1,451 research outputs found

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    A Catalog of Patterns for Concept Lattice Interpretation in Software Reengineering

    Get PDF
    International audienceFormal Concept Analysis (FCA) provides an important approach in software reengineering for software understanding, design anomalies detection and correction. However, FCA-based approaches have two problems: (i) they produce lattices that must be interpreted by the user according to his/her understanding of the technique and different elements of the graph; and, (ii) the lattice can rapidly become so big that one is overwhelmed by the mass of information and possibilities. In this paper, we present a catalogue of important patterns in concept lattices, which can allow automating the task of lattice interpretation. The approach helps the reengineer to concentrate on the task of reengineering rather than understanding a complex lattice. We provide interpretation of these patterns in a generalized manner and illustrate them on various contexts constructed from program information of different open-source systems. We also present a tool that allows automated extraction of the patterns from concept lattices

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    The Requirements Editor RED

    Get PDF

    A novel approach for Software Clone detection using Data Mining in Software

    Get PDF
    The Similar Program structures which recur in variant forms in software systems are code clones. Many techniques are proposed in order to detect similar code fragments in software. The software maintenance is generally helped by maintenance is generally helped by the identification and subsequent unification. When the patterns of simple clones reoccur, it is an indication for the presence of interesting higher-level similarities. They are called as Structural Clones. The structural clones when compared to simple clones show a bigger picture of similarities. The problem of huge number of clones is alleviated by the structural clones, which are part of logical groups of simple clones. In order to understand the design of the system for better maintenance and reengineering for reuse, detection of structural clones is essential. In this paper, a technique which is useful to detect some useful types of structural clones is proposed. The novelty of the present approach comprises the formulation of the structural clone concept and the application of data mining techniques. A novel approach is useful for implementation of the proposed technique is described

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    Project-Team RMoD (Analyses and Language Constructs for Object-Oriented Application Evolution) 2011 Activity Report

    Get PDF
    This is the yearly report of the RMOD team (http://rmod.lille.inria.fr/). A good way to understand what we are doing
    • …
    corecore