2,328 research outputs found

    The Logic of Joint Ability in Two-Player Tacit Games

    Get PDF
    Logics of joint strategic ability have recently received attention, with arguably the most influential being those in a family that includes Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). Notably, both CL and ATL bypass the epistemic issues that underpin Schelling-type coordination problems, by apparently relying on the meta-level assumption of (perfectly reliable) communication between cooperating rational agents. Yet such epistemic issues arise naturally in settings relevant to ATL and CL: these logics are standardly interpreted on structures where agents move simultaneously, opening the possibility that an agent cannot foresee the concurrent choices of other agents. In this paper we introduce a variant of CL we call Two-Player Strategic Coordination Logic (SCL2). The key novelty of this framework is an operator for capturing coalitional ability when the cooperating agents cannot share strategic information. We identify significant differences in the expressive power and validities of SCL2 and CL2, and present a sound and complete axiomatization for SCL2. We briefly address conceptual challenges when shifting attention to games with more than two players and stronger notions of rationality

    Blameworthiness in Strategic Games

    Full text link
    There are multiple notions of coalitional responsibility. The focus of this paper is on the blameworthiness defined through the principle of alternative possibilities: a coalition is blamable for a statement if the statement is true, but the coalition had a strategy to prevent it. The main technical result is a sound and complete bimodal logical system that describes properties of blameworthiness in one-shot games

    The complexity of the nucleolus in compact games

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe nucleolus is a well-known solution concept for coalitional games to fairly distribute the total available worth among the players. The nucleolus is known to be NP-hard to compute over compact coalitional games, that is, over games whose functions specifying the worth associated with each coalition are encoded in terms of polynomially computable functions over combinatorial structures. In particular, hardness results have been exhibited over minimum spanning tree games, threshold games, and flow games. However, due to its intricate definition involving reasoning over exponentially many coalitions, a nontrivial upper bound on its complexity was missing in the literature and looked for. This article faces this question and precisely characterizes the complexity of the nucleolus, by exhibiting an upper bound that holds on any class of compact games, and by showing that this bound is tight even on the (structurally simple) class of graph games. The upper bound is established by proposing a variant of the standard linear-programming based algorithm for nucleolus computation and by studying a framework for reasoning about succinctly specified linear programs, which are contributions of interest in their own. The hardness result is based on an elaborate combinatorial reduction, which is conceptually relevant for it provides a "measure" of the computational cost to be paid for guaranteeing voluntary participation to the distribution process. In fact, the pre-nucleolus is known to be efficiently computable over graph games, with this solution concept being defined as the nucleolus but without guaranteeing that each player is granted with it at least the worth she can get alone, that is, without collaborating with the other players. Finally, this article identifies relevant tractable classes of coalitional games, based on the notion of type of a player. Indeed, in most applications where many players are involved, it is often the case that such players do belong in fact to a limited number of classes, which is known in advance and may be exploited for computing the nucleolus in a fast way.Part of E. Malizia’s work was supported by the European Commission through the European Social Fund and by Calabria Regio

    Simple Coalitional Games with Beliefs

    No full text
    We introduce coalitional games with beliefs (CGBs), a natural generalization of coalitional games to environments where agents possess private beliefs regarding the capabilities (or types) of others. We put forward a model to capture such agent-type uncertainty, and study coalitional stability in this setting. Specifically, we introduce a notion of the core for CGBs, both with and without coalition structures. For simple games without coalition structures, we then provide a characterization of the core that matches the one for the full information case, and use it to derive a polynomial-time algorithm to check core nonemptiness. In contrast, we demonstrate that in games with coalition structures allowing beliefs increases the computational complexity of stability-related problems. In doing so, we introduce and analyze weighted voting games with beliefs, which may be of independent interest. Finally, we discuss connections between our model and other classes of coalitional games

    A Focal-Point Solution for Bargaining Problems with Coalition Structure

    Get PDF
    In this paper we study the restriction, to the class of bargaining problems with coalition structure, of several values which have been proposed on the class of non-transferable utility games with coalition structure. We prove that all of them coincide with the solution independently studied in Chae and Heidhues (2004) and Vidal-Puga (2005a). Several axiomatic characterizations and two noncooperative mechanisms are proposed.coalition structure bargaining values

    Physical Layer Security: Coalitional Games for Distributed Cooperation

    Full text link
    Cooperation between wireless network nodes is a promising technique for improving the physical layer security of wireless transmission, in terms of secrecy capacity, in the presence of multiple eavesdroppers. While existing physical layer security literature answered the question "what are the link-level secrecy capacity gains from cooperation?", this paper attempts to answer the question of "how to achieve those gains in a practical decentralized wireless network and in the presence of a secrecy capacity cost for information exchange?". For this purpose, we model the physical layer security cooperation problem as a coalitional game with non-transferable utility and propose a distributed algorithm for coalition formation. Through the proposed algorithm, the wireless users can autonomously cooperate and self-organize into disjoint independent coalitions, while maximizing their secrecy capacity taking into account the security costs during information exchange. We analyze the resulting coalitional structures, discuss their properties, and study how the users can self-adapt the network topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the users to cooperate and self-organize while improving the average secrecy capacity per user up to 25.32% relative to the non-cooperative case.Comment: Best paper Award at Wiopt 200
    corecore