58 research outputs found

    Incorporating Constraints into Matrix Factorization for Clothes Package Recommendation

    Get PDF
    Recommender systems have been widely applied in the literature to suggest individual items to users. In this paper, we consider the harder problem of package recommendation, where items are recommended together as a package. We focus on the clothing domain, where a package recommendation involves a combination of a "top'' (e.g. a shirt) and a "bottom'' (e.g. a pair of trousers). The novelty in this work is that we combined matrix factorisation methods for collaborative filtering with hand-crafted and learnt fashion constraints on combining item features such as colour, formality and patterns. Finally, to better understand where the algorithms are underperforming, we conducted focus groups, which lead to deeper insights into how to use constraints to improve package recommendation in this domain

    Exploring explanations for matrix factorization recommender systems (Position Paper)

    Get PDF
    In this paper we address the problem of finding explanations for collaborative filtering algorithms that use matrix factorization methods. We look for explanations that increase the transparency of the system. To do so, we propose two measures. First, we show a model that describes the contribution of each previous rating given by a user to the generated recommendation. Second, we measure then influence of changing each previous rating of a user on the outcome of the recommender system. We show that under the assumption that there are many more users in the system than there are items, we can efficiently generate each type of explanation by using linear approximations of the recommender system’s behavior for each user, and computing partial derivatives of predicted ratings with respect to each user’s provided ratings.http://scholarworks.boisestate.edu/fatrec/2017/1/7/Published versio

    How to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation

    Full text link
    Recommender Systems have shown to be an efective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple confguration fle. The framework loads, flters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/ellio

    Local Popularity and Time in top-N Recommendation

    Full text link
    Items popularity is a strong signal in recommendation algorithms. It strongly affects collaborative filtering approaches and it has been proven to be a very good baseline in terms of results accuracy. Even though we miss an actual personalization, global popularity can be effectively used to recommend items to users. In this paper we introduce the idea of a time-aware personalized popularity in recommender systems by considering both items popularity among neighbors and how it changes over time. An experimental evaluation shows a highly competitive behavior of the proposed approach, compared to state of the art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page

    Explaining Latent Factor Models for Recommendation with Influence Functions

    Full text link
    Latent factor models (LFMs) such as matrix factorization achieve the state-of-the-art performance among various Collaborative Filtering (CF) approaches for recommendation. Despite the high recommendation accuracy of LFMs, a critical issue to be resolved is the lack of explainability. Extensive efforts have been made in the literature to incorporate explainability into LFMs. However, they either rely on auxiliary information which may not be available in practice, or fail to provide easy-to-understand explanations. In this paper, we propose a fast influence analysis method named FIA, which successfully enforces explicit neighbor-style explanations to LFMs with the technique of influence functions stemmed from robust statistics. We first describe how to employ influence functions to LFMs to deliver neighbor-style explanations. Then we develop a novel influence computation algorithm for matrix factorization with high efficiency. We further extend it to the more general neural collaborative filtering and introduce an approximation algorithm to accelerate influence analysis over neural network models. Experimental results on real datasets demonstrate the correctness, efficiency and usefulness of our proposed method

    Combining mitigation treatments against biases in personalized rankings: Use case on item popularity

    Get PDF
    Historical interactions leveraged by recommender systems are often non-uniformly distributed across items. Though they are of interest for consumers, certain items end up therefore being biasedly under-recommended. Existing treatments for mitigating these biases act at a single step of the pipeline (either pre-, in-, or post-processing), and it remains unanswered whether simultaneously introducing treatments throughout the pipeline leads to a better mitigation. In this paper, we analyze the impact of bias treatments along the steps of the pipeline under a use case on popularity bias. Experiments show that, with small losses in accuracy, the combination of treatments leads to better trade-offs than treatments applied separately. Our findings call for treatments rooting out bias at different steps simultaneously
    • …
    corecore