figure 5.10: Case 4: Point Target Response
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Figure 5.11: Case 4: Monte Carlo results for maximum sidelobe level as function
of number of snapshots
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Figure 5.12: Case 4: Monte Carlo results for maximum sidelobe level as function
CNR

−1 −0.5 0 0.5 1
−70

−60

−50

−40

−30

−20

−10

0

k
x
 * λ/(2π)

P
oi

nt
 T

ar
ge

t R
es

po
ns

e 
(d

B
)

 

 
CAMPAC
Hamming

Figure 5.13: Case 5: Point Target Response
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Figure 5.14: Case 5: Monte Carlo results for maximum sidelobe level as function
of number of snapshots
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Figure 5.15: Case 5: Monte Carlo results for maximum sidelobe level as function
CNR
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6

The STRADAR MIMO Radar Testbed

To support MIMO radar research, an experimental low-power S-band MIMO radar

was developed. The testbed was designed and fabricated by the author with a part-

nership with the STRAD Corporation in Chapel Hill, North Carolina. Additionally,

professors Jeffrey Krolik and Matthew Reynolds at Duke University provided exten-

sive consulting. The STRADAR testbed operates at frequency range of 2.1 GHz to

2.7 GHz and a power level of 25 mW. It has 16 coherent receiver channels. The

receiver implements a technique called “stretch processing” (described in detail later

in this chapter) in analog circuitry to drastically reduce the baseband bandwidth,

and therefore the required baseband sampling frequency. On transmit, it has the

ability to operate in either SIMO mode or MIMO mode. In MIMO mode, up to 4

coherent MIMO channels can be utilized. The testbed implements MIMO waveforms

via the double-sideband and/or quadrature slow-time MIMO waveforms (explained

later in this chapter), a variation of the SLO-MO waveforms described in Chapter 2.

The STRADAR can be operated directly from MATLAB via the Data Acquisition

Toolbox. The entire system is contained in portable, robust, attractive rectangular

package with dimensions of 15.0 inches by 8.5 inches by 4.5 inches. A photo of the
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Figure 6.1: The STRADAR

STRADAR is shown in Fig. 6.1.

The author completed the following tasks in the development of the STRADAR.

• Design of a custom printed circuit board (PCBs) containing multiple RF re-

ceiver front-ends. The components populating the board were commercial-off-

the-shelf (COTS), but the board itself was custom designed and fabricated.

• Design of a custom printed circuit board containing both the SIMO and MIMO

RF transmitter front-ends. Again, the components were COTS, but the PCB

design was custom.

• Design of a custom distribution/master printed circuit board that interfaced

the transmitter front-end board and multiple receiver front-end boards with a

National Instruments Data Acquisition (DAQ) board and power supplies

• Design of a custom, robust, portable enclosure to house all of the custom

printed circuit boards listed above and a National Instruments Data Acquisition

(DAQ) board
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Figure 6.2: LFM Waveform in the Time-Frequency Domain

6.1 Stretch Processing with LFM chirps

Consider a radar system which transmits a train of LFM waveforms, as described

in Chapter 2 in (2.2). Fig. 2.1 is re-displayed here as Fig. 6.2 for the reader’s

convenience. The optimal technique for processing the returns would be the matched

filter, as in (2.4). However, implementing the matched filter directly in digital signal

processing requires sampling at a rate greater than twice the bandwidth of the LFM

chirp. The STRADAR transmits LFM chirps with a bandwidth of 600 MHz, and

therefore would require sampling rates greater than 1.2 GHz to directly implement

a matched filter.

A well known alternative technique [2] for processing LFM chirps is known as

“stretch processing” or ”de-chirping”. Stretch processing multiplies the received

signal by a copy of the transmitted signal. The received signal is offset in time

from the time signal, as illustrated in Fig. 6.2. Because the LFM chirp has a

constant slope in the time-frequency domain, a fixed time offsets corresponds to a
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fixed frequency offset. Multiplying the a LFM chirp with a time-shifted version of

the same chirp produces a single-tone sinusoid, and the frequency of this sinusoid is

the “beat frequency” or “difference frequency”. Fourier analysis can determine the

“beat frequency”, which is proportional to the time offset. Previously mentioned in

Chapter 2, an LFM waveform takes the form:

xpptq � e
j2πpfc�B

2
qt�jπ B

T0
t2

0 ¤ t   T0 (6.1)

where fc is the RF center frequency (Hz), B is the RF swept bandwidth (units of

Hz), T0 is the time duration of one chirp (units of s), and t is the time variable (units

of s). An LFM chirp train takes the form:

xptq �
M�1̧

m�0

xppt�mTpq (6.2)

where Tp is referred to as the waveform repetition interval (WRI, units of s). The

ratio of T0
Tp

is referred to as the duty cycle and often expressed as a percentage. In

continuous wave (CW) systems the duty cycle is 100%, and thus T0 � TP . The

quantity 1
WRI

is referred to as the waveform repetition frequency (WRF, units of

Hz). The quantity MTp is referred to as the coherent processing interval (CPI, units

of s) or the coherent integration time (CTI, units of s).

The received return can be modeled as the sum of many point scatterers. The

return from each point scatterer is the transmitted waveform delayed and Doppler-

shifted. The time delay is proportional to the slant range of the point scatterer.

If the waveform is sufficiently narrowband pB ! fcq, and the maximum scatterer

velocity is much less than the speed of light, the Doppler shift can be modeled as a

frequency modulation that is proportional to the scatterer’s tangential velocity. The

radar received signal is:
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yptq �
¸
i

αixpt� τiqej2πFDit (6.3)

where αi is a complex amplitude coefficient that is proportional to the radar cross-

section (RCS) of the ith point scatterer, τi is the time delay of the return from the

ith point scatterer, and FDi is the Doppler shift associated with ith point scatterer.

The range of the ith scatterer is proportional to its time delay: ri � cτi
2

, where c is

the speed of light.

Now, instead of matched filtering (6.3) against (6.2), the received signal yptq of

(6.3) will be multiplied by the conjugate x�ptq, of the transmitted signal xptq of (6.2).

The multiply operation is one that can be easily implemented in analog hardware.

Now, neglecting edge effects, one “de-chirped” or ”de-ramped” waveform takes the

form:

zpptq �
¸
i

αie
�j2πfcτi�j2πτi B2 �jπ B

T0
τ2i e

�j2π B
T0
τitej2πFDit

¸
i

γie
�j2π B

T0
τitej2πFDit 0 ¤ t ¤ T0 (6.4)

where the terms that are not a function of time are gathered into the complex

coefficient γ. In most radar systems, it can be assumed that the Doppler shift

values are much lower relative to 1
τ
, and that within one pulse, i.e. within “fast-

time”, the term ej2πFDit is roughly constant. However, the Doppler modulation will

be noticeable across pulses, i.e. across ”slow-time”. With this assumption, the

dechirped LFM chirp train can be written as:

zp,iptq � γie
�j2π B

T0
τit 0 ¤ t ¤ T0

zptq �
¸
i

M�1̧

m�0

zp,ipt�mTpqej2πFDimTp (6.5)

80



The expression of (6.5) is now a function of two time-scales, t and m, representing

fast-time and slow-time, respectively. Notice each point target is a sinusoid with

frequency of fb � � B
T0
τi. This is the “beat frequency” that is proportional to time

delay. Given that range relates to time delay as r � cτ
2

, range as function of “beat

frequency” can be expressed as:

ri � �cT0
2B

fb � � c

2BfWRF

fb (6.6)

6.1.1 Effect of baseband sampling frequency on maximum range

It was noted in Chapter 2 that the maximum unambiguous range for an LFM wave-

form train was rmax � cT0
2
� c

2fWRF
. This maximum range constraint refers to returns

from the first pulse arriving after the second (or greater) pulse was transmitted.

When stretch processing is employed with an analog-to-digital (A-to-D) converter

sampling the baseband signal, another constraint on maximum range occurs from

the baseband sampling frequency. Recall stretch processing transforms range into

beat frequency. The maximum unaliased beat frequency that can be observed is fs
2

,

where fs is the baseband sampling frequency. Therefore, in a stretch system, the

maximum unambiguous range is:

rmax � minpcT0
2
,
cT0fs
4B

q � minp c

2fWRF

,
cfs

4BfWRF

q (6.7)

This fact must be kept in mind when choosing radar parameters such as the RF

bandwidth B and the waveform repetition frequency fWRF .

6.2 The Receiver

Figure 6.3 provides a block diagram of one channel of the receiver-side of the system.

The RF signal enters from an external antenna through an SMA port. The signal is
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Figure 6.3: Block diagram of one of the receiver channels

passed through a passive low-pass filter with a cutoff frequency and then through a

low-noise amplifier. After being amplified, the signal is demodulated, and the local

oscillator port of the demodulator is fed with a copy of the transmitted signal to

implement stretch processing. After de-chirping, the signal is low-passed filtered for

anti-aliasing purposes, and then is amplified at baseband, before being fed to an

analog-to-digital converter channel.

6.2.1 Receiver metrics

Several metrics were calculated to quantify receive board performance. They are:

• The gain of the receiver measures the ratio of the output signal power to the

input signal power

• The noise figure (NF) defines the amount of noise the receiver circuitry

adds. It is defined as the ratio of input signal-to-noise ratio (SNR) to output

signal-to-noise ratio (SNR)

• The input 1 dB compression point (input P1dB) defines the the max-

imum power level of an input signal that will not saturate the receiver. It is

defined as the input power level that produces an output power level 1 dB

below the output of an ideal perfectly linear system.

These receiver metrics are shown in Table 6.1.
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Table 6.1: Receiver metrics

Gain +29 dB
Noise figure +13.5 dB
Input P1dB -25 dBm

D/A converter

Non-Inverting 

Amplifier

Voltage

Controlled

Oscillator

(VCO)

RF Lowpass

Filter

 Power

Splitter

To LO inputs

on receivers

RF Power

Amplifier
RF Lowpass

Filter

RF Power

Amplifier

Attenuator

Figure 6.4: Block diagram of the transmitter

6.3 The Transmitter

Figure 6.4 provides a block diagram of the SIMO transmitter. The output of a

digital-to-analog converter is scaled and then fed into a voltage controlled oscillator

(VCO). Sending a ramp function to the input of the VCO results in a LFM waveform

on the output. The output of the VCO is filtered to remove harmonics, and then

is split. One of the branches is significantly amplified and then fed to the transmit

antenna. The other branches are fed to the receiver channels to use for demodulation.

6.4 Double-sideband and Quadrature SLO-MO MIMO Waveforms

One issue with implementing MIMO radar is the waveform selection and generation.

In theory, the minimal requirement for MIMO waveforms is that they are orthogonal

to each other. However, in practice, it may be difficult or impossible to generate a

desired set of waveforms in hardware. Additionally, the receiver must be set up to

handle demodulation and pulse compression of the MIMO waveforms. There may

also be VSWR problems on the transmitter with certain sets of waveforms. The

slow-time MIMO (SLO-MO) waveforms described in Chapter 2 require no changes
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on receiver hardware, as the different MIMO channels appear on traditional receivers

as Doppler-shifted. Generating the SLO-MO waveforms, however, typically requires

a multichannel arbitrary waveform generator, variable RF phase shifters, or using

multiple carrier frequencies. This section describes a novel method of generating

SLO-MO MIMO waveforms which requires only the addition of a power splitter

and passive frequency mixers to existing radar transmit architectures. Passive fre-

quency mixers are inexpensive and have been used for decades in communications

applications. Additionally, a baseband sinusoid generator (with a frequency range

only up to half the waveform repetition frequency) is needed to generate the mixing

frequencies, but this is inexpensive and easily available. It is also possible to use

the same mixing frequency on two different MIMO channels, if the sinusoids are

90 degrees out of phase, which allows for twice the number of channels in the same

Doppler space. These methods have been tested in simulation and on the STRADAR

testbed, and have shown to be successful in generating SLO-MO MIMO waveforms.

The waveforms described here are the ones implemented on the STRADAR, using

digital-to-analog converter channels as the baseband sinusoid generator.

Consider the LFM chirp train of (6.2), and its return (6.3). To achieve a MIMO

radar system, a second transmit channel is added where the original transmitted

waveform is mixed with a low-frequency cosine wave immediately before transmis-

sion. This waveform will be referred to as xcptq. Thus, xcptq � xptqcosp2πfM tq where

fM is the frequency of the mixed cosine wave. A passive mixer will perform double-

sideband modulation, so the multiplicative factor is a real cosine wave instead of a

complex exponential. Define the return from this transmit channel as ycptq:

ycptq �
Ņ

i�1

Acixpt� τiqej2πfDcit cos p2πfMpt� τciqq (6.8)

Additionally, a third transmit channel can be added where the original transmit-
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ted waveform is mixed with a low-frequency sine wave (as opposed to a cosine wave)

immediately before transmission. This waveform will be referred to as xsptq, and

xsptq � xptq sinp2πfM tq. Define the return from this transmit channel as ysptq:

ysptq �
Ņ

i�1

Asixpt� τiqej2πfDsit sin p2πfMpt� τsiqq (6.9)

Other MIMO channels can be added by adding additional mixing frequencies.

Each mixing frequency must be less than half of the radar’s waveform repetition

frequency (fM   1
2T0

) to avoid slow-time aliasing. Additionally, the spacing between

mixing frequencies must be greater than twice the greatest target Doppler shift that

is expected to be observed. Otherwise high-Doppler targets from one MIMO channel

will appear in another MIMO channel at a lower Doppler. For each mixing frequency

added, two additional MIMO channels can be added, as both the cosine and the sine

(in-phase and quadrature) of each mixing frequency can be used as a channel. To

simplify the separation process on the receiver, it is recommended (but not required)

to use mixing frequencies that are multiples of each other (fM ,2fM ,3fM ,...).

The radar return at the receiver will be the sum of all the radar returns from each

of the transmitters, shown in (6.10). The channels can be separated by quadrature

demodulation in slow-time.

ytotalptq � yptq � ycptq � ysptq (6.10)

It is not necessary to use both the in-phase and quadrature portions of mix-

ing frequency. Performing this implementation of MIMO with a set of waveforms

in which only the in-phase portion is used will henceforth be referred to as “DSB

SLO-MO”, since the waveforms are similar to DSB-AM waveforms. Using a set of

waveforms in which both the in-phase and quadratures are used will henceforth be
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Figure 6.5: Block Diagram of DSB Slow-Time MIMO Setup

referred to as “Quadrature SLO-MO”, since it uses quadrature multiplexing. DSB

SLO-MO “wastes” Doppler space compared to traditional SLO-MO because every

channel is split between a positive and negative Doppler component. To achieve the

maximum clear range-Doppler area [12],[13], “Quadrature SLO-MO” must be used

and every modulating frequency must be used twice (one on the in-phase and once

on the quadrature).

Figure 6.5 shows a block diagram for a potential setup of DSB SLO-MO. Figure

6.6 shows a block diagram for a potential setup of Quadrature SLO-MO.

6.4.1 Recovering the MIMO channels at the receiver

The receiver receives the sum of the returns from all of the MIMO channels. To

perform virtual transmit beamforming, the channels must be separated from each

other. Assume the radar return described in (6.10). It is expanded in (6.11).

86



Figure 6.6: Block Diagram of Quadrature Slow-Time MIMO Setup

stotalptq �
Ņ

i�1

Airiptqej2πfDit

�
Ņ

i�1

Acirciptqej2πfDcit cosp2πfM tq

�
Ņ

i�1

Asirsiptqej2πfDsit sinp2πfM tq (6.11)

There are 3 MIMO channels in this return. To separate, the combined return

must be modulated and filtered. A slow-time low-pass filter with a cutoff frequency

of fM
2

is needed. The particular design of the filter does not matter much, but is

it beneficial to choose a zero-phase filter or to employ forward-backward filtering

to avoid corrupting phase information which may need to be preserved for other

applications.

First and foremost, the slow-time aspect of the receiver return and the fast-time

aspect of the receiver return must be separated and made independent. Typically,

this is done by forming a data square (or cube, in the case of multiple receive chan-

nels) of fast-time versus slow-time. Otherwise, the slow-time low-pass filter will
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destroy all of the fast-time (range) information. In the derivation below, it will be

assumed that the fast-time components (the riptq, rciptq, and rsiptq terms) of the re-

ceived return are treated as constants when passing through the slow-time low-pass

filter.

The first MIMO channel is the easiest to recover. The received return in (6.11)

is simply passed through the slow-time low-pass filter. The resulting MIMO channel

is shown in (6.12).

z0ptq �
Ņ

i�1

Airiptqej2πfDit (6.12)

To achieve the MIMO channel that was modulated with a cosine wave, first the

received return in (6.11) is multiplied by a cosine wave with a frequency of fM . The

result is shown in (6.13).

zcptq � stotalptq cosp2πfM tq

zcptq �
Ņ

i�1

Airiptqej2πfDit cosp2πfM tq

� 1

2

Ņ

i�1

Acirciptqej2πfDcit cosp�2πfMτciq

� 1

2

Ņ

i�1

Acirciptqej2πfDcit cosp2π2fM t� 2πfMτciq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit sinp2π2fM t� 2πfMτsiq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit sinp�2πfMτsiq (6.13)

Then, (6.13) is passed through the slow-time low-pass filter, resulting in (6.14).
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zcptq � 1

2

Ņ

i�1

Acirciptqej2πfDcit cosp�2πfMτciq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit sinp�2πfMτsiq (6.14)

The first term in (6.14) is the desired MIMO channel, with some amplitude atten-

uation due to the 1
2

and cosp�2πfMτciq multiplicative factors. The τci terms repre-

sents the target delays. In many radar applications, fMτci � 0, so cosp�2πfMτciq � 1

and only the factor of 1
2

remains. The second term in (6.14) is a cross-talk term from

the MIMO channel that uses the same mixing frequency but is 90 degrees out of

phase. However, as previously stated, in many radar applications, fMτsi � 0, and

therefore sinp�2πfMτsiq � 0 and the cross-talk term goes away. If this is not the case

(which may happen with radars looking at targets hundreds of kilometers away), then

cross-talk can be avoided by using only the in-phase (cosine) and not the quadrature

(sine) of each mixing frequency at the transmitter, which will ensure there is zero

cross-talk.

The MIMO channel that was modulated with a sine wave is recovered in a similar

way. The received return in (6.11) is multiplied by a sine wave with a frequency of

fM . The result is shown in (6.15).
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zsptq � stotalptq sinp2πfM tq

zsptq �
Ņ

i�1

Airiptqej2πfDit sinp2πfM tq

� 1

2

Ņ

i�1

Acirciptqej2πfDcit sinp2π2fM t� 2πfMτciq

� 1

2

Ņ

i�1

Acirciptqej2πfDcit sinp�2πfMτciq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit cosp�2πfMτsiq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit cosp2π2fM t� 2πfMτsiq (6.15)

Then, (6.15) is passed through the slow-time low-pass filter, resulting in (6.16).

zsptq � 1

2

Ņ

i�1

Acirciptqej2πfDcit sinp�2πfMτciq

� 1

2

Ņ

i�1

Asirsiptqej2πfDsit cosp�2πfMτsiq (6.16)

Similar to the previous channel discussed, the second term in (6.16) is the desired

MIMO channel with some attenuation, and the first term is a cross-talk term from

the other MIMO channel that uses the same mixing frequency but is 90 degrees

out of phase. As discussed above, in many radar applications the cross-talk term

is negligible, and cross-talk can be completely avoided by using only the in-phase

(cosine) of each mixing frequency at the transmitter.

This method also assumes that the initial phase of the cosine and sine mixing

waveforms at the transmitter is known or can be accurately estimated. If it is not,
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cross-talk can result. One way to completely avoid cross-talk is to only transmit on

the in-phase of each mixing frequency at the transmitter.

The process to separate the MIMO channels is summarized below:

1. To recover the 1st MIMO channel:

• Pass the receiver return through the slow-time low-pass filter

2. To recover the 2nd MIMO channel:

• Multiply the receiver return by cosp2πfM tq

• Pass the result through the slow-time low-pass filter

3. To recover the 3rd MIMO channel:

• Multiply the receiver return by sinp2πfM tq

• Pass the result through the slow-time low-pass filter

6.5 Baseband Interference and an Adaptive Suppression Algorithm

One issue that was discovered in the design of the STRADAR system was baseband

interference causing “phantom” targets to appear. This interference was investigated

and determined to have originated in a switching power supply circuit. Additional

RF shielding and bypass capacitors were added to the printed circuit board, which

drastically reduced the interference strength. At the same time, a parallel solution

involving solely signal processing was investigated, and this signal processing solution

is presented here. The signal processing solution hinges on the fact that the baseband

interference does not have a 90 degree phase relationship between its ”in-phase” (I)

and “quadrature” (Q) channels.
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Figure 6.7: Heterodyne Radar Receiver with Additive Baseband Interference

Consider the block diagram in Fig. 6.7. This block diagram represents the radar

I/Q demodulator. xptq is the original LFM-CW pulse-train, yptq is the sum of all

the received backscatter, and zptq is the demodulated output without interference.

sptq is the baseband interference. The baseband interference mixes in after I/Q

demodulation, but before digital sampling. The baseband interference is a single

tone sinusoid, whose frequency slowly drifts over time. It mixes into both the I and

Q channels. The amplitudes and phases are not identical, but are very close. From

channel to channel, the phases are very close, such that the interference appears to be

coming from the “broadside” direction after beamforming. The interference signals

on the I and Q channels are represented as:

siptq � A1 cos
�
2πfst� παt2 � θ1

�
sqptq � A2 cos

�
2πfst� παt2 � θ2

�
α ! fs (6.17)

The terms A1 and A2 represent the amplitude of the baseband interference sig-

nal on the ‘I’ and ‘Q’ channels respectively. The term fs represents the interference

frequency. The term α represents the frequency walk rate. The terms θ1 and θ2 repre-

sent the initial phases of the signal on the ‘I’ and ‘Q’ channels. After digital sampling,
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the ‘I’ and ‘Q’ signals are combined to form a complex signal. For a legitimate RF

signal, the complex signal is analytic (one-sided in the frequency domain), because

the I/Q demodulation performs the Hilbert transform operation. But, the baseband

interference signals do not exhibit the 90 degree phase offset between ‘I’ and ‘Q’, and

therefore the resulting complex signal is not analytic, but rather it is double-sided in

the frequency domain. Because of differences in amplitude and phase between the

‘I’ and ‘Q’ signals, the frequency spectrum is not exactly conjugate symmetric.

The interference signals are continuous across radar pulses, which causes them

to have a different initial phase on each pulse. This causes the “phantom targets”

caused by the interference to appear to be Doppler-shifted. In addition, because of

the frequency drift of the interference signals, the “phantom targets” appear to slowly

drift in delay and Doppler over time. Finally, due to the fact that the initial phases

of the interference signals across array channels is nearly identical, the “phantom

targets” appear at broadside and their signal-to-noise ratio (SNR) is enhanced by

beamforming.

The only differentiating factor between the “phantom targets” and legitimate

scatterers is that the signals representing the legitimate scatterers are analytic and

the signals representing the “phantom targets” are not. The spectrum of true targets,

Zipfq, and of spurious “phantom” targets, Sipfq, are shown in Equation (6.18).

Zipfq � Ãzδpf � β

T
τiq

Sipfq � Ãs1δpf � fsq � Ãs2δpf � fsq (6.18)

Note that the spectrum of the true targets is one-sided, and that the spectrum of

the “phantom” targets is two-sided. This fact can be exploited to adaptively cancel

the “phantom” targets. However, the amplitudes and phases of the two halves of

the interference spectrum are not equal, and therefore an adaptive algorithm must
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be employed to cancel it.

6.5.1 Adaptive Baseband Interference Cancellation Algorithm

The Wiener filter [83] is the adaptive method chosen to cancel the interference signal.

By exploiting the fact that the desired radar signal is analytic and the interference

signal is not, training data can be obtained. The data is pulse-compressed by taking

the Fourier transform of each pulse, which transforms the intra-pulse dimension to

physical time delay/slant range. Since the radar data is analytic, its spectrum is one-

sided, which makes physical sense, as there can not be any negative ranges. But the

interference signal is not analytic, and therefore its spectrum is two-sided. As stated

in Section 6.5, due to small amplitude and phase discrepancies between the ‘I’ and

‘Q’ components, the interference signal spectrum is not exactly conjugate symmetric,

so simply subtracting one side of the spectrum from the other will not completely

suppress the interference. However, the conjugate halves of the interference signal

spectrum are highly correlated, and therefore a 1-tap Wiener filter can suppress the

interference. The half of the spectrum that only contains the interference signal is

used as “training” data, and the half of the spectrum that contains both the true

radar signals and the interference signal is the “testing” data. The Wiener filter is:

w � R�1p (6.19)

.

The vector w contains the adaptive weights, the matrix R is the autocorrelation

matrix of the interference signal, and the vector p is the cross-correlation of the inter-

ference signal and the radar signals. Since a 1-tap Wiener filter is being used, all of

these components reduce to scalars. If the filter is unstable, then minimum-variance

distortionless-response (MVDR) formulation with a small amount of diagonal loading

may be used.

94



Since the frequency of the interference signal is not known a priori, the filter will

have to be applied sequentially to each time delay/slant range, and are processed

independent of each other. Since there should be nothing in the “negative range”

half of the spectrum except for the interference signals, at ranges where there is no

interference the Wiener filter should have no effect, except for very slightly increasing

the noise (no more than 3 dB).

For the filter to work as intended, the interference signal must be the dominant

signal in the training data. However, at any given range, the clutter will be the

dominant feature. Theoretically, the clutter should not appear in the “negative

range” half of the baseband spectrum. But, due to imperfect image rejection in the

radar circuitry, an “echo” of the radar data will appear on the opposite side of the

spectrum greatly attenuated (on the STRADAR, approximately 30-40 dB is typical).

But since the clutter-to-interference ratio is high to begin with (typically anywhere

between 30-60 dB on STRADAR) even the attenuated “echo” will appear in the

training data. To compensate for this, a “clutter removal” filter must be applied on

the training data. For stationary radar systems, this is relatively easy to implement

(a high-pass filter across pulses). The steps of the algorithm are summarized below.

1. Range process the dechirped data by performing a discrete Fourier transform.

2. Designate the half of the spectrum that corresponds to “negative ranges” as

the training data.

3. Apply a clutter-removal filter to the training data by filtering across pulses.

4. Apply a conjugate transform to the training data.

5. For each frequency, form the Wiener filter weight w � R�1p and then apply

the Wiener filter
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6. If the above results in an unstable filter, use the MVDR weight formulation

instead

6.5.2 Simulation and Real Data Results

Results of the algorithm are provided. Both simulation and real data results were

collected. In both the simulation and the real data, a LFM-CW radar operating at a

center frequency of 2.4 GHz, a swept bandwidth of 600 MHz, a waveform repetition

frequency (WRF) of 100 Hz, and a coherent integration time (CIT) of 0.5 s were

assumed. For the simulation data, Figure 6.8(a) shows an amplitude-range-Doppler

(ARD) surface of the data before the interference suppression method is applied, and

Figure 6.8(b) shows the ARD surface of the data after the interference suppression

algorithm is applied. There are two legitimate targets, and a “phantom” target

caused by the interference. The “phantom” target is circled to identify it. Note

that in this plot of the ARD surface, there is no way to distinguish the true targets

from the interference. Only by looking at the so-called “negative range” spectrum

(not displayed here) can the interference be identified. From looking at these two

surfaces, it is apparent that the interference is suppressed below the noise floor.

Real data from the STRADAR was also collected. Figure 6.9(a) the original

ARD surface, with two “phantom” targets in the data, and Figure 6.9(b) after ap-

plying the interference suppression algorithm. Again, the “phantom” targets were

distinguished from legitimate targets by examining the “negative ranges”. Note that

the interference signal is suppressed below the noise floor but the remaining data is

unaffected.

6.6 Summary

The STRADAR tesbed was developed to support MIMO radar research. An overview

of the system was provided, including the novel implementation of MIMO waveforms
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via the double-sideband and quadrature MIMO waveforms. A technique for suppress-

ing baseband interference is summarized, which is extendable to other heterodyne

radar systems.
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Figure 6.8: Simulation results
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Figure 6.9: STRADAR real data results
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7

Experimental results from the STRADAR

This chapter includes some experimental results of the STRADAR.

7.1 MIMO GMTI

To test the ability to suppress spread-Doppler multipath clutter, the STRADAR was

mounted to a passenger vehicle. To simulate the scenario described in Chapter 4, it

was driven parallel to a long wall, at the Duke University Smith Warehouse. Photos

of the STRADAR mounted to the vehicle are shown in Fig. 7.1 and Fig. 7.2. Fig.

7.3 shows the view from the car dashboard as it was driving along the wall.

The receiver array was mounted at a height of 2.46 m above the ground, and

had 16 elements spaced at 0.05715 m. All of the receive antennas were 1/2 wave

dipole antennas. The transmitter array was mounted at a height of 2.29 m above the

ground, and had 4 elements spaced at 0.1143 m. All of the transmit antennas were

patch antennas with a horizontal beamwidth of 75 degrees, a vertical beamwidth

of 65 degrees, and a gain of 8 dBi. The transmit element spacing of 0.1143 m was

the smallest possible, given the physical size of the antennas. This transmit spacing

does result in the transmit array being sampled below Nyquist. The wall was 1.5
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Figure 7.1: The STRADAR on a SUV

m to the left of the car. The radar center frequency was 2.4 GHz. The bandwidth

was chosen to be 300 MHz (the full bandwidth of 600 MHz was not used to gain

more range extent. See Chapter 6, section 6.1.1). The WRF was selected to be 400

Hz. MIMO channel 1 had a modulating frequency of 100 Hz and a phase offset of 0

degrees. MIMO channel 2 had a modulating frequency of 100 Hz and a phase offset

of 90 degrees. MIMO channel 3 had a modulating frequency of 200 Hz and a phase

offset of 90 degrees. MIMO channel 4 was not modulated. The car was driven at an

extremely slow speed (approximately 5 mph). With these parameter, the Doppler-

azimuth loci at a range of 10 m should theoretically take the form shown in Fig.

7.4.

To view the output as a SIMO system would, only one MIMO channel was used,

and the other three ignored. A Doppler-azimuth plot at a range of 10 m is shown in

Fig. 7.5. Observe the similarity to the theoretical clutter loci of Fig. 7.4. Compare
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Figure 7.2: Side view of the STRADAR on a SUV

this to Fig. 7.6, which shows the MIMO beamformed result. Observe that much of

the clutter has been suppressed, especially in locations the theoretical clutter loci

would indicate correspond to multipath. Note however, that some clutter remains.

This is most likely due to a small amount of direct-path clutter coming from the

wall or the ground around it, due to the wall not being perfectly specular. Notice

on both plots, some clutter appears at zero Doppler. This is due to reflections off of

the car itself, which is moving at the same speed as the radar.

There were some issues that arose with this experiment. Initially, the goal was

to detect a pedestrian. However, it was discovered that it was difficult to detect a

pedestrian due to the height of both the transmit array and the receive array on

the vehicle. The heights of both arrays were above the height of the pedestrian,

and given the antenna beampatterns, this greatly reduced signal-to-noise ratio. Ad-

ditionally, given the limitations to the maximum range due to the STRADAR’s
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Figure 7.3: View from the car dashboard

baseband sampling frequency, and to the available range-Doppler space due to using

the double-sideband SLO-MO MIMO waveforms, the vehicle had to be driven very

slowly to avoid Dopper aliasing.

7.2 Clutter-based Adaptive MIMO Phased Array Calibration

An experiment was performed to test the clutter-based calibration scheme proposed

in Chapter 5. The experiment took place in the field between the Fitzpatrick Center

and Hudson Hall at Duke University. First, a MIMO dataset of the ground clutter

was collected, as shown in Fig. 7.7. The receiver beamforming weights were generated

adaptively from this data. Next, a dataset of a point source aimed at the receive

array was taken, as shown in Fig. 7.8. The receiver weights were then applied to this

point source data as a test. For the MIMO case, the transmit array was a uniform

linear array spaced

The same antennas arrays were used as the GMTI experiment. The receiver array

had 16 elements spaced at 0.05715 m, and all of the elements were 1/2 wave dipole

antennas. The transmitter array had 4 elements spaced at 0.1143 m, and all of the

transmit antennas were patch antennas with a horizontal beamwidth of 75 degrees, a
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Figure 7.4: Theoretical Clutter Loci for the Experiment at a range = 10 m

vertical beamwidth of 65 degrees, and a gain of 8 dBi. Given the size of the transmit

antennas, this is the closest they could be physically spaced.

It is important that note that initially good results could not be obtained with

the algorithm as described in Chapter 5. This was determined to be because of

a limited number of snapshots, given the STRADAR’s ability to only illuminate

a small range. Additionally, the transmit antennas were not omni-directional, but

had a discrete beamwidth, further limiting data from some angles. However, the

method was able to be slightly modified to achieve good results. The estimated

receive wavefront vectors were generated as originally described. Recall, then, after

generating the wavefront vectors, the next step is to generate the MVDR weights:

wr � R�1
SLv̂rpkiq

v̂Hr pkiqR�1
SLv̂rpkiq

(7.1)

These weights are generated from an adaptively estimated steering vector v̂ and

an adaptively estimately sidelobe matrix RSL. Replacing the adaptively estimated

steering vector v̂ with the nominal steering vector v, while keeping the adaptively
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Figure 7.5: SIMO Doppler-azimuth plot at a range of 10 m

estimated sidelobe matrix, provides robustness. The result is shown in Fig. 7.9.

Observe that the proposed algorithm, CAMPAC, achieves lower sidelobes than the

Hamming window.

7.3 Summary

An experiment with the STRADAR on a moving vehicle was conducted, and it

illustrates the multipath clutter model and the ability of MIMO beamforming to

mitigate multipath clutter. A second experiment using the STRADAR in the pres-

ence of direct-path ground clutter to calibrate the array via the clutter-based adap-

tive MIMO phased-array calibration (CAMPAC) algorithm was conducted, and it

demonstrates the CAMPAC algorithm.
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Figure 7.6: MIMO Doppler-azimuth plot at a range of 10 m

Figure 7.7: Setup of calibration experiment to obtain clutter training data
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Figure 7.8: Setup of the calibration experiment to obtain point source testing data
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Figure 7.9: Results of the clutter-based calibration experiment
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8

Conclusion and Future Work

Multipath propagation in radar systems is an important effect that is often neglected

or overlooked. This is most likely because the first radar systems monitored the sky,

where multipath is not significant. However, as radar expands to different applica-

tions, such as indoor radar and urban radar, multipath becomes a significant factor

which cannot be ignored. Multipath propagations, especially Doppler-shifted and

Doppler-spread multipath propagations, can appear as false targets or obscure le-

gitimate targets. In the over-the-horizon radar community, MIMO radar can has

shown to be successful to mitigate spread-Doppler multipath clutter. Over-the-

horizon radar is unique in the sense that only limited modes can physically propagate,

and therefore any multipath will come from discrete direction-of-departures angles

and direction-of-arrival angles. The work presented in this dissertation considered a

case in which multipath would appear along a continuum of direction-of-departure

and direction-of-arrival angles.

The feature of MIMO radar that allows for multipath suppression is that MIMO

radar allows for discrimination in both transmit angle (direction-of-departure) and

receive angle (direction-of-arrival). This concept was mathematically formalized in
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the MIMO bi-directional spatial spectrum, introduced in Chapter 3. This spectrum,

which is a function of both transmit angle and receive angle, characterizes propaga-

tion paths for a given environment. Each discrete path appears as impulse in this

domain. Paths along the diagonal of the spectrum, where kr � kt, can be classified

as “direct-path” paths. Any path not on the diagonal, by definition, are multipath

paths. It is only by going to this bi-directional spatial domain that multipath returns

can be definitively discriminated from direct-path returns. In other traditional radar

domains (range, velocity, and receive-angle only) there is the ability for multipath

returns and direct-path returns to overlap and obscure each other. The bi-directional

spatial spectrum, therefore, is crucial for suppressing multipath returns without also

suppressing desired direct-path returns.

The ability of any adaptive algorithm to suppress interference is dependent upon

the rank of the interference covariance matrix. The rank determines the number

of adaptive degrees of freedom needed to suppress the interference. With a low

interference rank, only a small number of adaptive degrees of freedom are needed,

and with a high interference rank, many adaptive degrees of freedom are needed. In

turn, then number of adaptive degrees of freedom determines the amount of training

data that the adaptive algorithm requires. For the radar applications discussed in this

dissertation, the interference is the radar clutter, and more specifically, the multipath

clutter. The bi-directional spatial spectrum provides a method of estimating the rank

of the clutter covariance matrix. The bi-directional spectrum decomposes a given

MIMO data vector into a sum of orthogonal bi-directional basis vectors. Each basis

vector represents one transmit-receive propagation path. By definition, the rank of

a matrix is the number of orthogonal basis vectors required to span the subspace

spanned by the columns of the matrix. Therefore, the number of components in

the spectrum, or the number of “occupied” resolution cells, provides an estimate of

the clutter rank. Simulation results included in this dissertation showed that this
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method of rank estimation is accurate.

With the rank of the clutter covariance matrix able to be accurately estimated,

a partially-adaptive multipath suppression algorithm was proposed. This technique,

based off of techniques used for non-MIMO radar, finds the optimum dimensionality-

reducing transformation matrix, in terms of the output signal-to-clutter-plus-noise

(SCNR) ratio, for a given number of adaptive degrees of freedom. The number of

adaptive degrees of freedom is a user-selected variable, however, the rank of the

clutter covariance matrix determines this choice and this work presented an accu-

rate technique to estimate the rank. The algorithm was applied to the scenario

of a ground-vehicle-mounted MIMO radar system driving on the ground next to a

large specular reflector, and a pedestrian is walking in front of the vehicle. The

goal of the radar is to detect the pedestrian. However, this geometry creates mul-

tipath clutter returns that results from a continuum of transmit angles and receive

angles, which is non-separable in the bi-directional spatial domain and obscures the

pedestrian. SIMO (receive-only) adaptive beamforming is unable to distinguish the

pedestrian from the multipath, as a portion of the multipath clutter appears at the

same direction-of-arrival as the target. Simulation results showed that the proposed

MIMO algorithm was able to successfully suppress multipath clutter returns, and dis-

tinguish the target, both in the case where the clutter covariance matrix was known

a priori and in the case when the clutter covariance matrix was estimated from slow-

time pulses. Monte Carlo simulations showed that this algorithm was able to achieve

excellent detection performance with a realistic amount of training data. Another

set of Monte Carlo simulations evaluated the case in which the target’s azimuth an-

gle and velocity were made into random variables, the proposed MIMO algorithm

achieved vastly superior detection results than an adaptive SIMO algorithm.

In Chapter 5, a different application of MIMO radar was presented: calibration

of a phased array from ground clutter. Electronically-steered phased arrays require
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proper calibration to achieve the theoretically-predicted sidelobe performance. Tra-

ditionally phased arrays are calibrated by placing point sources or point targets in

the field, and adjusting the calibration parameters to achieve the desired point re-

sponse. However, in many instances it can be impractical or impossible to place

point sources around a radar system, or if it is possible, only a few point sources can

be placed. Some sources of miscalibration, such as mutual coupling, have effects that

vary as a function of look direction, and thus would require a separate calibration for

each look direction. MIMO radar offers the ability to calibrate using ground clutter.

In a SIMO system, ground clutter appears at all azimuth angles, and is not useful.

However, in the MIMO bi-directional spatial spectrum, ground clutter appears along

the direct-path diagonal. The transmit array can be used to isolate a patch of ground

clutter that would then appear as a point source to the receive array. MIMO beam-

forming after-the-fact allows the transmit array to be steered to all look directions,

thus creating a set of clutter patches that approximates a point source to the receive

array. With a virtual point target in every look direction, receive steering vectors for

each look direction can be estimated. From this set of estimated look vectors, receive

beamforming weights can be generated for every look direction. Simulation results

showed that the proposed calibration approach achieved significantly lower sidelobes

than from applying a Hamming window to the uncalibrated data, even when the

number of transmitters was less than the number of receivers. Monte Carlo results

evaluated the performance of the algorithm in terms of clutter-to-noise-ratio (CNR)

and number of snapshots, and showed that in most instances the proposed method

achieved superior sidelobes to the Hamming window.

To evaluate the algorithms presented in this work, as well as related radar and

array processing algorithms, a low-power MIMO S-band radar testbed, named the

STRADAR, was developed. This testbed has a center frequency of 2.4 GHz, a swept

RF bandwidth of 600 MHz, 16 coherent receiver channels, and a transmitter than
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can operate in SIMO or MIMO mode. In MIMO mode, up to 4 MIMO channels

possible. In order to implement MIMO in a simple and cost-efficient manner, the

double-sideband SLO-MO MIMO waveforms were proposed (and implemented). The

double-sideband SLO-MO waveforms use passive RF mixers to mix in a baseband

sinusoid, which shifts each MIMO channel in Doppler. The MIMO channels can then

be separated by filtering in Doppler. One issue that came up in the development of

this testbed was the presence of an interference signal from a switching power supply

which appeared as false target. This problem was solved in two ways. The first way

was to re-design the power supply board with more attention to RF shielding and

bypass capacitors. The second way was a signal processing solution which exploited

the fact that the baseband interference was not coherent across the in-phase and

quadrature channels of the receiver. Simulation and real data results showed this

algorithm was successful in suppressing this interference.

The STRADAR was then used experimentally to test the algorithms that were

earlier proposed in this dissertation: multipath clutter suppression in ground-vehicle

GMTI radar and clutter-based adaptive MIMO phased-array calibration. For the

GMTI problem, the STRADAR was a mounted to the roof of a passenger vehicle (a

sports-utility vehicle (SUV)) and was driven next to a large, long wall. Experimen-

tal results showed that MIMO radar significantly suppressed the multipath clutter.

Thus, MIMO radar has the potential for ground-vehicle GMTI radar. However, there

were some issues revealed by this experiment. Mounting the radar to the roof of a

SUV made it difficult to detect a pedestrian, as the height of both the transmit array

and receive array were above the height of the pedestrian. Additionally, due to the

sampling frequency limitations of the STRADAR, which limits the maximum range,

combined with the reduced range-Doppler space of MIMO, the vehicle had to be

driven very slowly to avoid Doppler aliasing. Another experiment was performed to

test calibration from clutter. This experiment involved taking a MIMO data set in
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an open field to generate calibration parameters, and then placing a point target in

the field as testing data. However, due to the low power of the STRADAR, there

were not many range snapshots to train over and initially good results were not

created. Additionally, the transmit antennas had a beampattern that was not uni-

form, resulting in returns that were not equal across angle. A slight modification to

the calibration method, using the assumed steering vector instead of the adaptively-

generated steering vector (while still using the adaptively-generated sidelobe matrix)

was able to achieve a result that was improved over the Hamming window.

The results in this dissertation show that MIMO radar shows potential for ground-

vehicle GMTI radar and for calibration from clutter. However, the limitations of

MIMO radar, especially the reduction in available range-Doppler space, must be

taken into account. The restrictions of these limitations became clear in the devel-

opment and use of the STRADAR testbed. MIMO radar also results in a reduction

of signal-to-noise ratio compared to an equivalent SIMO system. Given these limi-

tations, it is important to evaluate whether MIMO radar is advantageous in a given

scenario. Future work on this area includes:

1. An examination of the effectiveness of the MIMO adaptive multipath sup-

pression algorithm in more complicated scenarios should be conducted. The

scenario presented in this work involved a ground-vehicle driving at a constant

velocity next to a perfectly specular reflector. This scenario, while informative,

is not representative of all the scenarios encountered in an urban environment.

Examination of scenarios with multiple non-ground reflectors (building walls,

guardrails, lampposts, etc.). Another scenario that should be examined is mul-

tipath off of other moving cars. The work in this dissertation assumed that the

only moving object was the vehicle with the radar. However, a realistic envi-

ronment would have several moving cars, some moving in the same direction
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as the moving vehicle and others moving in the opposite direction. Also, the

case of a varying velocity on the primary vehicle must be considered.

2. Experiments for a variety of GMTI scenarios should be conducted. Given the

problems that arose from mounting the radar to a roof of the car, due to the

height of the arrays above pedestrians, other locations for the radar should be

considered, such as the hood of the car. Additionally, perhaps instead of a

pedestrian, a radar beacon or transponder could be mounted to a tripod and

placed alongside the road. This would create a more consistent and repeatable

target signal.

3. Regarding the calibration from clutter algorithm, cases should be considered in

scenarios where the strength of the clutter is angle-dependent. In these cases,

steering the transmit array in different directions will isolate clutter patches of

varying strengths. The effect of this on the calibration algorithm needs to be

determined.

4. Representations of the MIMO bi-directional spatial spectrum should be exam-

ined for the cases of two-dimensional and three-dimensional arrays. While the

mathematical definition of the MIMO bi-directional spatial spectrum includes

three-dimensional spatial frequency vectors, all of the examples considered in

this dissertation had both arrays as one-dimensional line arrays. With multi-

dimensional arrays, the bi-directional spectrum becomes a function of four

variables: transmit azimuth angle, transmit elevation angle, receive azimuth

angle, and receive elevation angle. Operating in this domain could open up

new opportunities to further classify propagation paths and could potentially

be used for channel modeling.

5. The development of an experimental testbed that has higher baseband sampling
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frequencies, a higher RF bandwidth, and more elements on both transmit and

receive would allow for the ability to perform a wider variety of experiments.

Also, the existing software for the testbed requires one to collect data and

process it offline, but with the appropriate processing chain could be re-written

to implement real-time performance.

In summary, this work has shown MIMO radar can be used to be implement

radar in applications that were previously precluded due to significant multipath,

such as indoor and urban radar. The mathematical development of the MIMO

bi-directional spatial spectrum creates a framework for many potential multipath

classification, suppression, and modeling techniques to be developed. As the cost

and size of RF circuitry and analog-to-digital converters continues to decrease, radar

will be expanded to more and more applications. In some of these new applications,

multipath will play a significant role, and MIMO can be used to solve the problems

that arise.
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