3,517 research outputs found

    ATS displays: A reasoning visualization tool for expert systems

    Get PDF
    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom

    Research in constraint-based layout, visualization, CAD, and related topics : a bibliographical survey

    Get PDF
    The present work compiles numerous papers in the area of computer-aided design, graphics, layout configuration, and user interfaces in general. There is nearly no conference on graphics, multimedia, and user interfaces that does not include a section on constraint-based graphics; on the other hand most conferences on constraint processing favour applications in graphics. This work of bibliographical pointers may serve as a basis for a detailed and comprehensive survey of this important and challenging field in the intersection of constraint processing and graphics. In order to reach this ambitious aim, and also to keep this study up-to-date, the authors appreciate any comment and update information

    Proceedings of the Second Program Visualization Workshop, 2002

    Get PDF
    The Program Visualization Workshops aim to bring together researchers who design and construct program visualizations and, above all, educators who use and evaluate visualizations in their teaching. The first workshop took place in July 2000 at Porvoo, Finland. The second workshop was held in cooperation with ACM SIGCSE and took place at HornstrupCentret, Denmark in June 2002, immediately following the ITiCSE 2002 Conference in Aarhus, Denmark

    New directions in the analysis of movement patterns in space and time

    Get PDF

    PPP - personalized plan-based presenter

    Get PDF

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    CrossCode: Multi-level Visualization of Program Execution

    Full text link
    Program visualizations help to form useful mental models of how programs work, and to reason and debug code. But these visualizations exist at a fixed level of abstraction, e.g., line-by-line. In contrast, programmers switch between many levels of abstraction when inspecting program behavior. Based on results from a formative study of hand-designed program visualizations, we designed CrossCode, a web-based program visualization system for JavaScript that leverages structural cues in syntax, control flow, and data flow to aggregate and navigate program execution across multiple levels of abstraction. In an exploratory qualitative study with experts, we found that CrossCode enabled participants to maintain a strong sense of place in program execution, was conducive to explaining program behavior, and helped track changes and updates to the program state.Comment: 13 pages, 6 figures Submitted to CHI 2023: Conference on Human Factors in Computing System

    ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning

    Full text link
    To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.Comment: Published in the ACM Conference on Human Factors in Computing Systems (CHI), 2019, Glasgow, Scotland U

    Task-Oriented Computer Animation of Human Figures

    Get PDF
    The effective computer animation of human figures is an endeavor with a relatively short history. The earliest attempts involved simple geometries and simple animation techniques which failed to yield convincing motions. Within the last decade, both modeling and animation tools have evolved more realistic figures and motions. A large software project has been under development in the University of Pennsylvania Computer Graphics Research Facility since 1982 to create an interactive system which assists an animator or human factors engineer to graphically simulate the task-oriented activities of several human agents. An interactive system called TEMPUS and its high performance successor is outlined which is intended to graphically simulate the task-oriented activities of several: human agents. Besides an anthropometric database, TEMPUS offers multiple constraint-based joint positioning, dynamic simulation, real-time motion playback, a flexible three-dimensional user interface, and hooks for artificial intelligence motion control methods including hierarchical simulation, and natural language specification of movements. The overall organization of this project and some specific components will be discussed
    corecore