608 research outputs found

    Prototype software for colorant formulation using Gamblin conservation colors

    Get PDF
    When selecting pigments from a large set for restorative inpainting, it can often be challenging to create a mixture that will provide an exact match to the original artwork under a range of viewing and illumination conditions. In this research, a prototype computer program was developed that will aid the user by providing a color match and paint recipe that exhibits minimal metamerism when compared to the original artwork. The Gamblin Conservation Colors, a set of 43 colorants specially formulated for inpainting, were characterized in terms of their optical properties, absorption and scattering, according to Kubelka-Munk turbid media theory. Formulations were made using traditional spectrophotometric measurements and image-based measurements. The multispectral imaging system consisted of a trichromatic CFA camera coupled with two absorption filters; spectral reflectance data for each pixel location was estimated with a transformation based on calibration target images. Three targets were used for testing formulation accuracy: a target consisting of mixtures of Gamblin Conservation Colors, and two oil paintings. Pigment selection was reasonably successful, and good predictions resulted from both measurement techniques, but for more complex tasks such as pigment identification, a more rigorous colorant characterization approach may be needed. Predictions from image-based measurements were generally less accurate, and improvements in the camera model would likely remedy this. It is expected that this software will be of assistance to conservators by simplifying the process of selecting from a large set of available pigments, as well as reducing the possibility of damage to painted surfaces in cases where direct measurements are impractical. The open source nature of the software provides the opportunity for changes and addition of features in the future

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Light Management for Silicon and Perovskite Tandem Solar Cells

    Get PDF
    abstract: The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the aim is to understand and improve the light management issues in silicon and perovskite based tandems through comprehensive optical modeling and simulation of current state of the art tandems and by characterizing the optical properties of new top and bottom cell materials. Moreover, to propose practical solutions to mitigate some of the optical losses. Highest efficiency single-junction silicon and bottom silicon sub-cell in silicon based tandems employ monocrystalline silicon wafer textured with random pyramids. Therefore, the light trapping performance of random pyramids in silicon solar cells is established. An accurate three-dimensional height map of random pyramids is captured and ray-traced to record the angular distribution of light inside the wafer which shows random pyramids trap light as well as Lambertian scatterer. Second, the problem of front-surface reflectance common to all modules, planar solar cells and to silicon and perovskite based tandems is dealt. A nano-imprint lithography procedure is developed to fabricate polydimethylsiloxane (PDMS) scattering layer carrying random pyramids that effectively reduces the reflectance. Results show it increased the efficiency of planar semi-transparent perovskite solar cell by 10.6% relative. Next a detailed assessment of light-management in practical two-terminal perovskite/silicon and perovskite/perovskite tandems is performed to quantify reflectance, parasitic and light-trapping losses. For this first a methodology based on spectroscopic ellipsometry is developed to characterize new absorber materials employed in tandems. Characterized materials include wide-bandgap (CH3NH3I3, CsyFA1-yPb(BrxI1-x)3) and low-bandgap (Cs0.05FA0.5MA0.45(Pb0.5Sn0.5)I3) perovskites and wide-bandgap CdTe alloys (CdZnSeTe). Using this information rigorous optical modeling of two-terminal perovskite/silicon and perovskite/perovskite tandems with varying light management schemes is performed. Thus providing a guideline for further development.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    6th International Meeting on Retouching of Cultural Heritage, RECH6

    Full text link
    RECH Biennial Meeting is one of the largest educational and scientific events in Retouching field, an ideal venue for conservators and scientists to present their research results about retouching. The main focus will be to promote the exchange of ideas, concepts, terminology, methods, techniques and materials applied during the retouching process in different areas of conservation: mural painting, easel painting, sculpture, graphic documentation, architecture, plasterwork, photography, contemporary art, among others. This Meeting aims to address retouching by encouraging papers that contribute to a deeper understanding of this final task of the conservation and restoration intervention. The main theme embraces the concepts of retouching, the criteria and limits in the retouching process, the bad retouching impact on heritage and their technical and scientific developments.This Meeting will discuss real-life approaches on retouching, focusing on practical solutions and on sharing experiencesColomina Subiela, A.; Doménech García, B.; Bailão, A. (2023). 6th International Meeting on Retouching of Cultural Heritage, RECH6. Editorial Universitat Politècnica de València. https://doi.org/10.4995/RECH6.2021.1601

    High-Level Intuitive Features (HLIFs) for Melanoma Detection

    Get PDF
    Feature extraction of segmented skin lesions is a pivotal step for implementing accurate decision support systems. Existing feature sets combine many ad-hoc calculations and are unable to easily provide intuitive diagnostic reasoning. This thesis presents the design and evaluation of a set of features for objectively detecting melanoma in an intuitive and accurate manner. We call these "high-level intuitive features" (HLIFs). The current clinical standard for detecting melanoma, the deadliest form of skin cancer, is visual inspection of the skin's surface. A widely adopted rule for detecting melanoma is the "ABCD" rule, whereby the doctor identifies the presence of Asymmetry, Border irregularity, Colour patterns, and Diameter. The adoption of specialized medical devices for this cause is extremely slow due to the added temporal and financial burden. Therefore, recent research efforts have focused on detection support systems that analyse images acquired with standard consumer-grade camera images of skin lesions. The central benefit of these systems is the provision of technology with low barriers to adoption. Recently proposed skin lesion feature sets have been large sets of low-level features attempting to model the widely adopted ABCD criteria of melanoma. These result in high-dimensional feature spaces, which are computationally expensive and sparse due to the lack of available clinical data. It is difficult to convey diagnostic rationale using these feature sets due to their inherent ad-hoc mathematical nature. This thesis presents and applies a generic framework for designing HLIFs for decision support systems relying on intuitive observations. By definition, a HLIF is designed explicitly to model a human-observable characteristic such that the feature score can be intuited by the user. Thus, along with the classification label, visual rationale can be provided to further support the prediction. This thesis applies the HLIF framework to design 10 HLIFs for skin cancer detection, following the ABCD rule. That is, HLIFs modeling asymmetry, border irregularity, and colour patterns are presented. This thesis evaluates the effectiveness of HLIFs in a standard classification setting. Using publicly-available images obtained in unconstrained environments, the set of HLIFs is compared with and against a recently published low-level feature set. Since the focus is on evaluating the features, illumination correction and manually-defined segmentations are used, along with a linear classification scheme. The promising results indicate that HLIFs capture more relevant information than low-level features, and that concatenating the HLIFs to the low-level feature set results in improved accuracy metrics. Visual intuitive information is provided to indicate the ability of providing intuitive diagnostic reasoning to the user

    Realistic visualisation of cultural heritage objects

    Get PDF
    This research investigation used digital photography in a hemispherical dome, enabling a set of 64 photographic images of an object to be captured in perfect pixel register, with each image illuminated from a different direction. This representation turns out to be much richer than a single 2D image, because it contains information at each point about both the 3D shape of the surface (gradient and local curvature) and the directionality of reflectance (gloss and specularity). Thereby it enables not only interactive visualisation through viewer software, giving the illusion of 3D, but also the reconstruction of an actual 3D surface and highly realistic rendering of a wide range of materials. The following seven outcomes of the research are claimed as novel and therefore as representing contributions to knowledge in the field: A method for determining the geometry of an illumination dome; An adaptive method for finding surface normals by bounded regression; Generating 3D surfaces from photometric stereo; Relationship between surface normals and specular angles; Modelling surface specularity by a modified Lorentzian function; Determining the optimal wavelengths of colour laser scanners; Characterising colour devices by synthetic reflectance spectra

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    Proximal sensing in soil profiles

    Get PDF
    Objective and quantitative soil information is crucial for pedological investigations and to inform diverse decision making processes. New techniques are required so that soil information can be ascertained in a timely manner to support sampling at finer spatial and temporal resolutions. Currently, no single technique can provide information on all of the properties of interest. This research investigated the conjoint use of visible near-infrared diffuse reflectance spectroscopy (VisNIR) and portable X-ray fluorescence spectroscopy (pXRF) for the in situ investigation of soil properties, profile variability and description. Fifteen soil pits across New South Wales, Australia, were selected for their diverse representation of soil properties. Sampling at these sites involved scanning three vertical with sensor readings taken at 2.5 cm intervals to a depth of 1 m within each transect. Soils were described by traditional pit description techniques and horizon based sampling was conducted to characterise the soil in terms of mineral composition, OC, TC, TN, CEC, EC, pH and PSA. A data fusion approach involving model averaging, and a mass balance was implemented to characterise the mineral composition of soils, including phyllosilicates sesquioxides, carbonate, gypsum, quartz and feldspars. Results were validated against X-ray diffraction analysis. To explore the predictive capability of scans taken in situ, existing spectral libraries were used to calibrate VisNIR and pXRF models and identify the best use of proximal sensor data to maximise soil information gain. As not all properties of interest have detectable spectral activity by either VisNIR or pXRF, a spectral soil inference system (SPEC-SINFERS) to augment the number of predicted properties. This system involved the propagation of sensor and model uncertainties through one hundred independent simulations for each calculation, and allowed the integration of both regression models and machine learning techniques

    Retrieving DNA from incinerated teeth: Implications for forensic identification

    Get PDF
    Loss of lives due to building fires, vehicle explosions, terrorist bombings and bushfires require immediate response and identification of any deceased. The temperatures reached in these catastrophic events can widely vary from approximately 300°C to more than 1000°C. This can be sufficient to leave humans remain in an extremely fragile and fragmented state. In such circumstances, teeth can survive the harsh condition and are therefore one of the most frequently used biological tissues used for DNA profiling. Currently there is very little empirical data to determine the opportunity for successful genetic typing from teeth incinerated at varying temperatures. A process whereby the generation of DNA data from highly burned teeth can be predicted would be highly beneficial. If there is a prediction of DNA typing, then a process to generate these data would further aid in the process of human identification from such sample types. The research in this thesis highlights the development of three novel pre-screening methods for incinerated teeth: ▪ a temperature-prediction tool ▪ a DNA viability triage ▪ a diagnostic workflow A holistic approach is utilised in this thesis that integrates multiple analytical methods such as colourimetry, X-ray diffractometry, scanning electron microscope and DNA analysis. The research data in this thesis are generated and analysed in the following forms: photographic images, colourimetric values, hydroxyapatite crystallite size, X-ray diffractogram, microscopic images and quantified DNA. The research is presented stepwise following the chapters: Chapter 1 – A comprehensive review of the current literature relating to the study of incinerated teeth including the structure, DNA contents and investigative approaches. Chapter 2 – The practicality of a fire simulation as an experimental approach to incinerated teeth was tested and evaluated. The decision to incinerate teeth using a furnace was made. Chapter 3 – The integration of spectrophotometric and x-ray diffraction analyses to investigate incinerated teeth was established. Chapter 4 – Based on the validation study in Chapter 3, a tool to predict temperature-exposure of incinerated teeth was developed and validated. Chapter 5 – nDNA and mtDNA analysis from incinerated teeth was discussed. Using the data from Chapter 4 and the data of the quantified DNA, a diagnostic triage for DNA viability in incinerated teeth was established. In addition, an optimised workflow for the investigation of incinerated teeth that will be used for DNA analysis was proposed. Overall, this thesis presents novel and robust pre-screening methods that can offer important information prior to DNA analysis of incinerated teeth. In addition, this research provides an opportunity to advance the understanding about the forensic value of incinerated teeth in predicting temperature and assessing DNA viability. A major implication of this research is the possibility to implement the developed methods in forensic identification using incinerated teeth.Thesis (Ph.D.) -- University of Adelaide, School of Biological Sciences, 202
    • …
    corecore