1,072 research outputs found

    Magnetic Communication Using High-Sensitivity Magnetic Field Detectors

    Get PDF
    In this article, an innovative approach for magnetic data communication is presented. For this purpose, the receiver coil of a conventional magneto-inductive communication system is replaced by a high-sensitivity wideband magnetic field sensor. The results show decisive advantages offered by sensitive magnetic field sensors, including a higher communication range for small receiver units. This approach supports numerous mobile applications where receiver size is limited, possibly in conjunction with multiple detectors. Numerical results are supported by a prototype implementation employing an anisotropic magneto-resistive sensor

    Magnetic docking stations for remotely powered light emitting diodes

    Get PDF
    Light emitting diodes (LEDs) are efficient light sources which due to low power consumption often are considered for demonstrations of wireless energy transmission. It is often not only necessary to power these light sources wirelessly, but also to ensure that they conveniently dock at the correct position as effortlessly as possible without the need for chemical adhesives or mechanical attachment. In the current work a passive magnetic docking system which aids attachment of wirelessly powered LEDs is proposed. The system utilizes electromagnetic induction of nearby coils to power the LED. The spatial range of the magnetostatic interactions is controlled by the specific magnet arrangement used, such that the light is turned on either before or after docking is initiated. The constant and time-varying magnetic fields occupy the same volume, thus allowing the presenter to demonstrate the difference between magnetostatic interactions locking the LED in place and electromagnetic induction turning the LED on. It is demonstrated that the proposed system works well for light signaling in salt water, and may find use in wireless underwater communication.acceptedVersio

    The Feasibility of Communication Among Pumps in a District Heating System

    Get PDF

    Magneto inductive communication system for underwater wireless sensor networks

    Get PDF
    Underwater wireless sensor networks have found a number of applications in underwater environment monitoring, infrastructure monitoring, military applications and ocean exploration. Among the four possible means of underwater wireless communication, namely acoustic, electromagnetic (EM), magneto-inductive (MI) and optics communication, MI communication enjoys the advantages of being low cost and robust equally in air, water and soil. This dissertation presents design and implementation of a low-power and low-cost MI sensor network node that is suited for long-term deployment of underwater and underground infrastructure monitoring, such as bridge scour and levee scour monitoring. The designed MI sensor node combat the directionality of the single coil MI communication by utilizing 3D coil to both transmit and receive. The presented MI sensor node is tested in air and underwater to show robustness and reliability. The sensor node is designed after thorough analysis and evaluation of various MI challenges such as directionality, short range, decoupling due to mis-alignment of coils, and effect of metal structure. A communication range of 40 m has been achieved by the prototype sensor node. The prototyping cost of a sensor node is less than US$100 and will be drastically reduced at volume production. A novel and an energy efficient medium access control (MAC) protocol based on the carrier sense medium access (CSMA) has also been implemented for the designed sensor node to improve throughput in a dense network --Abstract, page iv

    Node localization in underwater sensor networks (UWSN)

    Get PDF
    This dissertation focuses on node localization in underwater wireless sensor networks (UWSNs) where anchor nodes have knowledge of their own locations and communicate with sensor nodes in acoustic or magnetic induction (MI) means. The sensor nodes utilize the communication signals and the locations of anchor nodes to locate themselves and propagate their locations through the network. For UWSN using MI communications, this dissertation proposes two localization methods: rotation matrix (RM)-based method and the distance-based method. Both methods require only two anchor nodes with arbitrarily oriented tri-directional coils to locate one sensor node in the 3-D space, thus having advantages in a sparse network. Simulation studies show that the RM-based method achieves high localization accuracy, while the distance-based method exhibits less computational complexity. For UWSN using acoustic communications, this dissertation proposes a novel multi-hop node localization method in the 2-D and 3-D spaces, respectively. The proposed method estimates Euclidean distances to anchor nodes via multi-hop propagations with the help of angle of arrival (AoA) measurements. Simulation results show that the proposed method achieves better localization accuracy than existing multi-hop methods, with high localization coverage. This dissertation also investigates the hardware implementation of acoustic transmitter and receiver, and conducted field experiments with the hardware to estimate ToA using single pseudo-noise (PN) and dual PN(DPN) sequences. Both simulation and field test results show that the DPN sequences outperform the single PNs in severely dispersive channels and when the carrier frequency offset (CFO) is high --Abstract, page iv

    A Computational Channel Model for Magnetic Induction-Based Subsurface Applications

    Get PDF
    There are many underground applications based on magnetic fields generated by an oscillating magnetic source. For them, a magnetic dipole in a three-layered region with upper semi-infinite air layer can be a convenient idealization used for their planning, development, and operation. Solutions are in the form of the well-known Sommerfeld integral expressions that can be evaluated by numerical methods. A set of field expressions to be numerically evaluated by an efficient algorithm are not collected comprehensively yet, or at least in a directly usable form. In this paper, the explicit magnetic field solutions for the vertical magnetic dipole and the horizontal magnetic dipole for a general source-observer location are derived from the Hertz vector. They can be properly combined to model the problem of a tilted magnetic dipole source for horizontally or inclined stratified media. As a result, a complete set of integral equations of the Sommerfeld type valid from the near zone to the far zone are formulated. A method for numerical evaluation of the field expressions for high accurate computations is described. The numerical results are validated using the finite element method for all the possible source-receiver configurations and three well-spanned frequencies of typical subsurface applications. Both numerical solutions agree according to the normalized root-mean-square error-based fit metric. Numerical results for two cases of study are presented to see its usefulness for subsurface applications. A MATLAB implementation of the mathematical description outlined in this paper and the proposed evaluation method is freely available for download
    • …
    corecore