
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 273 - 277

273

IJRITCC | February 2016, Available @ http://www.ijritcc.org

A novel approach for Software Clone detection using Data Mining in Software

G. Anil Kumar
Sr. Asst. Professor

Dept. Of CSE, Mahatma Gandhi Institute of Technology

Abstract - The Similar Program structures which recur in variant forms in software systems are code clones. Many techniques are proposed in

order to detect similar code fragments in software. The software maintenance is generally helped by maintenance is generally helped by the

identification and subsequent unification. When the patterns of simple clones reoccur, it is an indication for the presence of interesting higher-

level similarities. They are called as Structural Clones. The structural clones when compared to simple clones show a bigger picture of

similarities. The problem of huge number of clones is alleviated by the structural clones, which are part of logical groups of simple clones. In

order to understand the design of the system for better maintenance and reengineering for reuse, detection of structural clones is essential. In this

paper, a technique which is useful to detect some useful types of structural clones is proposed. The novelty of the present approach comprises the

formulation of the structural clone concept and the application of data mining techniques. A novel approach is useful for implementation of the

proposed technique is described.

Index Terms—Design concepts, maintainability, structural clones, restructuring, reengineering.

__*****___

1. INTRODUCTION

The program structures which are of considerable

size and remarkable similarity are code clones. Many studies

have indicated that 20-50 percent of large software systems

consist of cloned code [1], [2], [3]. If the location of the

clones is known, it helps in understanding and maintaining a

program. Refactoring [4] helps in removing the clones i.e.

clones are replaced by function calls or macros. Aspect

Oriented Programming [5] which is an unconventional metal

level technique can be used in order to avoid the harmful

effects of clones.

An active area of research is cloning. Many clone

detection techniques have been proposed in the literature

[1], [6] [7],[8],[9][10]. The major drawback of the present

research on code clones is that it focuses more on the

fragments of duplicated code and doesn’t focus on the

aspect that the fragments of duplicated code are possibly

part of a bigger replicated program structure.

The larger granularity similarities are called as

structural clones. The location of structural clones helps to

identify forest from the trees and there is magnificent value

for program understanding, evolution, and reuse and

reengineering.

The application domain patterns, design technique

or mental templates used by the programmers induce the

structural clones. In order to solve the similar problems

similar design solutions are applied repeatedly. These

solutions are generally copied from the code which is

existing. The modern component platforms like NET and

J2EE encourage architecture-centric and pattern-driven

development. This paves way for standardized highly,

uniform and similar design solutions. For instance, process

flows and interfaces of the components within the system

may be similar which results in file or method –level

structural clones. Another reason for the higher-level of

similarity is the feature combinatory problem [11]. The

detection of large-granularity structural clones is really very

useful in the reuse context [12]. At the time of creation, the

knowledge of structural clones is evident whereas the formal

means for the visibility of structural clones in software

lacks. During the subsequent software development and

evolution, the knowledge of differences among the

structural clone instances is implicit and they can be lost

easily.

Several attempts have been made to move beyond

the raw data of simple clones. In order to enable the user to

make sense of cloning information, application of

classification, filtering, visualization and navigation have

been proposed [13] [14].

The idea of applying a follow up analysis to simple

clones’ data is explained in this paper. It has been observed

that at the core of the structural clones, there are simple

clones which coexist and relate to each other in certain

ways. This forms the basis of this work on defining and

detecting structural clones. A technique to detect some

specific types of structural clones from the repeated

combinations of collocated simple clones is proposed. A

mining based clone detection [15], which is a structural

clone detection technique (implemented in C++), can be

implemented. The information of simple clones which arise

from a clone detection tool enables the structural clone

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 273 - 277

274

IJRITCC | February 2016, Available @ http://www.ijritcc.org

detection to work. The knowledge of simple clone sets and

the location of their instances in programs is only required.

The following are the unique contributions made by the

structural clone concept. The advantages of knowing

structural clones reach beyond simple clones because

structural clones consist of much bigger parts of a program.

It is more meaningful to analyst and programmers compared

to just similar code fragments. The domain or design

concepts which are represented through structural clones

help in understanding the program and their detection gives

scope for recovery of the design which is not, only practical

but also scalable. The representation of repeated program

structures of large granularity in a generic form also offers

interesting opportunities for reuse [16]. The detection of

reuse is useful in the reengineering of legacy systems for

better maintenance. If the cloned portions undergo arbitrary

changes at the time of evolution, they are scattered in a

program. There is every possibility, for this to happen when

the code which is plagiarized is purposefully changed to

hide cloning. Due to small size, such clones escape detection

by simple clone detectors. The detection of structural clones

enables the effectiveness of clone detection. This contributes

to a more complete picture of the cloning situation.

2. STRUCTURAL CLONES IDENTIFIED

All kinds of large granularity repeated program structures

are covered in the concept of structural clones. This novel

approach can trace some specific types of structural clones

which are listed in Table 1.

Table 1. Types of Structural Clones Found by proposed

method

TYPES OF STRUCTURAL CLONES

The specific types of structural clones are focused

because their detection required only lexical analysis. This

makes our method minimally language dependent. The

structural clones can be easily detected by well-known data

mining techniques. Lastly, these types of clones can be

represented in generic form with XVCL

Fig. 3. A hierarchy of structural clones detected by

proposed method and the overall detection process.

Fig. 3 depicts the hierarchical process of the detection

higher level structural clones given in Table 1 based on the

corresponding lower-level clones. The process begins from

simple clones which are shown at the bottom of the figure.

There are method clone sets (MCSets at level 3), file clone

sets (FCSets at level 5), and directory clone sets (DCSets at

level 7) which are similar to simple clone sets (SC Sets).

These consist of groups of cloned entities at successively

higher levels of abstraction. The other types of clones listed

in Table 1 include recurring groups of simple clones,

method clones, or file clones.

3. STRUCTURAL CLONES

The structural clone detection performed by

proposed approach helps to detect simple clones first, and

then increases the level of clone analysis to larger similar

program structures. Fig 3 shows the overall algorithm for

structural clone detection at various levels.

Simple Clone Detection

 The output from some simple clone detectors is in

the form of clone pairs. The locations of the methods should

be provided for the method based structure. There is a

possibility of obtaining information directly, if the simple

clone detector is based on parsing or lexical analysis.

Repeated Tokens Finder (RTF) which is a token based

simple clone detector is used by the proposed method as the

default front-end tool. The input source code is tokenized

into a token string by RTF, from which a suffix-array based

string matching algorithm directly computes the SCSets,

rather that computing them from the clone pairs. RTF

currently supports JAVA, C++, PERL and VB.net. In order

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 273 - 277

275

IJRITCC | February 2016, Available @ http://www.ijritcc.org

to detect method or function boundaries, RTF performs

some simple parsing.

4. Reorganizing the Simple Clone Data

At Levels 1 and 2 Structural clones are found from simple

clones by manipulating the data extracted from a software

system. We first need to reorganize this data to make it

compatible with the input format for the data mining

technique that is applied on this data. Depending on the

analysis level, we list simple clones for each method or file.

The method level analysis only works when we know the

method or function boundaries in the system and the simple

clones are contained within those boundaries, without

straddling them. With this, we get a different view of the

simple clones’ data, with simple clones arranged in terms of

methods or files.

Repeating Groups of Simple Clones

The same data mining technique which is used for ―market

basket analysis‖ [17] is applied in order to detect recurring

groups of simple clones in different files or methods. This

helps in the analysis of finding the items which are usually

purchased together by different customers from a

departmental store. A list of transactions, each one

containing items bought by a customer in that transaction is

included in the input database. The output includes groups

of items which are most likely to be bought together. The

objective is to find all those groups of SCSets.

 The returning of many frequent item sets which are

subsets of bigger frequent item sets can be done by mining

all frequent items sets. ―Frequent Closed Item Set Mining

(FCIM) [18] is more suitable for our problem. The item sets

that are not subsets of any bigger frequent item set are

reported.

 The input parameters for FCIM are the minimum

support count. In this context, it is an indication for the

minimum number of files or methods that should contain the

detected group of SCSets. The standard algorithms are

designed so that the minimum support level for FCIM is

adjusted. This is because of the general nature of the FCIM

problem. In this case, the support value is coded at 2 so that

it will report a group of SCSets because of the significance

of its length. The unrestricted gapped clones are level 1-B

and 2-B structural clones [19] [20] where number of gaps of

arbitrary sizes and ordering are allowed. The repeating

groups of simple clones across different files and methods

only can be detected because of the limitation of the FCIM

technique. In order to detect level 1-A and 2-A structural

clones, a simple and straight forward follow-up technique is

applied in order to compute the locally repeating groups of

simple clones separately.

File and Method Clones

 The process of clustering enables the location of

File Clone Sets(FCSets at level 5) and method clone

sets(MCSets at level 3) from the significant level 2-B and 1-

B structural clones, respectively. With this mechanism, there

is a possibility of finding groups of highly similar files and

methods. The larger granularity similarities that level 1-B or

2-B structural clones with more defined boundaries are

indicated by the clusters of similar files and methods.

 The well studied technique in the domains of data

mining, statistics, biology and machine learning is clustering

[17]. The process of grouping the data objects into classes or

clusters is clustering. This helps to locate the data objects

within a cluster which are highly similar to one another and

dissimilar to data objects in other clusters. In this analysis,

files or methods are considered as data objects. The detected

level 2-B and 1-B structural clones contained in them as

having descriptive attribute values.

 The average values of two metrics at the structural

clone instance level are used to measure the significance of

a level 1-B or 2-B structural clone set.

 In clustering we cannot expect that the files or

methods may become part of some cluster. Many of these

files and methods need to be ignored as outliers. This is

entirely different from the usual clustering scenarios. The

former approach is referred as cluster mining instead of

clustering.

Repeating Groups of Method Clones

 The repeating groups of method clones across

different files to form level 4-B structural clones are found.

The detection of repeating groups of method clone across

directories is another potentially useful analysis. However,

this is not being implemented in proposed method. Apart

from this the FCSets based on these repeating groups of

method clones can be found. But, the results are expected to

be close to the clustering of similar files based on SCSets

level 4-A structural clones. The forming of the locally

repeating groups of method clones within files is again

traced by sorting and brute force combination generation.

File Clones to Directory Clones

We can move on to the level 6 and level 7

structural clones from FCSets. For finding level 6-B

structural clones, FCSets play the same role as the SCSets in

finding level 1-B and 2-B structural clones. The containers

for these file clones are the directories. The transition from

level 6-B to level 7 is similar to the transition from level 2-B

to level 5 via clustering. Lastly, level 6-A structural clones,

representing repeating groups of file clones within

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 273 - 277

276

IJRITCC | February 2016, Available @ http://www.ijritcc.org

directories, are detected in the same way as Level 4-A

structural clones.

Method implementation

The structural clone detection techniques which are

presented in this paper are implemented by a novel approach

using a mining technique. This method is written in C++. It

possesses token-based simple clone detector. The algorithm

form is used for FSIM. The proposed method makes use of

the STL containers from the standard C++ library in order to

manipulate the clone’s data. The output from this method is

generated in the form of text files. This helps in the

visualization of the tool developed in the future which can

easily interface with the proposed method. Our experiments

taken place on java files with 1500 source files in 150

directories, 62000 LOC and 7250 methods are used to

evaluate the performance using different values of minimum

clone size. In order to from FC sets and MC sets, a value of

20 token is used for the clustering parameter minLen. The

value of 50 percent is used in all other cases. A P-IV

computer with 2.6 GHz processor and 1 gb RAM are used

for the tests. Two to three minutes were taken for the whole

process of finding simple and structural clones.

CONCLUSION

The need to study code cloning at a higher level is

emphasized in this paper. The concept of structural clone

has been introduced as a repeating configuration of lower

level clones. A technique is presented for detecting

structural clones the process begins with finding simple

clones. By using data mining technique of locating frequent

closed item sets and clustering, increasingly higher level

similarities are also found. The structural clone detection

technique is implemented. The underlying structural clone

detection technique can work with the output from any

simple clone detector whereas this method can detect simple

clones also.

The querying of the database of clones facilitates

the analysis of the clones. A mechanism to create a

relational database of structural clones data along with a

query system to facilitate the user in filtering the desired

information. The detection and analysis of similarity

patterns is dependent only on the physical location of

clones. The system design recovery can perform in a better

way with more knowledge of the semantic associations

between clones. A clear picture of the similarity in process

can be built and automated by using tracing techniques to

find associations between classes and methods.

REFERENCES

[1] B.S. Baker, ―On Finding Duplication and Near-

Duplication in Large Software Systems,‖ Proc.

Second Working Conf. Reverse Eng., pp. 86-95,

1995.
[2] S. Ducasse, M. Rieger, and S. Demeyer, ―A

Language Independent Approach for Detecting

Duplicated Code,‖ Proc. IEEE Int’l Conf. Software

Maintenance, pp. 109-118, 1999.
[3] J. Mayrand, C. Leblanc, and E. Merlo, ―Experiment

on the Automatic Detection of Function Clones in a

Software System Using Metrics,‖ Proc. IEEE Int’l

Conf. Software Maintenance, pp. 244-254, 1996.
[4] M. Fowler, Refactoring—Improving the Design of

Existing Code. Addison-Wesley, 1999.
[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin, ―Aspect-

Oriented Programming,‖ Proc. European Conf.

Object-Oriented Programming, pp. 220-242, 1997.
[6] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and

L. Bier, ―Clone Detection Using Abstract Syntax

Trees,‖ Proc. IEEE Int’l Conf. Software

Maintenance, pp. 368-377, 1998.
[7] S. Ducasse, M. Rieger, and S. Demeyer, ―A

Language Independent Approach for Detecting

Duplicated Code,‖ Proc. IEEE Int’l Conf. Software

Maintenance, pp. 109-118, 1999.
[8] T. Kamiya, S. Kusumoto, and K. Inoue,

―CCFinder: A Multi- Linguistic Token-Based Code

Clone Detection System for Large Scale Source

Code,‖ IEEE Trans. Software Eng., vol. 28, no. 7,

pp. 654-670, July 2002.
[9] R. Koschke, R. Falke, and P. Frenzel, ―Clone

Detection Using Abstract Syntax Suffix Trees,‖

Proc. 13th Working Conf. Reverse Eng., pp. 253-

262, 2006.
[10] J. Krinke, ―Identifying Similar Code with Program

Dependence Graphs,‖ Proc. Eighth Working Conf.

Reverse Eng., pp. 301-309, Oct. 2001.
[11] D. Batory, V. Singhai, M. Sirkin, and J. Thomas,

―Scalable Software Libraries,‖ Proc. ACM

SIGSOFT Symp. Foundations of Software Eng.,

pp. 191-199, Dec. 1993.
[12] U. Pettersson and S. Jarzabek, ―Industrial

Experience with Building aWeb Portal Product

Line Using a Lightweight, Reactive Approach,‖

Proc. European Software Eng. Conf. and ACM

SIGSOFT Int’l Symp. Foundations of Software

Eng., pp. 326-335, Sept. 2005.
[13] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue,

―ARIES: Refactoring Support Environment Based

on Code Clone Analysis,‖ Proc. Eighth IASTED

Int’l Conf. Software Eng. and Applications, pp.

222-229, Nov. 2004.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 273 - 277

277

IJRITCC | February 2016, Available @ http://www.ijritcc.org

[14] C. Kapser and M.W. Godfrey, ―Toward a

Taxonomy of Clones in Source Code: A Case

Study,‖ Proc. Int’l Workshop Evolution of Large

Scale Industrial Software Architectures, pp. 67-78,

2003.
[15] H.A. Basit, S. Puglisi, W. Smyth, A. Turpin, and S.

Jarzabek, ―Efficient Token Based Clone Detection

with Flexible Tokenization,‖ Proc. European

Software Eng. Conf. and ACM SIGSOFT Symp.

Foundations of Software Eng., pp. 513-516, Sept.

2007.
[16] S. Jarzabek, Effective Software Maintenance and

Evolution: Reused- Based Approach. CRC Press,

Taylor and Francis, 2007.
[17] J. Han and M. Kamber, Data Mining: Concepts and

Techniques. Morgan Kaufman Publishers, 2001.
[18] G. Grahne and J. Zhu, ―Efficiently Using Prefix-

Trees in Mining Frequent Itemsets,‖ Proc. First

IEEE ICDM Workshop Frequent Itemset Mining

Implementations, Nov. 2003.
[19] J. Krinke, ―Identifying Similar Code with Program

Dependence Graphs,‖ Proc. Eighth Working Conf.

Reverse Eng., pp. 301-309, Oct. 2001.
[20] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue,

―On Detection of Gapped Code Clones Using Gap

Locations,‖ Proc. IEEE Ninth Asia-Pasific

Software Eng. Conf., pp. 327-336, 2002.

