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Abstract  

 

Nowadays, within the concept of Internet of Things (IoT), smart homes, smart factory, 

intelligent transportation, smart agriculture networks among others, are infrastructure 

systems that connect our world to the Internet. However, wireless communications 

technology, such as wireless cellular networks, wireless area networks, wireless sensor 

networks, and vehicular communications among others, are considerably constrained by 

complicated structures, and lossy media in complex environments. Fundamental 

limitations on the transmission range have been treated to connect IoT devices in complex 

environments. In order to extend the transmission range in complex environments, 

Magnetic Induction (MI) communication has been proved to be an efficient solution. In 

this thesis, Multilayered Metamaterial Low Profile Antennas (MMLPA) using Magnetic 

Induction communication scheme are designed and prototyped for IoT applications.  The 

channel model of the MMLPA system is analyzed. Then four models of MMLPA system 

are designed by using circular loop antennas backed with isotropic metamaterial which is 

considered as Defected Ground Structure (DGS) as well as with anisotropic metamaterial 

for the purpose of dielectric uniaxial metamaterial. To the best of our knowledge, this is 

the first work that investigates the performance of a magnetic loop antenna coil backed 

with multiple layers of isotropic and anisotropic metamaterials for IoT applications in 

environment that are hostile, RF challenged, and especially in the vicinity of metal. By 

using a full-wave finite-element method, the proposed analysis is supported with 

simulation results where good agreement is achieved compared to the measurement results 

after realizing four prototypes of the MMLPA antennas. The effect of the presence of metal 

in the vicinity of the transceivers is also analyzed. A MMLPA-IoT system is developed for 

IoT applications. 

 

Keywords—IoT; MI communication; M2I; MMLPA; MMLPA-IoT; near metal 

environments; RF challenging environments. 
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Chapter 1 

Introduction  

 

1.1 Background 

The IoT provides many new opportunities to the end user and the industry in many 

applications fields. Currently, however, the IoT itself lacks theory, technology architecture, 

and standards that integrate the virtual world and the real physical world in a unified 

framework [1]. According to [2], the IoT should have three characteristics: (1) 

comprehensive perception, (2) reliable transmission, (3) intelligent processing. However, 

in wireless communications technology, such as wireless cellular networks, wireless area 

networks, wireless sensor networks, and vehicular communications among others, are 

considerably constrained by complicated structures, and lossy media in complex 

environments. Magnetic Induction (MI) communication has been proved to be an efficient 

solution to extend the communication range in such environments, like underground [3], 

underwater [4], and in the vicinity of metal. Therefore, within the wider context of IoT, MI 

communication has attracted significant research interests in recent years.  

Magnetic Induction belongs to the wireless communication technology especially in the 

RF challenging environment. The basic MI communication system uses magnetic antenna 

coils for transmitting and receiving information as well as power, and it has been 

commonly used in near field communication. Since the propagation medium is soil, water, 

air with presence or absence of metal in the vicinity of the transceivers, wireless signal 

experience high absorption and multiple scattering due to which path loss increases, as a 

result the transmission range is extremely short. To this end, existing terrestrial wireless 

communication techniques have to use large antennas and high transmission power which 

are not convenient and not efficient. Magnetic induction solves this problem by using small 

size antennas in underground [3] and underwater [4].  

MI system utilizes a high frequency magnetic field which is generated by a transmitter coil 

as a signal carrier [5]. It mostly depends on the permeability of the communication medium. 
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The performance of MI communication remains same in most materials, since most natural 

materials have the same magnetic permeability as air. This guarantees the fact that this 

wireless technology also solves the dynamic channel condition issue.  

Despite these benefits, one drawback with MI communication scheme is fast attenuation 

of magnetic field which mainly causes the short transmission range. To solve this problem, 

different methods have been used such as waveguide structures [6], metamaterial enhanced 

Magnetic Induction communication [7], etc. Metamaterial is defined as a composite 

material with a specific structure such that it exhibits properties, not usually found in 

natural materials, such as negative permeability (µ = -1) or negative permittivity (ɛ = -1). 

These properties of the metamaterial can affect the electromagnetic waves. It is important 

to note that metamaterial has been utilized in antenna miniaturization [8] and wireless 

power transfer [9] which are the two most relevant areas related to MI communication. 

1.2 Thesis objectives 

In this thesis, we propose Multilayered Metamaterial Low Profile Antenna using Magnetic 

Induction (MMLPA) communication scheme by designing MMLPA antennas with high 

directivity in order to increase the communication range for IoT applications in 

environment that are hostile, RF challenged, and especially in the vicinity of metal. 

In this scheme, MI antenna coils are composed with n layers of isotropic and anisotropic 

metamaterials. For computation time complexity reason, one metamaterial shell com-

posed with one layer of isotropic metamaterial and another layer of anisotropic 

metamaterial were chosen for the simulation as shown in Fig.1. The results in [10] show 

that the absorption of the electromagnetic wave is about 100% near the resonant frequency 

of the isotropic metamaterials. In addition, the anisotropic metamaterials can be used to be 

the polarization tunable absorber. Therefore, combining these two kinds of metamaterials 

will be beneficial for the directivity and efficiency of the MMLPA system. The equivalent 

circuit model for MMLPA is given and the general path loss formula is also derived. Ansys 

HFSS v15.0 is used for the designing and simulation of MMLPA system. 
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Fig. 1. MMLPA system: (a) the designed antenna, (b) the prototyped antenna 

1.3 Thesis organization 

This thesis is organized as follows: 

In chapter 2, the literature review is described including related works. 

Then, the system model is developed in chapter 3 which includes an analytical channel 

model for MMLPA wireless system as well as derivation of the communication range and 

definition of the S parameters.  

In chapter 4, design procedure is presented including the design of the MMLPA system, 

the details of the simulation procedure as well. 

The simulation and experimental results are discussed in chapter 5. 

After that, an IoT application is developed in chapter 6. 

Finally, this thesis is concluded in Chapter 7.  
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Chapter 2 

Literature Review 

MI communication scheme has been utilized in various complex environments. In 

underground mines, voice and low data rate communications have been established by 

using MI scheme [11]. In [5], very large MI coil antennas have been utilized in underwater 

environment. MI has been utilized to transmit both data and power into human body for 

medical applications as well [12]. In [13], MI waveguides structures have been utilized to 

extend the very limited transmission range. However, these waveguides require very high 

density of relay coils which prevents practical implementation. 

Metamaterial has also been utilized in many applications. For instance, metamaterial 

antenna [9], Metamaterial enhanced magnetic induction Antenna for Magnetic Resonance 

Imaging [14], and metamaterial cloak. Our work is mainly focused on two areas which are 

antenna miniaturization and wireless power transfer among various research related to 

metamaterial. In [15], metamaterial has been utilized in antenna miniaturization. As shown 

in [16], the radiated power is dramatically amplified when the electrical dipole antenna is 

enclosed in a metamaterial shell. It is also shown in [10] that metamaterial slab between 

two resonant coils can enhance the near field coupling. In [17], the power transfer 

efficiency can be greater in magnitude than the free space efficiency with the slab. The 

metamaterial volume between the coils can be compressed by using magnetic permeability 

having large anisotropy ratio.  

In [18], metamaterial is also utilized to enhance the magnetic field around MI transceivers, 

and this is done by enclosing the antenna coil by a metamaterial shell which amplifies the 

magnetic field both at transmitter side and receiver side. As a result, the system can achieve 

increased transmission range. The scheme proposed in this thesis basically focuses on 

increasing the magnetic field around MI transceivers by considering multiple layers of 

metamaterial shell while keeping the size of the antennas small.  
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Chapter 3 

System model 

3.1 Derivation of the communication range 

The analytical channel model of MMLPA is developed in this section. In MMLPA system 

as illustrated in Fig.1, the performance of MI communication using loop antenna coil can 

be enhanced when it is backed with n layers of metamaterials. The number of metamaterial 

layers can be set as well as its thickness while keeping the size of the antenna small and 

making it low profile. According to previous work in [7], an equivalent circuit can be 

modelled for the channel. The equivalent circuit of MMLPA system is modelled as shown 

in Fig.2. 

 

Fig. 2. Equivalent circuit model of MMLPA communication 

Where: Vg is the source voltage; Rc is the resistance of the coil; Lr is the self-inductance 

of the coil; C is the compensation capacitor which is used to tune the circuit at resonant; 

Mn is the mutual inductance between MMLPA transmitter and MMLPA receiver. Mt1, …, 

Mt(n-1) are the mutual inductance between the transmitter coil enclosed by the first 

metamaterial shell and the second metamaterial shell at the transmitter side, …, the mutual 

inductance between the (n-1)-th metamaterial shell and the n-th metamaterial shell at the 

transmitter side respectively. Similarly, Mr1, …, Mr(n-1) are the mutual inductance 

between the receiver coil enclosed by the first metamaterial shell and the second 

metamaterial shell at the receiver side, …, the mutual inductance between the (n-1)-th 
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metamaterial shell and the n-th metamaterial shell at the receiver side respectively; Rl is 

the load resistance. 

In order to achieve the resonance condition for the circuit, the compensation capacitor C is 

given by: 

     
2

0

1
                                                (1)C

Lr
=  

 

where 0 is the resonant frequency of the coil. According to [7], the self-inductance L 

becomes frequency dependent complex number: 

                                                  (2)L Lr jLi= −  

where the imaginary part Li becomes frequency dependent resistance which is due to the 

induced eddy current from the metamaterial layers and the complex environment. 

Therefore, the real part Lr is the self-inductance of the coil and once the reactance at 

transmitter and receiver are cancelled, the load resistance of the coil at the receiver side is 

matched with the resistance of the coil Rc and additional loss ωLi. 

Based on the equivalent circuit represented in Fig.2., the path loss for MMLPA channel, 

which is the main factor that decides the transmission range, can be expressed as: 

     
Pr

10log                                   (3)PL
Pt

 
= −  

 
 

where Pt and Pr are the transmitted and received power respectively. We have: 
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Then, the path loss is derived as below: 
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In this thesis, since air is considered as the transmission medium with presence or absence 

of metal in the vicinity of the MMLPA transceivers, the derivation of the communication 

range can be seen below according to the Friis transmission equation: 

                             
( )

2

2

Pr
                                          (8)

4

GtGr

Pt d




=  

Where: Gt and Gr are the gain of the transmitting and receiving antenna respectively,   is 

the wavelength, and d is the distance between the transmitter and the receiver antennas. 

Therefore, according to (6): 
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Where: c is the velocity of the light and 2 f = is the angular frequency. 

Consequently, the communication range is derived as below: 

               

2 1

                  (10)
2

n

c GtGr Rc Li
d

M



 

−

 +
=   

 
 

From this expression, we can confirm that the communication range is also proportional to 

the gain of the transmitting and receiving antennas. 

The developed channel model reveals that both the MMLPA coil antenna and the 

propagation channel are susceptible to frequency change. On one hand, the low frequency 

band is almost immune to high conductivity due to the long wavelength, while high 

frequency band has very small skin depth in complex environments which leads to 

significant loss. On the other hand, motivated by the fact that high frequency can provide 

strong coupling between MMLPA coil antennas as well as broader bandwidth which are 

essential for wireless communication, air with presence or absence of metal in the vicinity 

of the MMLPA system transceivers is considered as the propagation medium along this 

work. 
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It is also important to note that there is a tradeoff between efficiency, antenna size and 

medium conductivity. To overcome the high absorption loss in large complex 

environments, relatively low frequency is utilized. However, this requires a large profile 

antenna to achieve high efficiency. When conductivity is small, magnetic fields have 

similar intensity. However, when the conductivity becomes large, the magnetic fields 

intensity of lower frequency is much larger than that of higher frequency. Therefore, with 

similar field intensity, high frequency can provide much larger bandwidth which is 

favorable for our wireless communication system. 

Consequently, the optimal frequency for MMLPA communication is highly influenced by 

the medium conductivity, the antenna size and the frequency ranges from low frequency 

to high frequency band. 

3.2 Definition of the S parameters of a normally incident plane wave 

on a metamaterial cube 

Consider a normally incident plane wave on the metamaterial cube shown in Fig.3. below. 

 

Fig. 3. A normally incident plane wave on a metamaterial placed in free space 

According to [15], the S parameters of this system can be derived as: 
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The impedance z , which is the solution of equations (11) and (12), is written as: 
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Where: 11S
 and 21S

are the reflection and transmission coefficients respectively, 01R
is 

1

1

z

z

−

+ , ref is the refractive index, 0k
 is the wave number, d is the maximum length of the 

unit element of the metamaterial, m is the branch due to the periodicity of the sinusoidal 

function, E and H are the electric and magnetic field components respectively, 
( )

i
•

, 
( )

r
•

and 
( )

t
•

are the incident, reflected and transmitted components of the fields respectively, 

( )
'

•
and 

( )
"

•
represent the real and complex components of the complex number. 

It is important to note that, in theses expressions, the metamaterial is represented by the 

cube formed by the unit element with appropriate boundary conditions and excitations. 

In this thesis, the metamaterial is assumed to be homogeneous with an effective refractive 

index and impedance. According to [16], we can choose the fundamental branch ( 0m = ) 

for a continuous refractive index and consider that the largest dimension of the 

metamaterial unit cell is less than one-sixth of wavelength in the material. 
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Chapter 4 

Design procedure 

4.1 MMLPA system design 

The MMLPA system is designed using circular loop antenna coil backed with different 

layers of isotropic and anisotropic metamaterials. 

4.1.1 Loop antenna: 

The coil antenna is made by copper wire with: inner diameter 100 mm, outer 

diameter 101.6 mm, thickness 2.13 mm and 52 turns. 

 

Fig. 4. The loop antenna coil: (a) the design model, (b) the implemented prototype 

4.1.2 Isotropic metamaterial: 

An isotropic metamaterial is an artificial material with specific electromagnetic 

properties such as electromagnetic band-gap structures (EBG). EBG materials 

are periodic structures that are composed of metal, dielectric or metallo- 

dielectric materials. These EBG structures can prevent EM wave propagation 

in spatial directions and at certain frequencies. Therefore, they can be used as 

spatial and frequency filters.  
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In antenna applications, there are various configurations of EBG structures 

which are classified into four main categories: photonic band-gap structure 

(PBG), defected ground structure (DGS), artificial magnetic conductor (AMC), 

high impedance electromagnetic surfaces (HIS). The specific propagation 

properties found in EBG structures are promising for several antenna 

applications, including miniaturization, coupling reduction, gain increase. In 

this thesis, a compact four arms spiral defected ground structure (SDGS) is 

designed to produce multi-electromagnetic band-gap and minimize the cross-

polarization effect. This four-arm spiral geometry was proved by [11] to 

successfully eliminate the cross polarized fields.  

In addition, it is also designed to back the loop antenna coil and enhance 

magnetic field intensity for a directional field distribution. In other words, a low 

profile directional loop antenna coil is designed to achieve a uniformly 

distributed and improved magnetic field. 

The results in [11] show that the absorptivity of EM waves is about 100% near 

the resonant frequency of the isotropic metamaterials. Therefore, the 

metamaterials can be used as a narrow band absorber. The thickness of the 

metamaterials determines the width of the band. As the cross polarization 

affects the operating frequency and bandwidth proved by [12]. 

Therefore, in order to eliminate the cross-polarization effect, a four-arm spiral 

element is chosen as the shape of the unit element of the isotropic metamaterial. 

This geometry does not generate a cross polarization. In Fig.5., the four arms 

spiral shape is designed by using circuit marker pen manufactured by AgIC on 

a photo paper 105 mm x 105 mm with a silver ink. 
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Fig. 5. Isotropic metamaterial: (a) unit element, (b) unit cell 

 

Fig. 6. Proposed isotropic metamaterial: (a) designed unit element, (b) 

prototyped unit element 

4.1.3 Anisotropic metamaterial: 

Since the bandwidth increases with the addition of the metamaterial layer 

number; the absorption is dependent on the polarization direction of the incident 

electromagnetic wave for the anisotropic metamaterials. Therefore, the role of 

the anisotropic metamaterial here is to be the polarization tunable absorber. The 

metamaterial layer number can also determine the frequency for the maximum 

absorption as for the multilayer system. An anisotropic metamaterial is 

manufactured by 3D printing as shown in Fig.7. by considering the 
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methodology of a uniaxial metamaterial proved by [17] in order to improve the 

working efficiency of the MMLPA antennas. 

 

 

Fig. 7. Anisotropic metamaterial type 1: (a) unit element, (b) unit cell 

 

 

Fig. 8. Anisotropic metamaterial type 2: (a) unit element, (b) unit cell 

4.2 Design procedure using a full-wave finite-element method 

Low profile MMLPA systems are designed using loop antenna coils backed isotropic and 

anisotropic metamaterials. The loop antenna coil is placed 3 mm above the isotropic 

metamaterial layer, which is further backed by the anisotropic metamaterial layer placed 

3.27 mm away, since the photo paper’s thickness is 0.27 mm. This anisotropic metamaterial 

layer is then backed by a ground plane according to its thickness. As discussed above, two 
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kinds of anisotropic metamaterials are used in this thesis and each of them has two different 

thicknesses of this layer which are tam1 = 3 mm and tam2 = 5 mm. Consequently, four types 

of MMLPA system are designed and analyzed: 

MMLPA-11: backed with anisotropic metamaterial type 1 and its thickness is tam1 = 3 mm; 

MMLPA-21: backed with anisotropic metamaterial type 2 and its thickness is tam1 = 3 mm; 

MMLPA-12: backed with anisotropic metamaterial type 1 and its thickness is tam2 = 5 mm; 

MMLPA-22: backed with anisotropic metamaterial type 2 and its thickness is tam2 = 5 mm; 

It is important to note that each of these antennas has the same specifications and 

geometries for the loop antenna coil, the isotropic metamaterial and the ground plane. 

 

  

Fig. 9. Radiation boundaries structures of MMLPA-11: (a) Operating frequency 2.4 GHz 

( 12.5 cm = ), (b) Operating frequency 315 MHz ( 95.2 cm = )  

 

Fig. 10. Radiation boundaries of MMLPA-21: (a) at 2.4 GHz, (b) at 315 MHz 

The realization of these metamaterials in our design procedure requires an infinite 

repetition of the unit element in the direction of the lattice vectors. This requirement is 
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achieved by imposing boundary conditions on the unit element as shown in Fig.9. and 

Fig.10. HFSSTM v.15, which is a finite element method (FEM) based full wave simulator, 

is used to extract the S parameters. There are two methods in HFSS to extract the S 

parameters: either using perfect electric and perfect magnetic (PE-PM) boundary 

conditions or using master-slave boundary conditions. In the case of cubic-shaped unit 

element structure, these two methods are equally effective. However, the master-slave 

boundary conditions can also cover complex polygon-shaped structures. Therefore, in this 

thesis, master-slave boundary conditions method is chosen for the extraction of the S 

parameters.  The boundary conditions at the master are enforced at the slave’s surface in 

order to realize an infinite periodic repetition as shown in Fig. 11. and Fig. 12. below.  

 

Fig. 11. Simulation model of MMLPA-11 with the master-slave boundary condition: (a) 

the first master-slave boundary pair at 2.4 GHz, (b) the second master-slave boundary pair 

at 2.4 GHz, (c) the first master-slave boundary pair at 315 MHz, (d) the second master-

slave boundary pair at 315 MHz. 
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Fig. 12. Simulation model of MMLPA-21 with the master-slave boundary condition: (a) 

the first master-slave boundary pair at 2.4 GHz, (b) the second master-slave boundary pair 

at 2.4 GHz, (c) the first master-slave boundary pair at 315 MHz, (d) the second master-

slave boundary pair at 315 MHz. 

Once the boundary conditions are set, excitation ports are required to excite the structure. 

HFSS provides two options for the excitation: one using wave port, the second using 

floquet port as shown in Fig. 13 and Fig. 14. below.  

On one hand, the wave port, which is equivalent to a semi-infinite waveguide, can excite 

the structure with the incident wave perpendicular to the surface of the port. On the other 

hand, the floquet port, which is important in situations where the direction of propagation 

of the incident wave is in the direction of the periodicity, can simulate obliquely incident 

waves. In this work, wave port cannot be applied since the plane perpendicular to the 

direction of propagation carries the periodic boundary conditions, and the floquet port is 

only option that can be used with the master-slave boundary conditions.  
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Fig. 13. Unit element excitation of MMLPA-11: (a) Floquet port at 2.4 GHz, (b) Floquet 

port at 315 MHz 

 

Fig. 14. Unit element excitation of MMLPA-21: (a) Floquet port at 2.4 GHz, (b) Floquet 

port at 315 MHz 

Similarly, we do the same method for the simulation design of antenna-12 and antenna-22 

at these two frequencies. 
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Chapter 5 

Simulation and experimental results 

5.1 Simulation results 

The following figures are the simulation results for the MMLPA-11 at 2.4 GHz using HFSS 

software. The scattering parameter S11 acts as return loss since the antenna is a one-port 

device. Fig. 15. shows the simulated return loss of MMLPA-11 equal to -24.5052 at 

resonant frequency 2.3997 GHz. 

 

Fig. 15. MMLPA-11. Return loss at 2.4 GHz 

In addition, the antenna is matched to the transmission line and more power is delivered to 

the antenna since the voltage standing wave ratio (VSWR) of MMLPA-11 is equal to 1.12, 

which is close to the ideal (VSWR = 1), at 2.4 GHz as shown in Fig. 16. below. 

 

Fig. 16. MMLPA-11. VSWR at 2.4 GHz 
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A graphical presentation of signal distribution of the antenna is given by radiation pattern. 

The two-dimensional (2D) and three-dimensional (3D) radiation patterns for MMLPA-11 

at 2.4 GHz are obtained as shown in Fig. 17. and Fig. 18. respectively. 

 

Fig. 17. MMLPA-11. Radiation pattern 2D at 2.4 GHz 

 

Fig. 18. MMLPA-11. Radiation pattern 3D at 2.4 GHz 
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The two- and three-dimensional directivity patterns of MMLPA-11 at 2.4 GHz are also 

represented in the Fig. 19. and Fig. 20. respectively. 

 

Fig. 19. MMLPA-11. Directivity total 2D at 2.4 GHz 

 

Fig. 20. MMLPA-11. Directivity total 3D at 2.4 GHz 
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The above figures show that MMLPA-11 has high directivity along z axis which is also 

the axis of the circular loop antenna. However, for a circular loop antenna without the 

metamaterial layers, the field radiated along its axis is zero [18].  

 

Fig. 21. The 2D radiation patterns for a circular loop antenna with radius 
0.1 , 0.2 , and 0.5  [18]a   =  

Therefore, these patterns indicate that the field radiated by the MMLPA-11 along xy plane 

which is perpendicular to the axis of the circular loop antenna coil is zero. In other words, 

the metamaterial layers enhance the magnetic field intensity in one directional field 

distribution. 

A gain total of 2.29 dBi is obtained for the MMLPA-11 as shown in Fig. 22. Below. 

 

Fig. 22. MMLPA-11. Gain total at 2.4 GHz 
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It is important to note that it took time with very long computation process when 

performing the simulation of theses antennas in HFSS. Therefore, at the time of writing, 

we didn’t get the simulation results for the remaining antennas yet. The analysis is 

supported by the measurement results. 

5.2 Measurement results 

The four prototyped MMLPA antennas are shown in Fig. 23. below. 

 

Fig. 23. The four prototyped MMLPA antennas 

The following figures represent the measurement results of the return loss for all of the 4 

MMLPA antennas at 2.4 GHz and at 315 MHz respectively. 

 



30 
 

Fig. 24. shows the return loss of MMLPA-11 at 2.4 GHz. We can notice that there is a good 

agreement compared with the related simulation result in Fig. 15.    

 

Fig. 24. MMLPA-11. Return loss at 2.4 GHz 

At 315 MHz, the obtained return loss is -7.9357 dB as shown in Fig. 25. below. 

 

Fig. 25. MMLPA-11. Return loss at 315 MHz 
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For the MMLPA-12, the return loss at 2.4 GHz is -26.475 dB as shown in Fig. 26. 

 

Fig. 26. MMLPA-12. Return loss at 2.4 GHz 

However, at 315MHz, the resonant frequency shifts into 386 MHz with return loss -13.246 

dB as shown in Fig.27. This is due to the increase of the thickness of the anisotropic 

metamaterial type 1. 

 

Fig. 27. MMLPA-12. Return loss at 315 MHz 
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In Fig.28. the return loss for MMLPA-21 at 2.4 GHz is -39.724 dB which is lower 

compared to the reflection coefficient of MMLPA-11 shown in Fig. 15. 

 

Fig. 28. MMLPA-21. Return loss at 2.4 GHz 

However, from the Fig. 29. below, there is no resonant frequency between the frequency 

range from 300MHz to 380 MHz for this MMLPA-21 antenna. 

 

Fig. 29. MMLPA-21. Return loss at 315 MHz 
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Finally, in Fig. 30., the return loss at 2.4 GHz of MMLPA-22 is -36.545 dB which is also 

lower compared to the reflection coefficient of MMLPA-11 shown in Fig. 15. 

 

Fig. 30. MMLPA-22. Return loss at 2.4 GHz 

However, from the Fig. 31. below, there is no resonant frequency between the frequency 

range from 300MHz to 380 MHz for this MMLPA-21 antenna. 

 

Fig. 31. MMLPA-22. Return loss at 315 MHz 
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5.3 Study of the effect of metal presence in the vicinity of the 

MMLPA transceivers 

 

Fig. 32. Experiment setup inside an anechoic chamber testing the effect of metal presence 

in the vicinity of the MMLPA system 

In this experiment setup, MMLPA-11 and MMLPA-21 are utilized as transmitters while 

MMLPA-12 and MMLPA-22 are the receivers, respectively. 

The communication range is set at 3.5 m and the experiment is performed inside an 

anechoic chamber. The aim of the measurement is to study the effect of metal presence in 

the vicinity of MMLPA transceivers. 

In this work, a metal plate 1 m x 3 m made by steel is placed in between the transmitter 

antenna (Tx) and the receiver antenna (Rx) as shown in Fig. 32. The height is 0.5 m from 

the surface of the metal plate to the axis of the antennas. The following figures indicate the 

effect of the presence of this metal plate for those MMLPA antennas. 
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In Fig. 33. and Fig. 34. below, MMLPA-11 is the transmitter while MMLPA-12 is the 

receiver. It shows that the presence of the metal plate increases the received power from -

62.22 dBm to -58 dBm. 

 

Fig. 33. Tx: MMLPA-11, Rx: MMLPA-12, without the metal plate 

 

 

Fig. 34. Tx: MMLPA-11, Rx: MMLPA-12, with the metal plate 
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In Fig. 35. and Fig. 36., MMLPA-21 is the transmitter while MMLPA-22 is the receiver. 

It also shows that the presence of the metal plate increases the received power from -75.45 

dBm to -68.77 dBm. 

 

Fig. 35. Tx: MMLPA-21, Rx: MMLPA-22, without the metal plate 

 

 

Fig. 36. Tx: MMLPA-21, Rx: MMLPA-22, with the metal plate 
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Chapter 6 

IoT application 

6.1 System setup 

The system setup presented in Fig. 37. below is developed for the MMLPA-IoT application. 

 

Fig. 37. MMLPA-IoT application system setup 

In this system, we send order from smartphone to MMLPA-IoT devices like power outlet 

sockets, lamps, home appliances, etc.  

On one hand, the smartphone is connected to the Internet while a WiFi module composed 

with Arduino Uno and ESP8266 is also connected to the Internet via the wireless local area 

network (WLAN). In this work, we utilized the local WiFi of our laboratory. Then, this 

module is connected to MMLPA transceiver module 1 including MMLPA antenna 1 which 

is one of our MMLPA antennas. We assume that the transmission medium is air with or 

without presence of metal in the vicinity of the transceiver antennas. All those modules are 

considered as part of the control unit.  

On the other hand, the MMLPA-IoT device is composed with MMLPA transceiver module 

2 including MMLPA antenna 2 which is also one of our MMLPA antennas. 
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6.2 MMLPA-RCS-IoT 

Here RCS stands for Remote Control Switch. Therefore, the aim of this application is to 

control electrical switches remotely via our smartphone using Internet connection. Fig. 38. 

shows the graphical user interface on the smartphone, in this work we use instead iPad. 

The control menu is composed with four button widgets, a gauge widget and a widget 

display. The four button widgets are utilized to control a switch remotely with four 

channels using our MMLPA system. The gauge widget is used for hardware feedback 

while the widget display is for software feedback. In this thesis, we control the lights 

remotely, that is why our hardware feedback will measure the illuminance in Lux. The 

widget display will display the name of the button which was activated only if the order 

sent by the iPad was received by the MMLPA-IoT device. Every time we push a given 

button on the iPad, the order is sent through the Internet to the MMLPA-IoT device, which 

sent the corresponding code through radio waves to the remote device using our MMLPA-

antennas. 

 

Fig. 38. Developed User Interface on iPad for remote control switch with four channels 

using our MMLPA system 
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Chapter 7 

Conclusion and Future Work 

It has been shown that our Multilayered Metamaterials Low Profile Antenna using 

Magnetic Induction communication scheme can improve the directivity of a loop antenna 

coil and its efficiency. Four prototypes of MMLPA system have been realized and 

measured where good agreement is achieved between simulation and measurement results. 

The magnetic field intensity is enhanced in one directional field distribution as expected. 

An IoT application was developed. In this thesis, it has been proved that the presence of 

metal in the vicinity of the MMLPA system can increase the received power as well. 

Therefore, this novel communication system can be applied for IoT devices working on 

the 2.4 GHz and 315 MHz band. Since the antennas are low profile, they can be mounted 

to buildings’ wall, cars, etc. So, they are suitable for connecting IoT devices in indoor 

environment even with the presence of metal structure in the vicinity of the antennas. 

Further improvements to the technique should allow a full study of the effect of the 

communication media especially when operating at lower frequency band. 
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Appendix 

It is important to note that before printing our anisotropic metamaterial, we need to prepare 

a stl file for the desired 3D geometry that can be read by the 3D printer. In this work, in 

order to build stl file, we have utilized OpenSCAD which is a free software application for 

creating solid 3D CAD objects via script-only based modeler. 

A.1. Development of the 3D geometry of the anisotropic 

metamaterial type 1 

//Design of the internal cylinders, file name after rendering: AnisotropicMetamaterial1-

Part1.stl 

// diameter 

start = 6.4; 

incr = 0; 

// distance of one cylinder to the next 

dx = 24; 

for(x=[1:4]) 

for(y=[1:4]) 

    translate([x*dx,y*dx,0]) 

    cylinder(h = 3, r = start+x*incr+y*incr, $fs=0.5); 

 

//Design of the remaining geometries, file name after rendering: 

AnisotropicMetamaterial1-Part2.stl 

// Model parameters 

model_filename = "AnisotropicMetamaterial1-Part1.stl"; 

model_scale = .7;    // Scale factor for the model 
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model_translate = [0,0,0];  // Translate model relative to mold 

model_rotate = [0,0,0];   // Rotate model relative to mold 

 

// Mold parameters 

mold_width = 24;  // Width of the mold 

mold_height = 24;  // Height of the mold 

 

// metamaterial parameters 

metamaterial_thickness = 1.5; // Thickness of all metamaterials 

metamaterial_height = 3;  // Height of the metamaterials 

metamaterials = true;   // metamaterials or no metamaterials 

 

// Removable metamaterial parameters 

removable_metamaterial = false;    // Do we want one 

metamaterial to be removable? 

removable_metamaterial_thickness = 1;  // Thickness of the removable 

metamaterial 

wiggle_room = 0.25;    // Fit between metamaterial and slot 

 

// Base parameters 

base_height = 0;  // Thickness of the base 

grid_cylinder(); 
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dx = 24; 

for(x=[0:3]) 

for(y=[0:3]) 

    translate([x*dx,y*dx,0]) 

    generate_mold();     

 

module grid_cylinder() { 

// diameter 

start = 6.4; 

incr = 0; 

 

// distance of one hole to the next 

dx = 24; 

union(){ 

    for(x=[0:4]) 

    for(y=[0:4]) 

        translate([x*dx,y*dx,0]) 

        cylinder(h = 3, r = start+x*incr+y*incr, $fs=0.5); 

    } 

} 
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module generate_mold() { 

 difference() { 

  union() { 

   difference() { 

    // metamaterials and base 

    translate(v = [12,12,metamaterial_height/2 + base_height/2]) 

     cube(size = 

[mold_width,mold_height,metamaterial_height+base_height], center = true); 

    

    // Hollow out the mold, leaving metamaterials and a base 

    translate(v = [12,12,25 + base_height]) 

     if(metamaterials) 

      cube(size = [mold_width - 

metamaterial_thickness*2, mold_height - metamaterial_thickness*2, 50], center = true); 

     else 

      cube(size = [mold_width, mold_height, 50], 

center = true); 

   } 

    

   // Scale, translate and import an external STL             

                scale(v = [model_scale, model_scale, model_scale]) 

                    translate(model_translate) 
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                        rotate(model_rotate) 

                            import(model_filename); 

  } 

 

  // Create slot for removable metamaterial 

  if(removable_metamaterial) { 

   // Remove the old metamaterial 

   translate(v = [mold_width/2 - metamaterial_thickness/2, 0, 

base_height + 25]) 

    cube(size = [metamaterial_thickness, mold_height - 

metamaterial_thickness*2, 50], center = true); 

 

   // Create a notch for the removable metamaterial 

   translate(v = [mold_width/2 - metamaterial_thickness, 0, 

base_height + 25]) 

    cube(size = [removable_metamaterial_thickness + 

wiggle_room*2, mold_height - metamaterial_thickness + wiggle_room*2, 50], center = 

true); 

  } 

 

  // Remove any geometry popping out from under the mold 

  translate(v = [0,0,-50]) 

   cube(size = [mold_width, mold_height, 100], center = true); 

 } 
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 // Add removable metamaterial 

 if(removable_metamaterial) 

  translate(v = [mold_width/2 + 5, 0, metamaterial_height/2]) 

   cube(size = [removable_metamaterial_thickness, mold_height - 

metamaterial_thickness, metamaterial_height], center = true); 

} 

A.2. Development of the 3D geometry of the anisotropic 

metamaterial type 2 

// diameter of the cylinders, file name after rendering: AnisotropicMetamaterial2.stl 

start = 6.4; 

incr = 0; 

// distance of one hole to the next 

dx = 21; 

difference() 

{ 

 translate([-dx,-dx,0]) cube([5*dx,5*dx,3]); 

union() 

{ 

for(x=[-0.5:3.5]) 

for(y=[-0.5:3.5]){ 

 translate([x*dx,y*dx,0]) 

 cylinder(h = 3, r = start+x*incr+y*incr, $fs=0.5); 
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    } 

    union(){ 

    start = 6.4; 

    incr = 0; 

    dx = 21; 

    for(x=[0:3]) 

    for(y=[0:3]){ 

        translate([x*dx,y*dx,0]) 

        cylinder(h = 3, r = start+x*incr+y*incr, $fs=0.5); 

    } 

    union(){ 

    start = 3.2; 

    incr = 0; 

    dx = 10.5; 

    for(x=[-1:7]) 

    for(y=[-1:7]){ 

        translate([x*dx,y*dx,0]) 

        cylinder(h = 3, r = start+x*incr+y*incr, $fs=0.5); 

    } 

} 

} 

} 

}  
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