1,785 research outputs found

    Ray tracing for constructive solid modeling

    Get PDF
    This thesis describes a system for the creation and realistic depiction of non-geometric, complex, three dimensional solid models by utilizing a ray tracing algorithm and a graphics relational database. Geometric primitives such as a sphere, cylinder, block, and cone are combined together by using the Boolean set operations of union (+), intersection (&), and difference (-). The three dimensional solid models are built based on the concept of constructive solid geometric modeling. The database provides functions for the creation, transformation, and deletion of the primitives and models. A model may be displayed as a wireframe for a fast display or as a shaded solid for a realistic display

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Virtual reality based creation of concept model designs for CAD systems

    Get PDF
    This work introduces a novel method to overcome most of the drawbacks in traditional methods for creating design models. The main innovation is the use of virtual tools to simulate the natural physical environment in which freeform. Design models are created by experienced designers. Namely, the model is created in a virtual environment by carving a work piece with tools that simulate NC milling cutters. Algorithms have been developed to support the approach, in which the design model is created in a Virtual Reality (VR) environment and selection and manipulation of tools can be performed in the virtual space. The desianer\u27s hand movements generate the tool trajectories and they are obtained by recording the position and orientation of a hand mounted motion tracker. Swept volumes of virtual tools are generated from the geometry of the tool and its trajectories. Then Boolean operations are performed on the swept volumes and the initial virtual stock (work piece) to create the design model. Algorithms have been developed as a part of this work to integrate the VR environment with a commercial CAD/CAM system in order to demonstrate the practical applications of the research results. The integrated system provides a much more efficient and easy-to-implement process of freeform model creation than employed in current CAD/CAM software. It could prove to be the prototype for the next-generation CAD/CAM system

    Liquid Cybernetic Systems: The Fourth‐Order Cybernetics

    Get PDF
    Technological development in robotics, computing architectures and devices, and information storage systems, in one single word: cybernetic systems, has progressed according to a jeopardized connection scheme, difficult if not impossible to track and picture in all its streams. Aim of this progress report is to critically introduce the most relevant limits and present a promising paradigm that might bring new momentum, offering features that naturally and elegantly overcome current challenges and introduce several other advantages: liquid cybernetic systems. The topic describing the four orders of cybernetic systems identified so far is introduced, evidencing the features of the fourth order that includes liquid systems. Then, current limitations to the development of conventional, von Neumann‐based cybernetic systems are briefly discussed: device integration, thermal design, data throughput, and energy consumption. In the following sections, liquid‐state machines are introduced, providing a computational paradigm (free from in materio considerations) that goes into the direction of solving such issues. Two original in materio implementation schemes are proposed: the COlloIdal demonsTratOR (COgITOR) autonomous robot, and a soft holonomic processor that is also proposed to realize an autolographic system

    An Outlook on Design Technologies for Future Integrated Systems

    Get PDF
    The economic and social demand for ubiquitous and multifaceted electronic systems-in combination with the unprecedented opportunities provided by the integration of various manufacturing technologies-is paving the way to a new class of heterogeneous integrated systems, with increased performance and connectedness and providing us with gateways to the living world. This paper surveys design requirements and solutions for heterogeneous systems and addresses design technologies for realizing them

    Propagating Changes between Declarative and Procedural Process Models

    Get PDF
    Debatt protseduuriliste ja deklaratiivsete keelte eeliste ja puuduste ĂŒle erinevate kasutusjuhtude korral on olnud tuline. Protseduurilised keeled on sobivamad operatiivsete protsesside modelleerimiseks, deklaratiivsed keeli kasutatakse regulatsioonide/juhiste jaoks. Ometi tekib olukordi, kus on mĂ”istlik kombineerida neid keeli, et saavutada parem tulemus. Selle asemel, et sundida modelleerijaid Ă”ppima uusi hĂŒbriidkeeli, peame me paremaks kahe spetsifikatsiooni eraldi hoidmist ja pakume vĂ€lja viisi, kuidas protseduurilist mudelit automaatselt muuta nii, et see oleks kooskĂ”las deklaratiivsete reeglitega. NĂ”udlus sellise lahenduse jaoks tekib, nĂ€iteks kui organisatsioon peab muutma protsesse vastavalt muutuvatele vĂ€listele reeglitele. Üldiselt on nii vĂ”imalik Ă€ra kasutada deklaratiivsete keelte paindlikust ja hoida kĂ”rgetasemelist tuge, mida pakuvad protseduurilised keeled. Lisaks, vĂ”rreldes originaalset ja parandatud mudelit, on vĂ”imalik selgelt nĂ€ha reeglite mĂ”ju. KĂ€esolevas lĂ”putöös sĂ”nastame me antud probleemi, loome teoreetilise vundamendi ja pakume vĂ€lja olekumasinatel pĂ”hineva lahenduse, mida me vĂ”rdleme olemasolevate lahendustega mudelite parandamiseks ja protsesside avastamiseks.The debate on advantages and disadvantages of declarative versus procedural process modelling languages for different usage scenarios has been intense. Procedural languages are more suited for describing operational processes while declarative ones for expressing regulations/guidelines, and in many situations the need of combining the benefits of the two rises. Instead of forcing modellers to use a hybrid language, we envisage to keep the two specifications separate and propose a technique that automatically adapts procedural models so as to comply with sets of declarative rules. This not only fits scenarios where, e.g., company processes have to be modified according to changing external rules, but, more in general, it presents a way to take advantage of the flexibility of declarative while maintaining the high level of support provided by procedural languages. Furthermore, by comparing the original and the resulting procedural models, the impact of rules is clearly exposed. In this thesis, we frame the problem above by providing its theoretical characterisation and propose an automata-based solution, which is then evaluated against approaches leveraging state-of-the-art techniques for process discovery and model repair

    COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF NANOMAGNETIC DEVICES FOR ULTRA-LOW ENERGY COMPUTING

    Get PDF
    Nanomagnetic computing devices are inherently nonvolatile and show unique transfer characteristics while their switching energy requirements are on par, if not better than state of the art CMOS based devices. These characteristics make them very attractive for both Boolean and non-Boolean computing applications. Among different strategies employed to switch nanomagnetic computing devices e.g. magnetic field, spin transfer torque, spin orbit torque etc., strain induced switching has been shown to be among the most energy efficient. Strain switched nanomagnetic devices are also amenable for non-Boolean computing applications. Such strain mediated magnetization switching, termed here as “Straintronics”, is implemented by switching the magnetization of the magnetic layer of a magnetostrictive-piezoelectric nanoscale heterostructure by applying an electric field in the underlying piezoelectric layer. The modes of “straintronic” switching: coherent vs. incoherent switching of spins can affect device performance such as speed, energy dissipation and switching error in such devices. There was relatively little research performed on understanding the switching mechanism (coherent vs. incoherent) in xiv straintronic devices and their adaptation for non-Boolean computing, both of which have been studied in this thesis. Detailed studies of the effects of nanomagnet geometry and size on the coherence of the switching process and ultimately device performance of such strain switched nanomagnetic devices have been performed. These studies also contributed in optimizing designs for low energy, low dynamic error operation of straintronic logic devices and identified avenues for further research. A Novel non-Boolean “straintronic” computing device (Ternary Content Addressable Memory, abbreviated as TCAM) has been proposed and evaluated through numerical simulations. This device showed significant improvement over existing CMOS device based TCAM implementation in terms of scaling, energy-delay product, operational simplicity etc. The experimental part of this thesis answered a very fundamental question in strain induced magnetization rotation. Specifically, this experiment studied the variation in magnetization orientation for strain induced magnetization rotation along the thickness of a magnetostrictive thin film using polarized neutron reflectometry and demonstrated non-uniform magnetization rotation along the thickness of the sample. Additional experimental work was performed to lay the groundwork for ultra-low voltage straintronic switching demonstration. Preliminary sample fabrication and characterization that can potentially lead to low voltage (~10-100 mV) operation and local clocking of such devices has been performed

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    Educational Robotics and Computational Thinking in Elementary School Students

    Get PDF
    This study examined the role of educational robotics in fostering computational thinking in elementary settings, both in classrooms and extracurricular programs. Among growing concerns over K–12 students’ computational thinking deficits, the research evaluated the impact of Lego EV3 and VEX IQ platforms. Data was sourced from lesson plans, student work surveys, and teacher interviews and then subjected to thematic analysis using a qualitative approach. The participants were Texas educators engaged in robotics instruction, even though specific robotics statistics are absent in the Texas Education Agency. Instructional strategies varied from hands-on experiences to translating mathematical concepts into robotic actions. A key finding was robotics’ role in advancing computational and critical thinking skills. Teachers believed that robotics went beyond a mere science, technology, engineering, and mathematics introduction, promoting advanced computational thinking and linking creativity to real-world application. Robotics challenges were seen to enhance students’ computational and critical thinking capabilities. The study drew from constructionism theory, which promotes learning through action and knowledge creation. In conclusion, educational robotics, reinforced by constructionism, is essential for equipping students for a technologically advanced future. Early exposure to robotics equips elementary students with vital 21st-century skills, enhancing their science, technology, engineering, and mathematics preparedness
    • 

    corecore