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SUMMARY

Objective and quantitative soil information is crucial for pedological investigations and to
inform diverse decision-making processes. A wide range of proximal sensing devices are
available to provide quantitative soil information in situ. The cost-effectiveness and
timeliness of the devices allows a much greater representation of the spatial distribution of
soil properties to be achieved and supports soil investigation at finer spatial and temporal
resolution. To use these new devices effectively, new techniques are required. Focus must
also be given to ensuring that the information received from devices is made available in the

field, so that this soil information may be utilised to do something useful in the field.

Currently, no sensing device can provide information on all the soil properties of interest. Use
of multiple sensors provides the only viable option for now. This thesis investigated the
conjoint use of visible near-infrared diffuse reflectance spectroscopy (VisNIR) and portable
X-ray fluorescence spectroscopy (pXRF) for the in situ investigation of soil properties and
profile variability. These two devices operate on distinct principles, which are thought to be
complementary. Portable X-ray fluorescence spectroscopy is able to provide elemental
concentration in the sample (Z > 12). Meanwhile, VisNIR is able to provide information on

colour and some molecular characterisation.

Calibrating models using VisNIR and pXRF is well established, although commonly models
are developed for a limited number of properties and a limited geographic range. Therefore,
this thesis was conducted with three aspirations: i) construct models that are functional for a
diverse range of soil profiles; ii) construct models that work in situ; and iii) provide results in

near real-time.

Chapter 1 provides a review of the development of quantitative, field portable soil sensors,
and the new field of Digital Soil Morphometrics that has developed around these devices.
The review raises many questions surrounding quantitative soil description and highlights the

fact that new techniques are required to efficiently describe soils with these devices.



Chapter 2 describes the devices, methods and sites used in this thesis. A detailed description
of the functionality of VisNIR and pXRF is provided, and current applications in soil science
are summarised. Methods that are common to multiple chapters are described to avoid
repetition in the following chapters. Site descriptions of the fifteen soil profiles analysed are

provided, including field observations, laboratory analysis and sensor information.

Chapter 3 explores the intensive use of VisNIR on a soil profile for the identification of
homogeneous spectral response zones. Effects of soil moisture on spectral responses are
examined and methodologies to reduce these effects, while conserving intrinsic soil

information, are explored.

Chapter 4 explores the development of an improved sampling methodology to efficiently
capture soil profile variability. Given the accuracy for space trade-off associated with these
devices, they cannot be used in a similar method to traditional horizon description. Vertical
and lateral variation of soil profiles was characterised, and this information was used to
inform a methodology for sampling profiles with proximal sensors.

Chapter 5 presents a data-fusion approach to characterise the mineral composition of soils,
including phyllosilicate speciation, Fe-oxides, gypsum, carbonate, quartz and feldspars. This
approach combines a pattern matching algorithm to predict phyllosilicates and Fe-oxides
speciation from VisNIR spectra, and an elemental mass balance based on pXRF reported

elemental concentrations.

Chapter 6 investigates the use of a spectral soil inference system (SPEC-SINFERS) to
augment the number of predicted properties. As not all properties of interest have detectable
spectral activity by either VisNIR or pXRF. This system involved the propagation of sensor
and model uncertainties through one hundred independent simulations for each pedotransfer
function and allowed the integration of both regression and machine learning models.

Chapter 7 summarises results from this thesis, discusses limitations and improvements, and

suggests future research directions.
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Chapter 1: What is digital soil morphometrics and where might it be going?

1 WHAT IS DIGITAL SOIL
MORPHOMETRICS AND WHERE
MIGHT IT BE GOING?

1.1 Abstract

A large number of devices exist that are able to provide quantitative and objective
representation of soil properties. Many of these devices are able to elucidate properties
unattainable to the human eye and may redefine current definitions of “field observable”
properties. Possible meanings for, and approaches to, digital soil morphometrics are
discussed. Digital soil morphometrics’ relationship to other domains of research and practice
such as proximal soil sensing and conventional field soil description are explored; with the
suggestion that digital soil morphometrics has greatest potential as a special case of proximal
soil sensing. The application areas of digital soil morphometrics outside of routine soil

description are canvassed and technological gaps are discussed.

1.2 Introduction

The development of morphometrics in the biological sciences enabled the quantitative
analysis of form and revolutionised the description and statistical analysis of specimens. To
bring a similar revolution to soil description and to unite diverse tools and techniques that are

able to provide more objective and quantitative description of soil attributes the subdiscipline
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of digital soil morphometrics (DSMorph) has been proposed (Hartemink and Minasny, 2014).
In general terms, DSMorph has been defined as the “application of tools and techniques for
measuring, mapping and quantifying soil profile attributes and deriving continuous depth
functions” (Hartemink and Minasny, 2014). DSMorph is thus at the forefront of technology
and innovation in soil science and promises to provide a much needed scientific and
technological overhaul to field soil description; a discipline which has been relatively
technology stable, possibly averse, for decades. DSMorph tools and techniques have untold

pedological, edaphic, and environmental applications.

While mathematical approaches and the computing power to perform morphometric analyses
have greatly advanced in recent years, there remain two fundamental issues encumbering the
supply of relevant input data. First, labour-intensity, as examining and recording appropriate
attributes can be a time-consuming task (Blackith and Rayment, 1971, p. 286). Secondly,
subjectivity, as there are always elements to the observation of natural forms that may be
considered more of an art than a science (Blackith and Rayment, 1971, p. 1). These issues
underlie the development of DSMorph and highlight the value of any technique that may
provide less labour-intensive data collection and increased objectivism of soil observations.

The marriage of digital data collection with morphometric approaches is crucial to the
success of this new subdiscipline. However, key in recognising DSMorph as a subdiscipline
is the identification of which particular attributes or contributions it may deliver that other
subdisciplines cannot deliver independently. Digital soil morphometric approaches can better
represent variation within observed soil objects, facilitate the quantification of uncertainties
and will change the way soils are observed and described. Nonetheless, the offered definition
IS quite broad and its boundaries need to be better delineated to clearly define what DSMorph
is, what it is not and where it might be going.

To better understand DSMorph its component topics of digital data acquisition, soil form and
morphometric approaches are deconstructed, and the unique contribution of each is
investigated. As innovation in the application of DSMorph tools and techniques as they

pertain to routine soil description has recently been reviewed (Hartemink and Minasny,
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2014), the second half of this chapter is focused on highlighting a selection of novel and
potential applications of DSMorph techniques outside of routine soil description.

Technological and information gaps are identified and ways forward discussed.

1.3 Discussion

1.3.1 Conventional field soil description

Before investigating DSMorph further, the need for its development must be understood.
Most people would agree that field soil description has largely stagnated following rapid
initial development. This development includes the formalisation of procedures for observing
and classifying soils (Clarke, 1936; Soil Survey Staff, 1937), as well as the codification of
morphological classification of soil structure (Nikiforoff, 1941). This was a significant step
towards the standardised observation and reporting of soil attributes mandated by widespread
soil survey programs beginning from the turn of the 20" century. Pedology has historically
been a hands-on, technology sparse discipline. During this period of standardisation it was
noted that the most important tool for the soil observer was the humble spade (Soil Survey
Staff, 1937, p. 28). In fact, excluding a small number of qualitative analyses involving HCI or
H20,, and basic tests for soil reaction, there were “few reliable field tests of soils that serve a
useful purpose in the soil survey” (Soil Survey Staff, 1937, p. 30-2). Fast-forward eight
decades and little has changed. The field of soil description has remained largely
technologically stable since the 1950s, and to this day the main modus operandi in soil
description remains trained human observation. Stagnation in itself is not a cause for action;
in fact it may signify the successful maturation of a field. However the reliance on human
observation brings into question sources of error, as although professional observers may be
trained and calibrated to one another, this training cannot completely eliminate inter- or intra-

observer variation.

Soil colour, one of the most significant soil attributes, gives an example of how much
variation in assessment can be introduced. In addition to differences in the light condition
under which colour measurements are being made, it is also well established that

physiological differences in the eye mean that not everyone perceives colour in the same
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manner, and that colour perception also drifts with aging due to the gradual yellowing of the
eye’s lens (Billmeyer and Saltzman, 1981, p. 174). The use of reference charts is meant to
eliminate the effects of these differences and standardise the reporting of soil colour.
However, the Munsell chart is not free from variation. Sanchez-Marafién et al. (2005)
investigated these ubiquitous colour books and found that manufacturer production
differences and non-uniform fading characteristics can significantly affect colour
determination. The authors found that visual judgement of soil colour between individuals
using the same Munsell chart under heavily controlled conditions was variable. Similar
results were obtained by Shields et al. (1966), leading them to suggest the use of
spectrophotometry to standardise colour observation and eliminate observer variability; a
reasonable suggestion that was never implemented. In fact the use of a spectrophotometer
system to eliminate observer variation had been suggested another 35 years prior (Carter,
1931). Decades have passed since brewing industries dropped reference charts in favour of
spectrophotometric colour standards (ASBC, 1949). It is absurd to imagine modern medical
studies and analytical assays using reference charts for quantitative analysis. So why is soil
science so slow to change? When observing soils it is important to eliminate, or at least
account for, the sources of variability. Thus approaches, such as DSMorph, that can give

more objectivity are a useful way forward.

1.3.2 Deconstructing DSMorph

In the appropriation of terms from other scientific disciplines, one must be sure to clearly
define how they translate to their new environment. To avoid confusion the component topics
of this new subdiscipline need to be deconstructed, to clarify meanings for, and approaches
to, DSMorph.

1.3.2.1 Digital data acquisition

The digital component refers not to the devices themselves, but rather to the quantitative data
that they can deliver. Data obtained using DSMorph tools are more objective and at times
able to measure attributes that are unattainable using traditional methods. To investigate the
benefits of these approaches the progress made by observing some soil structural attributes



Chapter 1: What is digital soil morphometrics and where might it be going?

using digital techniques is investigated. The procurement of digital data is not new, with
those who might be considered pioneering digital soil morphometricians looking for new
methods to quantify treatment effects on soil surface condition. Currence (1969) for example,
quantified soil surface roughness under different tillage treatments using a profilometer
system. The automated system was able to record relief information on punch cards at a
height resolution of 0.01 inch. Meanwhile O'Callaghan and Loveday (1973) were able to use
digitised images to quantify the effect of gypsum application on the length and width of crack
skeletons (Fig. 1.1). In both of these studies digital quantification allowed investigation of
attributes on a scale that was not feasible using manual techniques, and in doing so discerned
treatment effects.
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Figure 1.1 Section of original photograph showing a cracked soil surface (left), digitised
crack “skeleton” (middle) and “ballooned” discrete peds (right), adapted from (O'Callaghan
and Loveday, 1973).

Digital data acquisition of structural properties then extended vertically into the soil profile
with a focus on micromorphology. Although not analysed directly in the field, thin sections
were taken and image analysers were used to study pore distributions and how they work
(Bouma et al., 1977; Murphy et al., 1977). Then computed tomographic scanning was used to
investigate undisturbed soil material (Petrovic et al., 1982; Hainsworth and Aylmore, 1983).
Mesomophological analysis was introduced to bridge the gap between these
micromorphological approaches and field description, which was largely qualitative and
macromorphological (Koppi and McBratney, 1991). This meant that instead of measuring

discrete points a continuous description of properties such as pore size and porosity could be
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presented (Fig. 1.2a). This allowed interpretation of the relationship between structural

properties and others such as redoximorphic features (Fig. 1.2c).
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Fig. 1.2 Mesomorphological analysis of a Paleustalf (Koppi and McBratney, 1991): a)
smoothed volumetric surface area of macropores; b) image of macropores (black) and
soil solids (white) with horizon designations; c) smoothed volumetric surface area of
manganese/iron-rich areas; d) image of manganese/iron-rich areas (black) and other
soil solids and pores (white) with horizon designations. Images represent a 100 x 500
mm section of the soil profile with a resolution of approximately 0.2 mm. Smoothed
lines were produced using a 20 mm moving average.

When representing soils in this continuous manner it is observed that soil properties are not

uniform within soil horizons. This may lead us to question the conventional horizon based
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representation of soil attributes and to ask: if the tools used to analyse soils are updated, does

this mean that the way in which soils are described also needs to be re-addressed?

1.3.2.2 Soil form

“The essential problem in morphometrics is to measure the degree of similarity of two forms”
(Blackith and Rayment, 1971, p. 9). However, what does form mean when applied to the soil
profile? When assessing profile attributes, the concept of form extends beyond its original
biological definition concerning the size and shape of a specimen. For our purposes form
encompasses two aspects: geometric, or the disposition of attributes in a 2-, 3-, or 4D space;

and multivariate, or the various attributes of interest within the space.

So how is the geometric aspect of form described? As suggested above, currently the
geometric aspect of form is not adequately described. When samples are taken to the
laboratory, dried, ground and then analysed, only the average value of the sample is reported
and information on spatial variability is lost. Some DSMorph devices, such as hyperspectral
cameras (Steffens and Buddenbaum, 2013) and laser scanners (Eck et al., 2013), are able to
scan in two dimensions and capture some of this vertical and lateral variation. Is this variation
adequately captured using point based devices such as visible near-infrared diffuse
reflectance (VisNIR) and portable X-ray fluorescence (pXRF) spectroscopy? To adequately
capture spatial variation, the method in which soils are described must be redesigned. An
expedient solution would be to include multiple vertical transects to allow the
characterisation of variability within the observed object. For standardisation of variation
over a fixed distance the vertical transects need to be a set distance apart and cover a fixed

area, or if you take samples at right angles, within a fixed volume (Fig. 1.3).

Given the mean and the range of values calculated with depth, you can recognise that there is
variation within that observed object (Fig. 1.4). The richness of information obtained if soil
properties are described in this way can then be manipulated in a model such as a depth
function or other laterally isotropic, vertically non-stationary random functions (McBratney
and Moran, 1990).
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Fig. 1.3 A potential standard soil volumetric object. Three transects are analysed on one

wall and others on adjacent wall orthogonal to the first.
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Fig. 1.4 Predicted organic carbon (%) of a) Eutrudept and b) Udipsamment produced

from VisNIR readings of pit walls sampled with three vertical transects at 25 mm

intervals to a depth of 100 cm. Thin black lines represent predicted values for the three

vertical transects; thick black lines indicate the mean predicted value with depth; pink

halos indicate the mean 95% prediction interval; and dashed horizontal lines indicate

horizon designations.
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1.3.2.3 Morphometric analyses

After soil properties have been captured digitally, multivariate statistics can be performed.
The attributes themselves being geometric in nature or spatially located render this analysis
morphometric. Hole and Hironaka (1960) were able to represent soil profiles in a multi-
dimensional space and quantify the degree of similarity between two profiles. Around this
time, numerically based taxonomic systems were developing in diverse fields, the key
advantages of these being repeatability and objectivity (Sneath and Sokal, 1962). Such
systems attempt to remove subjectivity from decision-making processes and should allow
different scientists to arrive at the same conclusions, while increasing the accuracy and
precision of the results (Bidwell and Hole, 1964). These benefits translate to numeric soil
classification systems and such analyses may also play an important role in the development
of a universal classification system (Brevik et al., 2015). However, morphometric analyses
extend beyond classificatory attempts. As they are able to connect both geometric and
morphometric attributes, morphometric analyses may also provide evidence for pedogenetic
theories. Stockmann et al. (2016), for example, used variation of pXRF-derived geochemical
indices with depth to identify if a profile is polygenetic or derived from uniform parent
material. Morphometric analysis may also shed light on soil-forming processes, connect

properties and processes, and facilitate identification of relationships between properties.

1.3.3 Delineating digital soil morphometrics

One of the mantras of the subdiscipline seems to be to digitally enrich the toolkit of the field
pedologist. However, Hartemink and Minasny (2014) also list many laboratory-based
techniques, e.g. scanning electron microscopy and X-ray computed tomography, as potential
DSMorph tools. While these devices can provide valuable information about soil profile
attributes, they will probably not enrich the toolkit of the field pedologist anytime soon. Their
inclusion also blurs the definition of what DSMorph is to such an extent that it encompasses
laboratory analysis. The power of DSMorph comes with the capacity to objectively quantify
soil attributes in the field using methods that have the capacity to increase sampling intervals
and more readily quantify spatial variation compared to traditional methods. Digital soil

morphometrics may be envisaged at the confluence of pedology, pedometrics and proximal
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soil sensing (Fig. 1.5). Thus, in subsequent description, focus is given to techniques that have

been performed, or have the potential to be performed, in the field.

Pedology

_ Digital Soil
_—" Morphometrics

Pedometrics Proximal
soil

sensing

Figure 1.5 Suggested relationship of digital soil morphometrics to pedology,

pedometrics and proximal soil sensing.

1.3.4 Novel and potential applications

When incorporating new tools and techniques into the field of soil science, it must be asked:
is this simply to update the technology of field soil description, or is this to pose and answer
new scientific questions? A review of the applications of DSMorph techniques as they apply
to the prediction of attributes commonly used in soil description is given by Hartemink and
Minasny (2014). Therefore, the following will highlight some of the peripheral, novel and
developing fields that are progressing with potential to benefit from DSMorph techniques.
These include continuous depth functions, spectrally derived soil horizons, soil inference

systems, adaptive sampling procedures, and monitoring soil change.

1.3.4.1 Horizons or depth functions?
A unique question for DSMorph is to what extent is the distribution of soil properties better

described by horizons or depth functions, and to which properties do these pertain?

10
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Fig. 1.6 Comparison of current techniques used to represent soil profile data: a)
conventional quantitative profile/pedon description; b) fitting mass-preserving spline to
horizon data (lambda=0.01); c) fitted spline, horizontal lines indicate GlobalSoilMap
depth intervals; d) average spline predicted carbon % fitted to GlobalSoilMap depth

intervals.

Most of pedology as it relates to soil description identifies properties based on horizons. This
involves describing horizons and identifying the average properties of these horizons,
resulting in the representation of discrete property distributions with depth (Fig. 1.6a). For
some soil properties it may be a reasonable representation, but for many it is not. For
example, Russell and Moore (1968) showed that the decrease in OC with depth in a soil
profile is better represented by smooth exponential decay functions. Therefore, mass
preserving splines have been fitted to obtained horizon data (Fig. 1.6b,c), signifying a
movement away from using discrete horizon values, and towards describing soil depth
functions. The superiority of such functions compared to average horizon values at describing
the vertical non-stationarity of profiles has been established (Bishop et al., 1999). However,

when converting horizon-based data to splines some assumptions need to be made to create

11
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this additional data, which may decrease accuracy. For example, splines invariably dampen
actual minima and maxima values, resulting in a smoother predicted distribution (Ponce-
Henandez et al., 1986). What can this loss of information mean in terms of process or
pedological understanding? In the case of soil permeability models, how would they benefit
from continuous measurement of properties such as clay, OC, pore size and connectivity,
compared to models based on average horizon values? While the concept of horizons must be
conserved as they are a unique feature of soil, it does not mean that they are the only unique
feature of soils. Going forward it must be determined whether the collection of horizon-based
data continues, for later conversion to continuous depth data. Alternatively, the finer
sampling resolution, enabled using DSMorph techniques, could be utilised to capture more
spatial variation (such as the example in Fig. 1.4) and create more accurate depth functions

directly.

1.3.4.2 Spectrally-derived horizons

Nikiforoff (1931) lamented that “soil horizons and their nomenclature is probably the most
confused point in the technic of the description of the soil”. Nikiforoff’s frustration was that
the term “B” horizon was so broad that it did not convey any real pedogenic meaning other
than filling its place in the A-B-C horizon succession. At the time it was known that there
was great diversity in the horizons from different soil types, but the nomenclature was too
simple to account for this richness of interpretation. It was not until much later with the
implementation of suffix notation that different B horizons could be succinctly distinguished
(Soil Survey Staff, 1951). Is this nomenclature now sufficient to adequately describe the

diversity of soil horizons?

Any horizon is a mixture of materials. Using current soil description it is difficult to capture
this heterogeneity. With DSMorph techniques the boundaries of horizon identification and
classification may be advanced, and measures to describe profiles in a more continuous
manner developed. One suggested method involves identifying spectrally homogeneous
zones from VisNIR derived fuzzy cluster memberships (Fajardo et al., 2015). This method
eliminates observer bias and allows direct investigation of class membership within and
between profiles (Fig. 1.7). Could spectrally derived horizons become the new nomenclature

to better characterise soils, and interclass memberships the new descriptors? Objective
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horizon recognition is also being explored using pXRF (Weindorf et al., 2012; Minasny et
al., 2016; Adhikari et al., 2016) and hyperspectral cameras (Steffens and Buddenbaum,
2013).
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Fig. 1.7 Left to right: photograph of soil core; fuzzy membership classes; digital
gradient; horizons observed using conventional techniques; spectrally derived horizons.
Taken from (Fajardo et al., 2015).

1.3.4.3 Adaptive sampling

DSMorph techniques have the potential to derive data in the field, but how can this
information be used to perform more meaningful operations in the field? A proposed strategy
for assessing soil contamination suggests taking advantage by adapting sampling and analysis
in real-time (Horta et al., 2015). Calculations were made to find the conditional probability
density function of the contaminant and the loss function. From this information, an optimal
remediation plan can be made, taking into account both sampling and remediation costs. The
method facilitates honing in on contaminated areas, prioritisation of areas of high uncertainty
for subsequent focussed sampling and continuous updating of the map until an overall quality
criterion is achieved. A similar approach can be envisaged for soil mapping units or profiles,

but how to do it? A methodology is required to couple imaging or other techniques with point
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based sampling devices to identify the next most valuable point of a soil profile to
investigate, and determine when sufficient information has been gained for effective

characterisation.

1.3.4.3 Monitoring soil change

The soil environment is not static, though it is sometimes represented as such. Increasing
global recognition of issues such as C sequestration (Lal, 2004), provision of ecosystem
services (Kreuter et al., 2001), or soil security (McBratney et al., 2014), have generated a
corresponding need for increased knowledge on the variability of soil attributes in space and
time. Monitoring soil condition indicators, as well as elements of soil degradation such as
contamination, loss of organic matter, compaction, acidification and salinisation, are
important. The monitoring of soil requires the use of reliable, inexpensive and, at times, non-
destructive techniques. These issues have proved troublesome for soil monitoring programs,
especially when considering costs of sampling and analysis. As most DSMorph techniques
are quantitative and generate a wealth of data, more subtle changes can be detected. Research
is needed to identify how the application of DSMorph tools and techniques can improve the
efficiency and viability of soil monitoring programs.

1.3.5 Missing Technology

The future of DSMorph is tied to progress in pedology but in particular to proximal soil
sensing techniques. Current techniques need to be tested and utilised, new technologies need
to be adapted as they arise. Further, overlooked technologies must be resurrected. Large
sections of the electromagnetic spectrum are being used, as well as ultrasonics, electrical
resistivity and physical measurements but others, such as magnetic susceptibility, appear to
be underexploited (Mullins, 1977). Continued investigation of novel technologies is
paramount. Current techniques are predominately intrusive. Ideally, all soil attributes of
interest would be predicted from above the soil surface, using non-invasive techniques.
Ground penetrating radar, y-radiometrics and electromagnetic induction are three such
existing techniques, but they can predict only a few properties of interest. While invasive
techniques may fill the gap in the near-term, as expedient intermediaries, the holy grail of soil
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observation would be the development of a non-invasive sensor that could quantify all

attributes of interest from the soil surface.

In reality, such a device is a long way off, and currently no single sensor or technique has the
capacity to accurately predict all attributes of interest. The greatest power in the near future
will come from putting the information gained from multiple sensors together. It is this data
fusion, combined with soil inference systems, that will provide the most useful information.
When combining data from multiple sensors a number of approaches have been utilised. For
example, input data may be analysed individually then results combined using a model-
averaging procedure (Malone et al., 2014). Spectral data have also first been combined using
concatenation and then analysed concurrently (Viscarra Rossel et al., 2006; Wang et al.,
2015). Other techniques focus on exploiting the strengths of individual devices. Jones and
McBratney (2016) suggest combining VisNIR’s ability to provide information on bonding
environments with the elemental concentrations reported from an pXRF device to predict soil
mineralogy using an integrated chemometric and mass balance approach. The potential data
fusion methodologies are myriad, but more focus needs to be given to the quantification of
uncertainties. This will offer more valuable input data for soil inference systems that may
connect predictions with the wealth of existing soil knowledge, and amplify the number of
predicted attributes (McBratney et al., 2006).

1.4 Conclusion

- DSMorph can provide more precise soil properties data with quantified spatial
uncertainty than conventional soil description. There are untold pedological, edaphic,
and environmental applications to be gained from applying DSMorph tools and
techniques.

» If DSMorph is going to digitally enrich the toolkit of the field pedologist, then
DSMorph is probably best considered as a special case of proximal soil sensing.

« DSMorph can represent soil profiles in two different ways- depth functions or
horizons, but as yet the best approach for the various properties is not clear.

» DSMorph can be used to make field inferences to optimise and adapt sampling in real

time.

* DSMorph can enable quantification of change in soil condition and prove useful in

soil monitoring programs.
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2 SENSORS, METHODS AND SITE
DESCRIPTIONS

A number of methods, analysis sites and proximal soil sensors are shared by the research
chapters in this thesis, for brevity they are described in detail in this chapter. The reader will
be referred back to this chapter for more detail as required. Methods that are pertinent to a

single chapter will be described in detail within that particular chapter.

2.1 Proximal soil sensors

2.1.1 Visible near-infrared diffuse reflectance spectroscopy

Visible near-infrared diffuse reflectance spectroscopy (VisNIR) is a well-established tool for
soil investigation (e.g. Dalal and Henry, 1986; Ben-Dor and Banin, 1995). It has shown
particular promise for the prediction of soil carbon, texture and CEC (e.g. Islam et al., 2003;
Sgrensen and Dalsgaard, 2005). Soil information can be gained from VisNIR under a number
of modes, most commonly on air-dry and ground (<2 mm) samples in the laboratory.
Growing attention is being given to proximal sensing using VisNIR as tine-based implements
(Mouazen et al., 2007), push-probes (Ben-Dor et al., 2008), and point-based sensors in situ
(Viscarra Rossel et al., 2009).
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Visible near-infrared diffuse reflectance spectroscopy utilises the absorption of
electromagnetic radiation by molecular bonds to discern soil properties. Samples are
irradiated with light containing the range of frequencies of interest. This incoming radiation
causes molecular bonds in the sample to bend and stretch, and in doing so absorb a portion of
the incoming radiation at characteristic wavelengths. The reflected light is received at the
detector, and commonly reported as the relative reflectance of a sample compared to a
baseline scan of highly reflective substance. The absorbance features in VisNIR spectra are
generally attributed to combinations and overtones of fundamental absorption features in the
mid-infrared range of the electromagnetic spectrum. As such, while a small number of soil
properties have visible absorption features in the VisNIR spectra (Fig. 2.1), for quantitative

analysis of a soil VisNIR spectrum, chemometric approaches are required.
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Figure 2.1 Visible near-infrared reflectanc spectra of a sandy, topsoil sample (black)
and a clayey, subsoil sample (grey) from the same profile (Site 3). The location of
absorption features of Fe-oxides, water and kaolinite are indicated. Red, green and blue

colour bands are designated.

2.1.2 Portable X-ray fluorescence spectroscopy

Portable X-ray fluorescence spectroscopy (pXRF) is a relatively new proximal soil sensing
device. Portable X-ray fluorescence spectroscopy is able to characterise the elemental
composition of a sample, for all elements heavier than Na, i.e. Z > 12. Applications of pXRF
in soil science have included: prediction of heavy metal pollution (Carr et al., 2008); texture

(Zhu et al., 2011); and investigation of pedological considerations, such as lithological
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discontinuities (Weindorf et al., 2015), and weathering indices (Stockmann et al., 2016). Few
studies have investigated lighter elements, such as Al and Si, which are of vital importance to

understanding soil physical and chemical properties.

Portable X-ray fluorescence spectroscopy utilises the release of characteristic fluorescence
photons from samples. An incident X-ray beam is provided by an X-ray tube. An X-ray tube
consists of cathode and an anode in a vacuum sealed envelope. An energy potential is applied
at the cathode and electrons pass through a vacuum to the anode. Electrons undergo energy
loss as they move from the cathode to the anode, resulting in the generation of X-radiation.
The electrical potential across the cathode and anode can be modified to produce X-rays of
characteristic energy levels e.g. 10 or 50 keV. The generated X-rays are directed towards a

sample, forming the incident X-ray beam.

During fluorescence events an incident X-ray expels a K or L shell electron from its orbit
(Fig. 2.2a). This produces a hole in the electron shell and destabilises the electronic structure
of the atom. An electron from a higher shell will fall into this lower energy orbit (Fig. 2.2b).
Excess energy from this event is released as a fluorescence photon of characteristic energy
level (Fig. 2.2c), which is detected by the pXRF detector.

As well as fluorescence events, incident X-ray photons have two other potential interactions

with electrons in a sample target:

Compton scattering: a photon hits an electron, ejecting the electron from its shell

and losing a fraction of its energy in the scattering event.

Rayleigh scattering: a photon hits a strongly bound electron causing it to oscillate in

its shell and release energy at the same frequency as the source X-ray photon.

For heavier elements, Compton scattering is effectively zero and only Rayleigh scattering
occurs. Conversely, lighter elements have many loosely bound electrons and give rise to a
larger proportion of Compton scattering and a reduce proportion of Rayleigh scattering. The

addition of light elements to a sample, such as H and O in water molecules, will increase the

21



Chapter 2: Sensors, methods and site descriptions

amount of Compton scattering, while Rayleigh and fluorescence events are reduced.
Compton normalisation, normalising a spectrum based the Compton peak, has thus been

developed as a way to compensate for variable moisture contents in a sample.

Incident
X-ray Beam

*Ejected electron
9

Figure 2.2 A fluorescence event. a) The red X-ray incident beam ejects an electron from
its orbit. b) an electron from a higher orbital drops to the lower energy level to give a

full orbital shell. ¢) A fluorescence photon of characteristic energy is released.

Spectra are subject to a number of other processing techniques to remove effects such as:
matrix enhancement and absorption of characteristic photons; sum and escape peaks

occurring at the detector; and deconvolution of overlapping peaks.
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2.2 Methods

2.2.1 Proximal sensing devices

2.2.1.1 Visible near-infrared spectrometer

Visible near-infrared spectra were obtained with an AgriSpec™ device, connected via fibre-
optic cable to a contact probe attachment (Analytical Spectral Devices, Boulder, Colorado,
USA). Illlumination was provided with a halogen lamp inbuilt into the contact probe. A
Spectralon® tile (Labsphere Inc., North Sutton, New Hampshire, USA) was used to take a
baseline reading before the first measurement and following every 15-20 measurements.
Spectralon® is made of polytetraflouroethylene and cintered halon. It has the largest diffuse
reflectance values of any known substance over the 350 — 2500 nm wavelength range, with a
minimum reflectance of 95% over this range, and greater than 99% in the 400 — 1600 nm

wavelength range.

Reflectance data is recorded on three separate detectors: VNIR covering 350 — 1,000 nm;
SWIR1 covering 1,000 — 1,800 nm; and SWIR2 covering 1,800 — 2,500 nm respectively. The
VNIR detector contains a 512 element silicon photo-diode array. The spectral resolution is 3
nm (full-width-half-maximum) at 700 nm, and the sampling interval is 1.4 nm. The SWIR1
and SWIR2 bandwidths are captured using single Indium Gallium Arsenide (InGaAs)
detectors. This means reflectance is captured sequentially for each wavelength, rather than in
parallel, as with the VNIR detector array. Each SWIR detector is serviced by an oscillating
concave holographic grating, to expose the detectors to different wavelengths of energy. The
oscillation period of the gratings is the rate-determining step, requiring 100 ms scan™. The
spectral resolution is 10 nm (full-width-half-bandwidth) at 1400 and 2100 nm respectively,

and the sampling interval is 2 nm.

Indico® Pro software was used to interface with the spectrometer. Inbuilt algorithms
combined and smoothed information from the three detectors and exported a full, 350 - 2,500
nm, spectrum at 1 nm resolution. Spectra were exported as relative reflectance, calculated as

the ratio of reflectance, in digital number, from the sample and the baseline reading. The
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internal capture rate of this device is 10 Hz and reflectance readings were reported as the

average of 40 internal readings.

2.2.1.2 Portable X-ray fluorescence spectrometer

All pXRF analysis was performed with an Olympus Delta Premium pXRF (Olympus, Center
Valley, Pennsylvania, USA). The device features an Au anode X-ray tube and a large-area
silicon drift detector. Readings were taken in the Geochem mode, which is a dual beam
configuration that irradiates the sample with X-rays of energy 50 and 10 keV successively.
To improve the signal to noise ratio, samples were scanned for 30 s at each energy level. The
received spectra are converted into elemental concentrations, ppm or %, based on an inbuilt
calibration utilising fundamental parameters. This mode also gives an estimate of the
percentage of light elements (Z < 12) that are present in the sample, based on Compton
scattering. Light elements do not have a clearly defined fluorescence emission line but are
estimated from the scatter intensity ratio between Rayleigh and Compton scatter peaks. A
calibration check was performed daily with a 316 stainless steel alloy clip. The internal
calibration check ensures that predictions remain within pre-set tolerances, otherwise an alert
is given. A SiO; blank and multiple NIST standards were scanned immediately following
calibration and again hourly during operation. Scanning the SiO. blank facilitates the
detection of contamination on the pXRF measurement window. The varying elemental
concentrations of the NIST soil standards determine if output elemental concentrations are
within an acceptable range and enable tracking of the performance of the device through time
(Appendix Al).

2.2.2 In situ measurements and sampling

At each site an excavator was used to dig a soil pit approximately 1 m wide, 5 m long and 1.5
m deep in the middle. A suitable 1 m x 1 m section of the soil pit wall was identified, and a
smooth surface was prepared by shearing the excess soil with a combination of shovel and
asparagus knife. The final shearing was conducted horizontally, perpendicular to the soil

surface, and progressing from the top to the bottom of the pit wall to limit surface
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contamination from surface debris. Galvanised nails were inserted at 10 cm intervals along

transects to guide proximal sensor reading locations.

Proximal soil sensor readings were taken in 2.5 cm increments to give 41 readings over each
1 m transect. Three vertical transects were taken at 0, 50 and 100 cm lateral spacing, as well
as three horizontal transects at 0, 50 and 100 cm depth (Fig. 2.2). Portable X-ray fluorescence
readings were taken on the vertical transects only. Bulk density cores were taken at 10 cm
increments on the 0 and 50 cm vertical transects. Bulk density cores were immediately sealed
using vinyl tape to preserve field condition moisture. The bulk density cores had an internal
diameter of 4.7 mm and a height of 40 mm. The soils were described using routine soils
description and horizon-based samples were taken for laboratory analysis. The rationale for
this sampling methodology is outlined in Chapter 4.

Sampling design

o 40 o]
0] 0]
&40 o
0] 0]
VisNIR and pXRF
= §70 o scan site
% o] o VisNIR only
a] scan site
810 o]
O Bulk density core
o 0 extracted
810 o]
@] o}
g0 o

T T T T T T
0 20 40 60 80 100

Lateral component (cm)

Figure 2.3 Schematic representation of sampling design for the fifteen soil profiles.
Sampling sites for visible near-infrared (VisNIR) and portable X-ray fluorescence
(PXRF) spectroscopy, and bulk density cores are indicated.
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2.2.3 Ex situ measurements

Bulk density cores were kept sealed until immediately prior to laboratory scanning, thus
allowing soil moisture to equilibrate and minimise surface drying. The bulk density core was
scanned using the same VisNIR and pXRF devices as the in situ scans. For VisNIR the
samples were scanned three times; the mean spectral reflectance was calculated and used for
further analysis. Each pXRF reading was taken at the centre of each core to minimise
variation in scanning location following drying. The bulk density cores were dried in a 40°C
oven for four days, and then rescanned in air-dry, intact condition. The soils were then

ground to pass through a 2 mm sieve and rescanned using VisNIR.

2.2.4 Laboratory analyses

All laboratory measurements were conducted on air-dry samples which were ground to pass
through a 2 mm sieve, unless stated otherwise. pH was measured in a 1:5 soil to deionised
water gravimetric ratio and also in a 1:5 soil to 0.01 M calcium chloride solution using a
Mettler Toledo S220 SevenCompact™ pH/lon meter. Electrical conductivity was measured
in a 1:5 soil to deionised water gravimetric ratio using a Mettler Toledo SevenCompact™

conductivity meter.

Particle size analysis was performed using the hydrometer method (Gee and Bauder, 1986).
Samples were agitated using end over end shaking in sodium hexametaphosphate solution for

48 h prior to analysis. Sieving was used to isolate fine- and coarse-sand sized particles.

Prior to total carbon and nitrogen analysis a subsample (~10 g) was finely ground (<53 pm)
using a Fritsch Mortar Grinder Pulverisette 2 (Fritsch, Germany) for four minutes at a
vibrational frequency of 50-60 Hz. Total carbon and nitrogen were then quantified via the
combustion method using a Vario Max CNS analyzer (Elementar Analysensysteme GmbH,
Hanau, Germany). Organic carbon was obtained using the Walkley and Black method
(Walkley and Black, 1934). CO3? equivalent was calculated using the rapid titration method
(Piper, 1942), as compiled by (Reeuwijk, 1993), for profiles wherein any horizon tested

positively for carbonates using 1 M HCI.
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Exchangeable cations were derived by two different methods depending on the presence of
carbonates and soluble salts. The alcoholic ammonium chloride at pH 8.5 method (Rayment
and Lyons, 2011, pp. 307-313), following pre-treatment to remove soluble salts, was used for
soils that were found to have carbonates in any horizon. The ammonium acetate method was
used for all other soils, as these soils displayed a neutral to acidic pH and negligible
quantities of soluble salts. For these soils, exchangeable acidity was also calculated using

potassium chloride (Rayment and Lyons, 2011, pp. 321-338).

2.2.5 Data processing and analysis
All data processing and analysis was performed in the R environment for statistical

computing (R Core Team, 2016).

2.2.5.1 Spectral pre-processing

2.2.5.1.1 Splice correction and trimming

Some discontinuities were observed at the site of the VisNIR detector junctions, i.e. 1,000
and 1,800 nm. The spliceCorrection() function from the “prospector” package was employed
to remove these artefacts (Stevens and Ramirez-Lopez, 2013). This process corrects for the
offset of VNIR and SWIR2 and applies linear interpolation at the edges to create a smooth
junction with the SWIR1 range. Spectra were then trimmed to remove areas at the end of the

detector range with low signal to noise ratios, leaving the 500 — 2,450 nm wavelength range.

2.2.5.1.2 Savitzky-Golay filtering

Reflectance readings were converted to absorbance using, A= log(1/R). Data were
compressed by a factor of two through the dropping of alternate wavelengths. Compressing
data reduces calculation time, without affecting model performance, as much of the data is
highly correlated. Spectra were then smoothed using a Savitzky-Golay filter with a window
size of 11 and a second order polynomial (Savitzky and Golay, 1964). This is a progressive

function that fits a local polynomial regression of specified order over points lying within the
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window. The value at the central point of the window is replaced with the smoothed value.
This filter increases the signal to noise ratio of a spectrum, without greatly distorting the

signal.

2.2.5.1.3 Standard normal variate transformation
The standard normal variate transformation was used to centre and scale each spectrum
individually to a mean of zero and unit variance (Eqn 2.1). This removes the multiplicative

interferences of scatter and particle size (Barnes et al., 1989).

Equation 2.1

a
SNV =

Where:
« is the spectrum to be transformed
@ is the mean of the spectrum a

s, is the standard deviation of spectrum «

2.2.5.2 External parameter orthogonalisation

An external parameter orthogonal (EPO) transformation was used to compensate for the
negative effects of variable moisture content when sampling in situ. This algorithm was
initially developed to remove the effect of temperature variation when estimating the sugar
content of fruit using partial least squares regression of the processed and projected spectra
(Roger et al., 2003). Its versatility was demonstrated by Minasny et al. (2011), who showed
that it could also remove the deleterious effect of moisture when estimating SOC in moist and

dry samples, without prior knowledge of soil moisture content.

The EPO process identifies areas in the spectra that are affected by soil moisture and projects

the spectra into a new space orthogonal to this variation. The projected spectra are effectively
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independent of variation in soil moisture, while useful soil information is conserved. The

spectra, X, are thought of as the sum of matrices (Eqn 2.2)

Equation 2.2

X=XP+XQ+R
Where:
P is the projection matrix of the useful part of the spectra

Q is the projection matrix of the not useful part of the spectra, i.e. the part affect by

variable soil moisture

R is the residual matrix

To construct P, the difference spectra between moist and dry samples is calculated, D =
Xmoist — Xary. Principal component analysis is performed on D" D, and the number of factors
is defined to construct Q. P is then constructed by subtracting @ from an identity matrix. The

transformed spectra, X*, are then calculated by multiplying the spectra by P (Eqgn 2.3).

Equation 2.3

X*=XP

The spectra must be pre-processed in the same manner used to construct P. An EPO
projection matrix developed from the same dataset as Minasny et al. (2011) was utilised for

this thesis.
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2.2.5.3 Geochemical ratios

When comparing elemental concentrations under field moist and air-dry scenarios it was
observed that geochemical ratios provide more stable metrics (Appendix A2). Seven
dominant observable elements, Al, Si, S, K, Ca, Ti and Fe, made up a mean of 99.45 (s.d. =
0.65) of the mass of total identifiable elements (Z>12) for all in situ scans. Reported
elemental concentrations that were below the limit of detection for the device were set to
zero. This may be a source of error, as limits of detection are affected by the samples ability
to produce a fluorescence X-ray, and the energy of the fluorescence X-ray. In general,
elements with a smaller atomic number have a larger limit of detection, e.g. ~1% for Al,
whereas elements with greater atomic numbers have much lower limits of detection, e.g. <5
ppm for Pb. For each pXRF observation, the ratio was calculated as the mass of an element

divided by total mass of the seven dominant observable elements (Eqn. 2.4).

Equation 2.4

r = = x 100
Xjci

Where:
r; j Is the geochemical ratio of element j in sample i
c; ; is the pXRF observed concentration of element j in sample i

j={Al, Si, S, K, Ca, Ti, Fe}, i.e. the seven dominant observable elements

2.2.5.4 Cubist models

Predictive spectral models were constructed using Cubist (Quinlan, 1992). Briefly, Cubist
utilises rule-based partitioning to split input spectra into subsets with similar characteristics.
Rules may be based on a single or multiple wavelengths, and are arranged in a hierarchical
structure. Linear regression models are constructed at terminal nodes in the hierarchy, and
also at intermediate nodes. Predictions obtained at intermediate nodes are used to smooth

predictions at subsequent nodes, and ultimately the final prediction at the terminal node.
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A number of other techniques have been tested for spectral calibrations, including, partial
least squares regression, random forest neural networks, support vector machines, etc.
However, this thesis does not investigate an exhaustive list of models and spectral pre-
treatments for modest gains in predictive performance. Instead it focuses on how any

calibration model could be used to its full potential.

2.2.6 Validation statistics
A number of validation statistics were calculated to assess the performance of spectral
calibration models and SINFERS predictions. While not all are necessary, all are provided so

that results can be compared with other studies that offer a diversity of validation statistics.

2.2.6.1 Coefficient of determination
The coefficient of determination (R?) is a measure of the amount of variance in the dependant
variable explained by the independent variable, or variables. It considers the proportion of the

residual sums of squares to the total sum of squares (Egn 2.5).

Equation 2.5

oo ZO= 90
i —y)?
Where:
y; is the i™" observed value

¥, is the i predicted value

y is the mean of variable y

It is one of the most commonly used metrics when considering model performance. However,
it does not consider bias, and it can overstate the performance of a model if predictions do not
lie on the 45° line. Values of 1 indicate a perfect fit, O indicates no relationship between the
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variables. Negative values are possible with this metric and indicate that the mean value

provides a better fit for the data than the model predictions.

2.2.6.2 Lin’s concordance correlation coefficient (LCCC)

The Lin’s Concordance Correlation Coefficient (LCCC) measures the degree of agreement
between two variables, such as observed and predicted values (Lin, 1989). Unlike R?, the
LCCC is not immune to bias, and it assesses the fit to the 45° line. This can be demonstrated

by considering a simplified example containing a vector of observed values, y =
{1,2,3,---,1000}, and three vectors of predicted values y, =y, ¥, = % y. =y + 100. The

R? in for each vector of predicted vectors would be 1, as the observed and predicted values
form a perfectly straight line and R? does not account for bias as stated previously. In
comparison LCCC values would be calculated as 1.00, 0.50 and 0.94 for y,, ¥, and J,
respectively and is thus a better representation of the accuracy of the predictions. The LCCC
is calculated as twice the covariance between the two variables divided by the sum of the

variance of each variable and the difference between the mean of each variable (Eqn 2.6).

Equation 2.6

Where:
Sxy IS the covariance between the two variables
sz, sy are the variance of each variable

X, y are the mean of each variable

2.2.6.3 Mean-square error (MSE)

The mean-square error (RMSE) is a scale-dependent measure of accuracy that characterises
the difference between observed and predicted values. The RMSE is calculated as the average
squared error (Egn 2.7).
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Equation 2.7

RMSE — Yt —I)?
n

Where:
y; is the i™ observed value
9, is the i predicted value

n is the number of observations

2.2.6.4 Root-mean-square error (RMSE)
The root-mean-square error (RMSE) is a scale-dependent measure of accuracy that
characterises the difference between observed and predicted values. The RMSE is calculated

as the square root of the average squared error (Eqn 2.8).

Equation 2.8

X —3)?

n

RMSE =

Where:
y; is the i"" observed value
¥, is the i*" predicted value

n is the number of observations

2.2.6.5 Bias
Bias is calculated as the difference between the mean of predicted values and the mean of
observed values (Eqn 2.9). It is a useful metric to discern if there is systematic over or under

prediction, however it must be interpreted in conjunction with other metrics. For example, if
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the mean value was given to all predictions, then the bias would equal zero, however the R?

would also equal zero.

Equation 2.9

X 9

~

bias =

S

Where:
9, is the i predicted value

y is the mean of variable y

2.2.6.6 Bias corrected mean-square error and root-mean-square error

Bias corrected factors first subtract the bias from predictions, see section 2.2.6.4, then
calculate bias corrected mean-square error (MSEc) and bias corrected mean-square error
(RMSE.) using the corrected values and MSE and RMSE equations outlined in sections
2.2.6.3 and 2.2.6.4. They offer a best-case scenario for using the model, if the bias correction

holds with independent validation sets.

2.2.6.7 Ratio of performance to deviation (RPD)

The ratio of performance to deviation has been used to predict the goodness of fit of NIR
calibration (Williams, 1987). It is calculated as the ratio of the standard deviation of a sample
to the standard error of prediction (Egn 2.10).

Equation 2.10

RPD = ——
RMSE

Where:
s is the standard deviation of the independent variable

RMSE is the root-mean-square error of the prediction, as defined in section 2.2.6.4
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Some authors have called the use of RPD redundant when R? is also provided (Minasny and
McBratney, 2007), as the two are directly proportional RPD = (1-R?)%°. Although this
relationship only holds if the predicted fall around the 45° line, due to the issues outlined with
R? in section 2.2.6.1. The RPD is provided in this thesis for comparison with other studies
that have utilised it.

2.2.6.8 Ratio of performance to interquartile range (RPIQ)
The RPD has also received criticism as it assumes an underlying normal distribution. To
account for the spread of data, without assuming an underlying normal distribution, Bellon-

Maurel et al., (2010) suggested the ratio of performance to interquartile range (RPIQ).

Equation 2.11

S
RPIQ = 0%

Where:
s is the standard deviation of the independent variable

IQR is the interquartile range

2.3 Site descriptions
Fifteen soil profiles were analysed that exhibited a diverse range of soil properties and

climates from across the state of New South Wales, Australia (Fig. 2.4).
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Spring Ridge 4

Hunter Valley @

Hillston 9 Orange @

LT Sydney
Robertson 4

() Number of profiles sampled

Figure 2.4 Location of soil profiles within the state of New South Wales. Numbers

indicate the number of profiles sampled at each site.

The chosen profiles developed from a wide range of parent materials were identified,
including marl, shale, mudstone, sandstone, basalt and trachyte. Soils developing from
alluvium, residuum and aolian deposits were identified. Sites experienced a range of climates
including, semi-arid, temperate and humid subtropical. Mean annual rainfall values ranged
from 372 to 963 mm (BOM, 2017).

2.3.1 Description of each location

2.3.1.1 Hunter Valley
Sites 1 and 2 are located in the Hunter Valley, an agricultural and viticultural region. A warm
temperate climate is experienced, with a mean annual precipitation of 763 mm (BOM, 2017).

Both sites are from naturalised pastures.
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2.3.1.2 Cobbitty

Sites 3, 5, 6, 13 and 15 are from University of Sydney experimental farms within a 3 km
radius west and north-west of the township of Cobbitty. A humid subtropical climate is
experienced, with a mean annual precipitation of 793 mm (BOM, 2017). Sites 3 and 15 are
from improved, naturalised pastures. Site 5 is on a natural riverbank position. Sites 6 and 13

are subject to tillage as part of cropping experiments.

2.3.1.3 Spring Ridge

Sites 4, 10, 11 and 12 are from the University of Sydney experimental farm, “Nowley”, ~12
km North West of the township of Spring Ridge. A warm temperate climate is experienced,
with a mean annual precipitation of 621 mm (BOM, 2017). Sites 4 was from improved,
naturalised pastures. Site 10 is from native vegetation that experiences periodic grazing. Sites

11 and 12 are from within cultivated fields. Primary production is wheat and sorghum.

2.3.1.4 Hillston

Sites 7 and 8 are from “Merrowie Station”, ~6 km north of the township of Hillston. A semi-
arid climate is experienced, with a mean annual precipitation of 372 mm (BOM, 2017). Site 7
is from conserved strip of native vegetation. Site 8 is within a cultivated field. Primary
production is irrigated cotton.

2.3.1.5 Orange
Site 9 was located on a property near Nashdale, ~6 km west of the city of Orange. A cool
temperate climate is experienced, with a mean annual precipitation of 929 mm (BOM, 2017).

Land use at the site is improved, naturalised pasture.

2.3.1.6 Robertson

Site 14 was located on a property ~5 km south-west of the village of Robertson. A cool
temperate climate is experienced, with a mean annual precipitation of 963 mm (BOM, 2017).
The profile face was formed on an active erosion site, directly adjacent to a cultivated field.
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2.3.2 Description of each profile

Each profile was described using routine field observations (section 2.3.2.1-15). Laboratory
data are displayed from horizon-based sampling. The 400-750 nm range of VisNIR spectra
are displayed for comparison. The spectra are coloured by sample colour estimations derived
directly from the spectra (Viscarra Rossel et al., 2009). Briefly, the average reflectance from
red (R, 600-690 nm), green (G, 520-600 nm) and blue (B, 450-520 nm) ranges of the spectra
are scaled appropriately and used to construct the colours in RGB space. Elemental
composition from pXRF is displayed as the ratio of Si, Al, S, K, Ca, Ti and Fe with depth.
The three individual vertical transects are displayed as thin lines, to give an appreciation of

lateral variability. The average of the three transect is displayed as the wider line.
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2.3.2.1 Field observations, sensor readings and laboratory data of Site 1

o 1.0+_VisNIR VisNIR
0 — Classification: Shelly Calcarosol I
10 — Parent material: Marl A
Location: Hunter valley : : : :
20 (32°49' 27.5" § 151° 18' 20.9" E) o0&l BGR
30 ~| . Depth [cm) Description
0-13 A horizon; 7.5YR 4/3 (dry), 7.5YR 3/3 (moist); light 5
— 40 = di lav: [ . 0.6 ' —_
£ medium clay; strong granular structure; CO, Y . £
ﬁ segregations; clear, wavy boundary to = Do i
R 50 = Eeris A g : S 50+
2 W ‘ I 13-31  ABk horizon; 7.5YR 4/6 (dry), 7.5YR 3/4 (moist); = Lo A
60 = At medium clay; strong granular structure; CO; &= 04l 60
o segregations; gradual, wavy boundary to |
70 — - . o 70
- 31-52 Bk horizon; 10YR 7/4 (dry), 10YR 5/4 (moist); clay
s s 1 loam, sandy; moderate subangular blocky structure;
80 — ‘W CO; segregations; gradual, wavy boundary to 0.2 80~
[
g0 — M, Ll 52-100+ BCk horizon; 2.5Y &/2 (dry), 10YR 6/4 (moist); sandy 90—
ey clay loam; apedal single-grained; CO, segregations. = ) .
", < Tl r . —Fe
100 0.0 100 : >
400 550 700 0 50100 0.0 0.2 04 06 08 1.0
Wavelength (nm) Width (cm) Ratio

Table 2.1 Laboratory analysis of Site 1
Upper Lower Clay Silt Sand F.sand C. sand TC TN OC CO,eq. CEC

Horizon depth depth (g100 (g100 (g100 (g100 (g100 pH, pH, E;Ed)s (2100 (g100 (g100 (g1o0  =xch-cations {emol, ke) (emol,
(em) (em) g?) g gY) gY) g) g) g) g) g) C K Mg Na Al g

A 0 13 471 173 356 165 191 822 7.49 0.4 290 0.184 264 2.6 160 064 07 004 - 17.0

ABk 13 31 501 156 343 223 120 826 754 011 196 0109 165 31 150 018 05 002 - 160
Bk 31 52 377 188 435 391 44 844 772 012 244 0058 0.88 190 13.0 001 04 002 - 130

Bck 52 100 22.0 202 578 406 17.2 877 776 0.09 564 0032 040 350 120 003 04 002 - 12.0
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2.3.2.2 Field observations, sensor readings and laboratory data of Site 2

, o 1.0 VisNIR VisNIR pXRF
0 — Classification: Red Sodosol . 7 \ |
10 < Parent material: Shale/mudstone Do ' | 104 v
Location: Hunter Valley ' ' ' '
20 + (32°48' 34.6" S151°17' 57.8" E) 0.8 EB;GE Ri 204
30 Depth [cm) Description 304
0-10 A horizon; 10YR 4/2 (dry), 10YR 2/2 (moist); loam; P ,’
£ moderate granular structure; sharp, wavy boundary o | E )
=2 to = N =
£ 50- T
2 10-20  Btn1 horizon; 5YR 4/4 (dry), 5YR 3/4 (moist); medium % AR
60 = heavy clay; strong columnar structure; clear, even e 0.4 60
boundary to i
70 = . . . 70
20-52  Btn2 horizon; 5YR 4/4 (dry), 5YR 3/4 (moist); medium
clay; strong columnar structure; 10% grey mottles;
80 — gradual, even boundary to 0.2 80
a0 — 52-100+ Btn3 horizon; 2.5YR 4/6 (dry), 2.5YR 4/6 (moist); light 90—
medium clay; strong angular blocky structure; 20% .
100 &= grey and 20% white mottles. 0.0/ 100 ——— .
400 550 700 0 50100 0.0 0.2 0.4 06
Table 2.2 Laboratory analysis of Site 2 Wavelength (nm] Width (cm) Ratio
Upper Lower Clay Sik  Sand F.sand C.sand TC TN OC CO,eq. . N CEC
Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, Eﬁ_lﬂdls (2100 (2100 (g100 (g100  CXch-cations(cmol, kg (emol,,,
(em) (em) g!) g g g gl g) g) g) gy G K Mg Na Al kg
A 0 10 237 167 596 99 496 523 449 013 415 0265 407 - 47 034 45 044 06 105
Btnl 10 20 64.5 5.4 30,1 26.0 40 577 446 008 096 0049 071 - 3.7 049 120 130 15 186
Btn2 20 32 59.5 8.1 324  30.7 1.7 553 429 011 077 0041 0.53 - 1.8 036 120 190 21 183
Btn3 52 100 530 100 370 155 215 479 393 043 037 0.039 0.25 - 04 027 110 370 21 178
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2.3.2.3 Field observations, sensor readings and laboratory data of Site 3

VisNIR VisNIR
0 — w Classification: Brown Kurosol S 04
104 a"lﬁ Parent material: Ashfield shale 104
e ’ Location: Cobbitty SR
042 (33° 59' 44.9" § 150° 39 11.9" F) 08 BGR! 204
30 ~ Depth (cm) Description 30+
g 0-16 A horizon; 10YR 6/4 (dry), 10YR 3/4 (moist); sandy P ;
—_ A0 = g . . . 0.6 J — )
£ loam; moderate granular structure; 2-4 mm diameter g ‘ £
-_E"’- % magnetite/maghemite; clear, wavy boundary to = : . i %
S 50 = = : S 50
2 16-33  E horizon; 7.5YR 6/4 (dry), 7.5YR 4/4 (moist); sandy % Lo A
60 clay loam; strong subangular blocky structure; “ 0.4 60—
gradual, wavy boundary to P |
70 — . . 5 70-
33-47  Btl horizon; 7.5YR 5/4 (dry), 7.5YR 4/6 {moist);
medium heavy clay; strong angular blocky structure;
80 — gradual, wavy boundary to 0.2 80~
ap — 47-100+ Bt2 horizon; 7.5YR 5/6 (dry), 7.5YR 4/6 (moist); 90—
medium heavy clay; strong angular blocky structure;
100 25% red and 25% grey mottles. 0.0 100~
400 550 700 0 50100 0.0 0.2 04 06 0.8 1.0
Table 2.3 Laboratory analysis of Site 3 Wavelength (nm) Width (cm) Ratio
Upper Lower Clay Sit Sand F.sand C. sand TC TN OC CO,eq. . CEC
. EC (dS 3 Exch. cations {cmol,,, kg?!
Horizon depth depth (g100 (g100 (g100 (g100 (g100 pH, pH, m_ll] (g100 (g100 (g100 (g100 { e ke) (emol,,,
em) (em) g9 g g) g g g) gy g gy C@ K Mg Na Al kg
A 0 16 17.9 136 684 353 331 599 484 0.06 096 0043 0.65 - 1.2 051 11 012 0.2 3.1
E 16 33 24.2 11.7 o641 258 382 569 457 0.06 069 0033 047 - 09 028 20 017 05 39
Btl 33 47 57.4 104 321 20.3 11.8 5.43 422 0.05 0.81 0.044 0.62 - 1.5 042 52 041 13 8.9
Bt2 47 100 b6.7 11.4 21.9 19.8 21 534 400 0.07 0.37 0.002 0.27 - 0.2 015 5.1 078 7.2 13.5
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2.3.2.4 Field observations, sensor readings and laboratory data of Site 4

i . . 1.0 VisNIR
0 = Classification: Brown Sodosol TR
10 — Parent material: Quaternary alluvium of AR
Jurassic sandstones : . . .
Location: Spring Ridge el =]
20 = " " il i []'8 | k i
(31°21'11.9" 5150° 04' 52.0" E) BG R;
30 Depth (cm) Description
0-14 A horizon; 10¥R 5/3 (dry), 10YR 3/3 (moist); clayey loam; ' . o
-é- 40 weak crumb; abrupt, even boundary to u 0.6 "
s g R
£ 50 - 14-28 E1 horizon; 7.5YR 6/4 (dry), 7.5YR 5/4 (moist); sand; apedal % ;
= single-grained; abrupt, even boundary to = i
B ] O i
o i
60 = 28-48  E2 horizon; 7.5YR 6/4 (dry), 7.5YR 5/4 (moist); sand; apedal ~ 0.41 ©
single-grained; sharp, wavy boundary to !
70 — . ) ;
48-52 Bgm horizon; 10YR 7/1 (dry), 10YR 3/2 (moist); clayey sand;
strong columnar structure; sharp, wavy boundary to
80 — 0.2
] 52-62 Btnl horizon; 7.5YR 5/6 (dry), 7.5YR 4/6 (moist); heavy
90 — : clay; strong columnar structure; 50% grey mottles; clear,
wavy boundary to o
62-100+ Btn2 horizon; 7.5YR 5/8 (dry), 7.5YR 5/6 (moist); heavy b
100 clay; strong columnar structure; 25% grey mottles. 0.0
400 550 700

Table 2.4 Laboratory analysis of Site 4

Depth (cm)

Wavelength (nm)

=]
=
1

~|
o
1

80

90

VisNIR

100~

0 50100 00 0.2 04 06 08 10
Width (cm) Ratio

Upper Lower Clay Sit Sand F.sand C.sand TC N OC CO,eq. . CEC
Horizon depth depth (2100 (g100 (2100 (g100 (g100 pH, pH, E:E)S (2100 (2100 (2100 (g100  EXch-cations (cmol, kg) (emol,,,
(em) (em) gt gl g} gl g g) g gY) g € K Mg Na Al g

A 0 14 84 25 891 144 747 609 483 005 086 0038 074 - 14 009 08 019 01 26
1 14 28 54 1.0 936 200 736 651 49 001 019 0004 000 - 04 003 02 004 00 06
E2 28 48 48 10 942 185 757 623 525 001 009 0002 000 - 01 000 01 006 00 03
Bgm 48 52 162 94 744 299 445 715 560 003 010 0004 000 - 02 000 06 023 00 10
Btnl 52 62 804 23 173 51 122 620 493 010 025 0005 020 - 16 0.18 11.0 2.80 02 155
Btn2 62 100 654 16 331 84 247 653 511 009 013 0003 000 - 10 014 88 260 00 125
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2.3.2.5 Field observations, sensor readings and laboratory data of Site 5

VisNIR VisNIR XRF
0 = Classification: Brown Kandosol 1.0 T 05 ) E
10 — Parent material: Coarse-grained alluvium ' ' 10—
Location: Cobbitty Mt
204 (34° 01' 17.4" § 150° 39' 46.1" E) 08| BGR 204
30 Depth (cm) Description 30+
0-12  Ap1 horizon; 10YR 5/3 (dry), 10YR 3/3 (moist); clayey P
T 40 sand; moderate crumb structure; abrupt, even g 0.6 T 40+
-_E"’- boundary to c b %
= 50 = ° L £ 50
8 12-30  Ap2 horizon; 10YR 4/3 (dry), 10YR 3/2 (moist); clayey G R
60 = sand; weak subangular blocky structure; abrupt, even = g 4 650
boundary to P
70 — . . Py 70
30-50  Bw horizon; 10YR 4/6 (dry), 10YR 3/4 (moist); sandy
loam; weak subangular blocky structure; OM staining;
80 — abrupt, even boundary to 0.2 80}
a0 — 50-100+ Bc horizon; 10YR 5/6 (dry), 10YR 4/6 (moist); sandy 90}
j loam; weak subangular blocky structure; manganese
100 nodules. 0.0k 100- J .
400 550 700 0 50100 0.0 0.2 04 06 0.8 1.0

Table 2.5 Laboratory analysis of Site 5 Wavelength (nm) Width (cm) Ratio

Upper Lower Clay Sit Sand F.sand C.sand TC N OoC CO,eq. CEC

Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, E:E)S (2100 (g100 (g100 (g10p  Xeh-cations (emol, ke (emol,,,
(em) (em) g1 g} gi) g) gl g) gy gy gy Ca K Mg Na Al iy

Apl O 12 102 36 863 136 727 644 558 007 054 0034 052 - 19 029 04 000 00 26

Ap2 12 30 107 48 845 135 710 673 576 013 041 0023 032 - 25 023 01 004 00 29

Bw 30 50 144 37 819 132 687 672 568 003 038 0015 020 - 20 025 04 002 01 29

Bc 50 100 166 45 789 119 670 674 595 003 018 0016 018 - 20 011 04 003 00 26
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2.3.2.6 Field observations, sensor readings and laboratory data of Site 6

Depth {cm)
n
S
|

~
=]
|

80 —

90 —

100—

Table 2.6 Laboratory analysis of Site 6

o 1.0.VisNIR
Classification: Red Tenosol e '
Parent material: Coarse-grained alluvium :
Location: Cobbitty 0.8 IBG R

(34°01' 35.8" 5150° 39" 43.6" E) -
Depth (cm) Description
0-16 A horizon; 7.5YR 4/3 (dry), 7.5YR 3/2 (moist); sandy b
clay loam; moderate crumb structure; abrupt, wavy g 0.6
boundary to = Do
16-31  Bwl horizon; 7.5YR 4/4 (dry), 7.5YR 3/4 (moist); clay o
loam, sandy; strong angular blocky structure; clear, E o i
wavy boundary to 0.4 .
31-48  Bw?2 horizon; 7.5YR 4/6 (dry), 5YR 3/4 (maoist); clay
loam, sandy; strong angular blocky structure; gradual,
even boundary to
'y 48-73  2Bwi1 horizon; 5YR 4/6 (dry), 5YR 3/4 (moist); sandy 0.2
clay loam; strong angular blocky structure; gradual,
even boundary to
73-100+ 2Bw?2 horizon; 7.5YR 4/6 (dry), 5YR 3/4 (moist); sandy
loam; moderate subangular blocky structure. 0.0/
400 550 700

Depth (cm)

Wavelength (nm)

VisNIR

0 50 100
Width (cm)

pXRF

00 0.2 04 06 08 1.0

Ratio

Upper Lower Clay Sit Sand F.sand C.sand TC N OC CO,eq. . CEC
Horizon depth depth (g100 (g100 (g100 (3100 (g100 pH, pH, Eﬂ;s (2100 (2100 (g100 (g100  EXch- cations (cmoly, kg) (emol,,,
(em) (em) g g g) gY) gl g) g) g) gy C@ K Mg Na Al g

A 0 16 184 125 691 495 196 609 508 010 3.26 0199 297 - 53 130 27 016 00 95
Bwi 16 31 211 115 674 421 253 555 474 008 116 0051 090 - 17 100 12 014 02 43
Bw2 31 48 228 7.8 694 465 228 634 517 006 036 0017 024 - 11 110 07 020 00 3.0
2Bwl 48 73 184 55 761 356 406 642 524 005 019 0007 000 - 09 100 04 013 00 24
2Bw2 73 100 124 44 832 358 474 6.60 538 0.06 011 0005 000 - 02 110 01 007 01 16
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2.3.2.7 Field observations, sensor readings and laboratory data of Site 7

VisNIR XRF
0 — Classification: Red Sodosol L0 0+ .
10 — Parent material: Alluvium 10—
Location: Hillston
20 (33° 23' 30.8" $ 145° 29' 28.3" E) 0-8 EB;GE RE 20
30 Depth [cm) Description 304
0-12 A horizon; 5YR 5/6 (dry), 5YR 4/6 (moist); loam;
=40 t lar block . sh 0.6 | —40-
£ strong angular blocky structure; sharp, wavy @ | E
-_E"’- boundary to c %
£50 = = | 7 50+
X 13-51  Btn horizon; 2.5YR 4/6 (dry), 2.5YR 3/4 (moist); = -
60 — medium clay; strong angular blocky structure; “ 0.4 60—
gradual, even boundary to :
70— . . . 70+
51-75  Btnk1 horizon; 5YR 5/6 (dry), 5YR 4/6 (moist); light
medium clay; moderate angular blocky structure;
80 10 carbonate segregations; gradual, even boundary to 0.2 80+
ap — 75-100+ Btnk2 horizon; 5YR 5/6 (dry), 5YR 4/6 (moist); a0 — !
medium clay; moderate angular blocky structure; '
100 carbonate segregations. 0.0 1004
400 550 700 0 50100 0.0 02 0.4 0.6 08 1.0
Table 2.7 Laboratory analysis of Site 7 Wavelength (nm] Width (cm) Ratio
Upper Lower Clay Silt Sand F.sand C. sand TC N OC CO,eq. . X CEC
Horizon depth depth (g100 (2100 (g100 (g100 (g100 pH, pH, EEE)S (2100 (g100 (g100 (g100  Cxch-cations (cmol, ke?) (emol,,,
(em) (em) g4 gl g gl gl g} g gY g ©C@ K Mg Na ke?)
A 0 13 17.7 6.4 759 373 386 6.38 573 011 030 0.027 032 0.0 24 079 16 0.02 - 4.8
Btn 13 51 56.2 4.8 39.0 208 182 743 731 020 042 0036 035 0.0 70 084 71 120 - 16.0
Btnk1 51 75 55.0 5.8 39.2 256 135 957 830 0.29 1.43 0.002 0.00 100 6.0 064 75 220 - 16.0
Btnk2 75 100 52.7 5.1 42,2 282 140 932 829 053 121 0.001 0.00 8.9 55 061 7.7 220 - 16.0
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2.3.2.8 Field observations, sensor readings and laboratory data of Site 8

o 1.0.VisNIR
0 = Classification: Grey Vertosol ~ I
10 < Parent material: Alluvium
Location: Hillston L
207 (337 24' 33.1" 5 145° 33' 58.0" E) 08 BGR
30 ~ 3 Depth (cm) Description b
0-2  Ahorizon; 10YR 5/1 (dry), 10YR 4/1 (moist); light bEd
T 40 ~ medium clay; strong granular structure; sharp, even g 0.61 | | E
= boundary to = . N =i
= i) o L
2 90 = o : a
2 2-7 Bss1 horizon; 10YR 5/1 (dry), 10YR 4/2 (moist); = a
60 medium heavy clay; strong lenticular and angular &= 0.4
blocky structure; gradual, even boundary to
70 7-28  Bss2 horizon; 10YR 3/1 (dry), 10YR 4/1 (moist);
medium heavy clay; strong lenticular structure;
80 — carbonate segregations; gradual, even boundary to
90 — 28-100+ Bn horizon; 10YR 6/2 (dry), 10YR 5/3 (moist); medium = a0 —
heavy clay; strong angular blocky structure; carbonate b
100— segregations. 0.0b——— 1004 - -
400 550 700 0 50100 0.0 0.2 0.4 06 08 1.0

Table 2.8 Laboratory analysis of Site 8 Wavelength (nm) Width {cm) Ratio

Upper Lower Clay Sik  Sand F.sand C. sand TC TN OC CO,eq. CEC

Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, Eﬁ_lﬂdls (2100 (2100 (g100 (g0  CXch-cations (cmol,, ke) (emol,,,
(em) (em) g!) g g} g} gl g) g) g gy €@ K Mg Na Al iy

A 0 2 609 128 263 225 38 685 635 021 066 0051 073 00 95 110 69 0.32 18.0

Bss 2 7 619 127 253 220 33 727 627 008 058 0045 060 00 100 072 72 038 - 180

Bssk 7 22 670 121 210 179 31 851 743 019 052 0006 019 09 100 038 62 110 - 180
Bk 28 100 63.6 135 229 179 50 881 775 027 017 0002 000 11 85 049 53 240 - 170
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2.3.2.9 Field observations, sensor readings and laboratory data of Site 9

0.2{

0 — Classification: Red Dermosal 1.0
10 — Parent material: Polygenetic, eeolian over
Residuum, incl. trachyte
Location: Orange
- 0.8
20 (33°17'21.0" 5149°01' 35.2" E)
30 Depth (cm) Description
0-18  Ahorizon; 10YR 5/3 (dry), 10YR 3/4 (moist); silty
T 40 =~ loam; strong subangular structure; clear, even g 0.6
-_E"’- boundary to =
£ 50 = S
= 18-40 Bt horizon; 7.5YR 5/6 {dry), 10YR 4/6 (moist); light %5
60 medium clay; strong subangular structure; infilled e 0.4
macropores; clear, even boundary to
70 40-68  2Bt1 horizon; 5YR 4/6 (dry), 5YR 3/4 (maist); medium
clay; strong polyhedral structure; conspicuous
80 — trachyte saprolite ~300 — 400 mm diameter; diffuse,
even boundary to
a0 — 68-100+ 2Bt2 horizon; 5YR 4/6 (dry), 5YR 3/4 (moist); medium
heavy clay; strong polyhedral structure; conspicuous
100 trachyte saprolite ~300 — 400 mm diameter. 0.0

Table 2.9 Laboratory analysis of Site 9

400 550 700

VisNIR

Depth (cm)

J0=

80—

90

100~

Wavelength (nm)

pXRF

Ratio

0 50100 00 0.2 04 06 0.8 1.0
Width (cm)

Upper Lower Clay Silt Sand F.sand C. sand TC TN OC CO,eq. . CEC
Horizon depth depth (g100 (g100 (g100 (g100 (g100 pH, pH, Eﬁgs (2100 (2100 (100 (g100  EXch- cations (cmoly, kg) (emol,,,
(em) g g g gl g g) g9 gy gy G K Mg Na Al kg

A 144 261 595 521 73 598 509 005 216 0127 176 - 50 059 09 000 00 6.5
Bt 309 217 474 417 57 628 524 002 059 0029 046 - 43 061 09 000 01 59
2Bt1 534 145 321 266 55 634 540 003 039 0022 033 - 69 037 21 008 00 9.4
2Bt2 100 629 140 231 190 41 659 560 001 029 0003 023 - 85 069 32 006 00 12.4
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2.3.2.10 Field observations, sensor readings and laboratory data of Site 10

VisNIR
0 — Classification: Red Chromosol 10 o 09
10 < Parent material: Weathering/colluvium of b : 104
mudstones R
Location: Spring Ridge oo
. 0.81 i -
20 (31° 21' 16.0" S 150° 06' 43.8" E) BGR 20
30 Depth (cm) Description 304
0-10  Al1l horizon; 7.5YR 3/4 (dry), 5YR 2.5/2 (moist); light clay; '
-é- 40 — strong angular blocky structure; abrupt, even boundaryto 0.6 3 -é- 404
S g | s
£ 50 10-30  A12 horizon; 5YR 3/3 (dry), 5YR 3/3 {moist); light medium % | £ 50~
g clay; strong angular blocky structure; abrupt, even = . ! 3
e
60 - boundary to o’ 60
30-53 Btkss horizon; 5YR 4/6 (dry), 2.5YR 4/6 (moist); medium i A
clay; strong lenticular and angular blocky structure; ' ' '
70 —{ B carbonate segregations; gradual, wavy boundary to 70
53-97 Btkl horizon; 5YR 4/4 (dry), 2.5YR 4/6 (moist); light clay;
80 — moderate subangular blocky structure; carbonate 0.2 80—
segregations; gradual, wavy boundary to
90 — 57-100+ Btk2 horizon; 5YR 4/4 (dry), 2.5YR 4/6 (moist); light 90—
medium clay; moderate subangular blocky structure;
] carbonate segregations. i | y
100— AR 0.0l 100- i :
400 550 700 0 50100 0.0 0.2 04 06 08 10
Table 2.10 Laboratory analysis of Site 10 Wavelength (nm) Width {cm) Ratio
Upper Lower Clay Silt  Sand F.sand C. sand TC TN OC CO,eq. . N CEC
Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, Eg:;s (2100 (2100 (g100 (gioo  CXch-cations (cmol,, ke) (emol,,,
fem) (em) g) g gY) g &Y g) g g gy Ca K Mg Na ke?)
All 0 10 38.5 2.7 588 150 438 6.61 613 016 135 0082 143 0.0 7.0 140 52 0.02 14.0
Al12 10 30 37.6 5.4 57.1 10.7 463 738 646 005> 072 0032 079 0.0 6.5 044 50 0.03 12.0
Btss 30 53 53.1 49 41.9 8.6 333 851 7.5 014 042 0.024 0.30 1.0 80 028 99 017 18.0
Btkl 53 97 52.5 8.7 388 122 266 834 794 061 244 0005 0.23 16.0 85 0.25 120 0.26 21.0
Btk2 97 100 35.4 5.4 59.2 12.8 464 8.80 811 0.27 034 0.002 0.00 2.0 6.5 0.16 11.0 0.48 18.0
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2.3.2.11 Field observations, sensor readings and laboratory data of Site 11

VisNIR XRF
0 — Classification: Black Vertosol 1.0 : A T .
10 — Parent material: Weathered Jurassic 10—
basalt X ,
Location: Spring Ridge I 'y
-] 0.81. [ —
20 (31°21'34.3"5150° 08'12.6" E) BG RZ 20
30 Depth (cm) Description 304
0-5 Ak horizon; 5YR 3/1 (dry), 5YR 2.5/1 (moist); medium toror
E 40 4 heavy clay; strong granular structure; carbonates; Y 0.61: E 40
= abrupt, even boundary to c =
= et =
= 50 = o = 50+
a 5-22 Bkl horizon; 5YR 3/1 (dry), 5YR 2.5/1 (moist); = 2
60 medium clay; strong angular blocky structure; &= 0.4 60
carbonates; gradual, even boundary to
70 = . . 70
22-73  Bkss horizon; 5YR 3/1 (dry), 5YR 2.5/1 {moist); — §j
medium heavy clay; strong lenticular structure; ! Co Al
80 — carbonates; gradual, wavy boundary to 0.21. 0 80 -5
i o K
a0 — 73-100+ Bk2 horizon; 7.5YR 3/2 (dry), 7.5YR 2.5/2 (moist); 90— —Ca
medium heavy clay; strong lenticular structure; =T
100— carbonates. 0.0 100 Fe
400 550 700 0 50100 00 02 04 06 08 1.0
Wavelength (nm) Width (cm) Ratio

Table 2.11 Laboratory analysis of Site 11

Upper Lower Clay Sik  Sand F.sand C. sand EC (dS TC TN OC CO,eq. Exch. cations (emol,,, ke*) CEC

Horizon depth depth (g100 (g100 (g100 (g100 (g100 pH, pH, m) (g100 (g100 (g100 (g100 (emol,,,
(em) (em) g} g!) g gY gl gl) g g) gy C@ K Mg Na Al g
Ak 0 5 63.4 16.6 20.0 10.6 9.4 740 649 008 1.89 0.117 198 1.2 13.0 1.40 13.0 0.22 - 28.0
Bkl 5 22 71.7 13.8 14.5 9.7 49 756 b6.55 006 1.59 0.073 154 1.1 12.0 0.64 12.0 0.29 - 25.0
Bkss 22 73 69.9 14.8 15.3 9.4 59 837 7.03 008 1.53 0.054 1.32 1.2 11.0 036 13.0 0.83 - 25.0
Bk2 73 100 67.0 10.6 22.4 13.0 9.3 877 794 017 1.13 0.008 0.59 3.5 12.0 044 150 1.00 - 28.0
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2.3.2.12 Field observations, sensor readings and laboratory data of Site 12

_ - 10 VisNIR
0 = Classification: Brown Vertosol ST 9
10 — Parent material: Basalt and mudstone 10—
colluvium I
Location: Spring Ridge \ '
- 0.81 . ' -
20 (31° 19" 54.0" § 150° 05 31.6" F) BGR 20
30 Depth (cm) Description 304
0-30  Apn horizon; 10YR 4/2 (dry), 10YR 3/2 (moist); AR
E 40 4 medium clay; strong angular blocky structure; clear, Y 0.6 E 40
% even boundary to c %
£ 50 = = S 50
= 30-39  Bknss horizon; 10YR 4/2 (dry), 10YR 3/2 (moist); = ! A
60 = medium heavy clay; strong lenticular and angular e 0.4l 60
blocky structure; carbonates; clear, even boundary to .
70 — o . ! 70
39-66  Bkn horizon; 10YR 4/2 (dry), 10YR 4/3 (moist);
medium clay; strong lenticular and polyhedral
80 — structure; carbonates; gradual, wavy boundary to 0.2 80
90 — 66-100+ Bny horizon; 7.5YR 4/3 (dry), 7.5YR 4/3 (moist); a0
medium clay; strong lenticular and polyhedral i
100 structure; gypsum. 0.0F——— 100- ] _
400 550 700 0 50100 00 02 04 06 08 10

Table 2.12 Laboratory analysis of Site 12 Wavelength (nm) Width (cm) Ratio

Upper Lower Clay Sit Sand F.sand C.sand TC N OoC CO,eq. CEC

Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, E::ld]s (2100 (g100 (g100 (g10p  Xeh-cations (emol, ke (emol,,

(em) (em) g1 g} gi) g) gl g) gy gy gy Ca K Mg Na Al iy
Apn O 30 495 163 342 102 241 7.8 588 007 101 0050 078 00 75 033 91 120 - 180
Bknss 30 39 584 146 269 77 192 924 809 025 052 0021 037 15 90 022 11.0 210 - 220
Bkn 39 66 609 132 259 60 199 928 817 028 042 0006 029 08 85 018 12.0 260 -  23.0
By 66 100 703 66 230 54 176 7.76 7.83 3.49 013 0002 000 08 180 019 110 150 -  31.0
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2.3.2.13 Field observations, sensor readings and laboratory data of Site 13

VisNIR XRF
0 — & Classification: Red Dermosol 1.0 I 0 E
10 < Parent material: Fine-grained alluvium 104
Location: Cobbitty
20 4 (34° 01' 25.2" 5 150° 39' 45.4" E) 081 BGR 204
30 Depth (cm) Description 304
0-23  Ap horizon; 7.5YR 4/4 (dry), 7.5YR 3/4 (moist); clay P
T 40 4 loam; moderate subangular blocky structure; abrupt, g 0.6 | E 40
% even boundary to = . %
£ 50 = S | E 50+
= 23-45  Btl horizon; 2.5YR 4/6 (dry), 2.5YR 3/4 (moist); light A
60 medium clay; strong angular blocky structure; e 0.4 60
gradual, even boundary to

70 = . . . 70

45-100+ Bt2 horizon; 2.5YR 4/6 (dry), 2.5YR 3/4 {moist); light —Gj

medium clay; strong angular blocky structure. Al

80 — 0.2 80~ 5

K

90 90 —Ca

—Ti

~Fe
100 0.0+ 100~

400 550 700 0 50100 0.0 02 04 06 08 10
Wavelength (nm) Width (cm) Ratio

Table 2.13 Laboratory analysis of Site 13
Upper Lower Clay Silt Sand F.sand C.sand TC TN OoC CO,eq. CEC

Horizon depth depth (g100 (g100 (2100 (g100 (g100 pH, pH, EEJ:;S (2100 (g100 (g100 (gioo  CXch-cations (cmol,, ke) (emol,,,
(em) (em) gV g gl g &) g) g9 gy gy G K Mg Na Al kg

Ap 0 23 282 17.8 540 104 436 640 541 006 106 0059 079 - 49 072 13 011 00 7.1
BtL 23 45 372 186 442 202 240 7.05 603 003 054 0031 043 - 57 024 14 014 00 75
Bt2 45 100 389 180 431 93 338 694 619 004 022 0006 000 - 55 012 13 020 00 7.2

51



Chapter 2: Sensors, methods and site descriptions

2.3.2.14 Field observations, sensor readings and laboratory data of Site 14

VisNIR
0 — Classification: Red Ferrosol 1.0 L 05
10 < Parent material: Weathered basalt Lo 104
Location: Robertson ' : :
20 + (34° 36' 40.5" § 150° 32" 12.6" F) 08| BGR: 204
30 ~ Depth (cm) Description : 304
0-10 A horizon; 5YR 3/4 (dry), 2.5YR 2.5/3 (moist); loam; P
=40+ stron I ;ab bound 0615 & & 1| =404
£ g granular structure; abrupt, even boundaryto o £
o [ =]
-y . o g ry
= 50 = 10-34 Bt horizon; 5YR 4/6 (dry), 5YR 3/4 (moist); silty clay g = 50
2 loam; strong granular structure; clear, wavy boundary % O
e
60 ~ to 0.4 60 R
34-60  Btwl horizon; 5YR 4/6 (dry), 5YR 3/4 (moist); silty clay |
70 i loam; strong polyhedral structure; gradual, wavy 70 \
boundary to — §j
Ly 60-83  Btw2 horizon; 5YR 4/6 (dry), 5YR 3/4 (moist); silty clay 4 — Al
80 —| loam; strong angular blocky and polyhedral structure; 80~ ; 'j -5
] gradual, wavy boundary to A K
ap — | 83-100+ Btw3 horizon; 7.5YR 4/6 (dry), 5YR 3/4 (moist); silty 90— 4l —Ca
clay loam; strong angular blocky and polyhedral v Ok —Ti
100— structure. 0.0 — 1004 TN _fe
0=
400 550 700 0 50100 00 02 04 06 08 10

Table 2.14 Laboratory analysis of Site 14 Wavelength (nm) Width (cm) Ratio

Upper Lower Clay Sit Sand F.sand C.sand TC N OC CO,eq. CEC

Horizon depth depth (g100 (g100 (g100 (3100 (g100 pH, pH, Eﬁgs (2100 (g100 (g100 (g100  =xch-cations (emol,, kg (emol,,,
(em) (em) g g g) gY) gl g) g) g) gy C K Mg Na Al g
A 0 10 262 196 542 219 322 536 451 010 6.06 0544 747 - 48 110 20 006 11 9.1
Bt 10 34 500 236 264 155 109 514 417 003 351 0205 308 - 09 020 04 007 30 45
Btwl 34 60 584 211 206 115 90 516 417 003 199 0104 176 - 08 009 01 008 40 50
Btw2 60 8 535 262 204 150 54 512 418 003 138 0043 101 - 09 005 01 010 37 49
Btw3 83 100 481 284 236 91 145 497 408 003 098 0005 074 - 08 004 03 011 55 6.7
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2.3.2.15 Field observations, sensor readings and laboratory data of Site 15

o 1.0 VisNIR VisNIR
0 Classification: Semiaquic Podosol i 0 [
10 — Parent material: Polygenetic coarse-grain : : ;
alluvium over shale P
Location: Cobbitty oo
- 0.8 B R
20 (34° 01' 09.0" 5 150° 39' 55.6" E) :B:G: R!
30 Depth (cm) Description o
0-12 A horizon; 10YR 5/3 (dry), 10YR 3/3 (moist); loamy AR
— 40 - d. k b I bl k . l].ﬁ J U L —
£ sand; weak subangular blocky structure; sharp, even g v £
= boundary to c =
= e a0 u =
= 50 ~ S L =
2 12-30  Bwa1 horizon; 10YR 6/3 (dry), 10YR 4/3 (moist); loamy % P A
60 = sand; weak subangular blocky structure; sharp, even = g 4. Co
houndary to TR
708 30-76  Bw2 horizon: 10YR 6/4 (dry), 10YR 4/6 (moist); clayey S
3 sand; moderate subangular blocky structure; abrupt, !
80 -1 wavy boundary to 0.21 .
a0 — 76-100+ 2Bs horizon; 10YR 6/6 (dry), 10YR 5/6 (moist); sand
clay loam; strong subangular blocky structure; 25%
100 red, 25% grey mottles. 0.0

400 550 700 0 50100 00 02 04 06 08 1.0

Table 2.15 Laboratory analysis of Site 15 Wavelength (nm) Width (cm) Ratio

Upper Lower Clay Silt Sand F.sand C.sand TC ™ OC CO,eq. CEC

Horizon depth depth (g100 (g100 (g100 (g100 (g100 pH, pH, Eﬁgs (2100 (g100 (g100 (gioo  Cxch-cations (emol, ke) (emol,,,
(em) (em) g') gY g g\ g g) g) g) gy C@ K Mg Na Al kg
A 0 12 77 39 884 122 762 526 421 002 089 0049 077 - 05 013 01 000 05 1.1
Bwl 12 30 92 56 853 147 706 562 446 002 040 0016 046 - 06 010 01 000 04 12
Bw2 30 76 126 45 828 112 716 586 466 002 023 0007 020 - 05 011 02 000 02 10
285 76 100 239 102 659 99 559 535 408 002 011 0002 000 - 02 008 17 007 25 45

53



Chapter 2: Sensors, methods and site descriptions

2.4 References

Barnes, R. J., Dhanoa, M., Lister, S. (1989). Standard Normal Variate Transformation and
De-trending of Near-Infrared Diffuse Reflectance Spectra, 43.

Ben-Dor, E., Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously
evaluate several soil properties. Soil Science Society of America Journal, 59(2), 364-
372.

Ben-Dor, E., Heller, D., Chudnovsky, A. (2008). A Novel Method of Classifying Soil
Profiles in the Field using Optical Means. Soil Science Society of America Journal
72(4), 1113-1123.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, P., Roger, J-M., McBratney, A.B.,
2010. Critical review of chemometric indicators commonly used for assessing the
quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in
Analytical Chemistry 29, 1073-1081.

Bureau of Meteorology (BOM). Australia's official weather forecasts & weather. Available
at: http://bom.gov.au [Accessed 8 Oct. 2017].

Dalal, R., Henry, R. (1986). Simultaneous determination of moisture, organic carbon, and
total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society
of America Journal 50(1), 120-123.

Gee, G. W., Bauder, J. W. (1986). “Particle-size analysis,” in Methods of Soil Analysis: Part
1. Physical and Mineralogical Methods Il, ed A. Klute (Madison: Soil Science
Society of America), 383-411.

Islam, K., Singh, B., McBratney, A. (2003). Simultaneous estimation of several soil
properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Soil
Research 41(6), 1101-1114.

Lin, LKL. (March 1989). "A concordance correlation coefficient to evaluate
reproducibility”. Biometrics. International Biometric Society. 45 (1): 255-268.

Minasny, B., McBratney, A.B. (2007) Why calculating RPD is redundant. Available from:
https://www.researchgate.net/publication/256464655 Why_calculating_RPD _is_red
undant [accessed Oct 07 2017].

Minasny, B., McBratney, A. B., Bellon-Maurel, V., Roger, J.-M., Gobrecht, A., Ferrand, L.,
Joalland, S. (2011). Removing the effect of soil moisture from NIR diffuse
reflectance spectra for the prediction of soil organic carbon. Geoderma 167-168(0),
118-124.

Mouazen, A. M., Maleki, M. R., De Baerdemaeker, J., Ramon, H. (2007). On-line
measurement of some selected soil properties using a VIS-NIR sensor. Soil and
Tillage Research 93(1), 13-27.

Piper, C. S. (1942). Soil and plant analysis. Hans Publishers, Bombay.

Quinlan, J. R. (1992). “Learning with continuous classes”, 5th Australian joint conference on
artificial intelligence.

54


https://en.wikipedia.org/wiki/Biometrics_(journal)

Chapter 2: Sensors, methods and site descriptions

R Core Team (2016). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rayment, G. E., Lyons, D. J. (2011). Soil chemical methods: Australasia, 3. CSIRO
publishing.

Reeuwijk, L. P. (1993). Procedures for soil analysis. International Soil Reference and
Information Centre.

Roger, J.-M., Chauchard, F., Bellon-Maurel, V. (2003). EPO-PLS external parameter
orthogonalisation of PLS application to temperature-independent measurement of
sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems
66(2), 191-204.

Savitzky, A., Golay, M.J.E. (1964). Smoothing and differentiation of data by simplified least
squares procedures. Analytical Chemistry 36(8), 1627—-16309.

Sgrensen, L., Dalsgaard, S. (2005). Determination of clay and other soil properties by near
infrared spectroscopy. Soil Science Society of America Journal 69(1), 159-167.

Stevens, A., Ramirez-Lopez, L. (2013). An introduction to the prospectr package. R package
Vignette R package version 0.1.3.

Viscarra Rossel, R.A., Cattle, S.R., Ortega, A., Fouad, Y., 2009. In situ measurements of soil
colour, mineral composition and clay content by vis—NIR spectroscopy. Geoderma
150, 253-266.

Walkley, A., Black, I. A. (1934). An examination of the Degtjareff method for determining
soil organic matter, and a proposed modification of the chromic acid titration
method. Soil Science 37(1), 29-38.

Williams, P.C. 1987. Variables affecting near-infrared reflectance spectroscopic analysis. In:
Near-Infrared Technology in the Agricultural and Food Industries (eds P. Williams
& K. Norris), pp. 143-167. American Association of Cereal Chemists Inc., Saint
Paul, MN.

55


https://www.r-project.org/

Chapter 3: Mapping homogeneous spectral response zones in a soil profile

3 MAPPING HOMOGENEOUS
SPECTRAL RESPONSE ZONES IN
A SOIL PROFILE

3.1 Abstract

Homogeneous spectral response zones represent relatively uniform regions of soil which may
be useful for identifying soil horizons or delineating soil units spatially. External parameter
orthogonalisation (EPO) and direct standardisation (DS) were assessed for their ability to
conserve intrinsic soil information of spectra under variable moisture condition, as
experienced when taking measurements in situ. A 1 m x 1 m section of a soil profile was
intensively sampled using visible near-infrared diffuse reflectance spectroscopy at 2.5 cm
vertical intervals and 10 cm horizontal intervals. Further samples were taken on a 10 cm grid
and scanned in a laboratory under field moist and air-dry condition. Spectra underwent
routine pre-processing then transformed using either an EPO or DS projection matrix. A
principal component space was constructed based on the in situ scans following either EPO
transformation, DS transformation or following pre-processing only (PP). Scores from the
first four principal components — which accounted for more than 0.97 of the total variance in
each case — were subject to k-means clustering to identify homogeneous spectral response
zones. Laboratory-based scans were then projected onto the same principal component space

and fitted to the pre-existing cluster centroids. Both EPO and DS were found to have
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potential in reconciling differences between in situ and laboratory-based measurements
compared to pre-processing only (PP). EPO outperformed DS in terms of conserving the
relationship between PC scores (RMSE: EPO = 11.8, DS = 15.4, PP = 38.5) and also in
identifying homogeneous spectral response zones that corresponded to field observed

horizons.

3.2 Introduction

Horizons are characteristic features of soils, which represent regions of relative uniformity in
a highly heterogeneous medium. Historically, horizons have offered an efficient way of
characterising a profile by capturing the maximum variation within a soil profile using a
minimum number of investigation sites. Horizons form through many factors including the
accumulation of OM, deposition of eolian or alluvial material, surface weathering, or
translocation of clays or Fe/Al chelates (Isbell, 2002). They are identified in the field by
observing changes of soil properties with depth. Common diagnostic criteria include colour,
texture, mineral composition, structure, redoximorphic features and the presence of

inclusions.

Many horizon diagnostic criteria such as colour, texture and mineral composition can be
estimated using visible near-infrared diffuse reflectance spectroscopy (VisNIR) (e.g. Viscarra
Rossel et al., 2009). Previous studies have utilised this relationship to characterise horizons
with VisNIR. Galvao et al. (1997) investigated VisNIR spectra of 35 air-dry and ground,
horizon-based samples from six profiles in Brazil. The authors identified that the principal
components of VisNIR spectra held intrinsic information that showed a characteristic
decrease with depth. Viscarra Rossel and Webster (2011) analysed VisNIR spectra from
36,654 air-dried and ground samples from Australia. Horizon centroids in canonical space
were identified and by reallocating samples to the nearest centroid, it was possible to
distinguish topsoil and subsoil horizons. Meanwhile, Fajardo et al., (2016) intensively
sampled 59 air-dry soil cores, varying between 85 and 130 cm depth, at 2 cm increments with
a VIisNIR contact probe. Principal components (PCs) of the spectra were subject to fuzzy

clustering and a digital gradient was applied to identify spectrally derived horizon boundaries
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that exhibited similarity to traditional horizons. Common themes identified from these studies
are: i) the need to apply a dimensionality reduction technique before extracting useful
information in the VisNIR spectra; and ii) the relative ease at discriminating between topsoil
and subsoil groupings. Topsoil and subsoil discrimination was attributed to characteristic
decreases in OM content, and corresponding increases in the influence of the mineral phase

and clay content with depth, which were reflected in the spectra.

These three studies were all conducted on air-dry cores or ground samples. Limited attention

has been given to identifying horizons in situ using VisNIR.

Collection of useful soil spectra in situ presents a number of challenging environmental
factors compared to laboratory-based scanning. Incomplete control of soil moisture,
temperature, surface condition and small scale heterogeneity all add complexity to the task of
collecting useful spectra in the field. Variable moisture is of particular concern as it can
modify a spectrum to such an extent that the variation between moisture contents can exceed
variation between samples (Wijewardane et al., 2016a). Moisture in a sample scatters and
absorbs illumination radiation resulting in a general decrease in reflectance (Bowers and
Hanks, 1965). Correcting for moisture effects is challenging, as observed decreases in

reflectance are nonlinear (Lobell and Asner, 2002).

A number of methods have been put forward to deal with moisture effects when calibrating

models to estimate soil properties from spectra collected in field condition:

1. Spiking a calibration set of ground samples with some field condition spectra, so that
calibration algorithms are not over trained on moisture susceptible regions (Viscarra
Rossel et al., 2009; Guerrero et al., 2010).

2. Global moisture modelling proceeds by first assigning samples into moisture content
classes, and then applying individual calibration models for each moisture class
(Mouazen et al., 2006; Nocita et al., 2013).
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3. Direct standardisation (DS) uses a transfer matrix to convert spectra scanned under
moist condition to the equivalent spectra scanned under air-dry conditions (Ji et al.,
2015).

4. External parameter orthogonalisation (EPO) projects both moist and air-dry
spectra into a new space, orthogonal to the influence of soil moisture (Minasny et al.,
2011).

Comparative analysis has confirmed EPO, DS, global moisture modelling and spiking are
viable approaches to reduce the negative influence of moisture when applying calibrated
models to field condition spectra (Ji et al., 2015; Wijewardane et al., 2016b). However, soil
spectra also hold intrinsic information that may not be quantifiable in terms of a response
variable, such as the identification of homogeneous spectral response zones for identification
of soil horizons or mapping the distribution of soil units spatially. Of the four methods
mentioned above, spiking and global moisture modelling are unsuitable for investigating
intrinsic spectral information as they only manage, but do not remove, the moisture effect. On
the other hand, EPO and DS show potential as they remove the effect of soil moisture, while

conserving information held within a spectrum.

External parameter orthogonalisation was developed to separate the effects of an unwanted
external parameter from spectra containing useful information. Roger et al. (2003) first
applied EPO to reduce the effect of temperature variation on VisNIR spectra to improve
estimates of the sugar content of intact apples. Applications to removing the effect of
moisture on soil samples were first demonstrated by Minasny et al. (2011), who successfully
estimated SOC levels from rewetted samples. It has since been used successfully to improve
estimates of inorganic carbon, total carbon, sand and clay content (Ge et al., 2014; Ackerson
et al., 2015; Wijewardane et al., 2016a).

Direct standardisation was developed to allow transfer of calibrated models developed on one
spectrometer to be used on another spectrometer (Wang et al., 1991). The approach
establishes a relationship between the spectra obtained by the ‘master’ spectrometer and the

corresponding spectra obtained by the ‘slave’ spectrometer; the relationship is then used to
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transform the slave spectra to correspond with the master spectra. It has been adapted to
removing the effects of soil moisture where the moist spectra act as the slave set and are
converted to the air-dry master set (Ji et al., 2015). Both spectra are collected with the same
spectrometer in this case.

It remains unclear if moisture corrected spectra either by EPO and DS can conserve sufficient
intrinsic soil information for the identification of homogeneous spectral response zones under
field conditions. This study evaluated EPO and DS in terms of their ability to conserve
relationships between VisNIR spectra obtained in situ, and those obtained under laboratory

conditions for the identification of homogeneous spectral response zones.

3.3 Methods

3.3.1 Site description

The study site was located on Westwood Farm, an experimental property owned by the
University of Sydney, 3 km northwest of Cobbitty, NSW, Australia (33°59'44.9"S
150°39'11.9"E) (Fig. 3.1). The parent material of the site is Ashfield Shale, a Triassic
sedimentary rock comprising black mudstones and grey shales (Howard, 1969). Soils
developing from this parent material are known to have a well-developed texture profile and
the marine nature of the parent material commonly results in expression of sodicity in the
subsoil (Walker, 1960). The mineralogy of the clay fraction of this soil is commonly
dominated by kaolinite, producing soils of low to moderate fertility (Davey et al., 1975). The
site has been extensively cleared for agricultural purposes and is currently used for intensive
grazing on naturalised kikuyu (Pennisetum clandestinum) and paspalum (Paspalum
dilatatum) grasses. This site was also used as “Site 3 in future chapters, see sections 2.3.1.2
and 2.3.2.3 for further details.
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@ Location of sampled profile

Figure 3.1 Location of the sampled profile in relation to Sydney within the state of New

South Wales, Australia.

3.3.2 Profile preparation

A pit was excavated 1.5 m wide, 5 m long and reaching a depth of 1.5 m at the centre. Four
horizons were identified, and the soil was classified as a Brown Kurosol (Isbell, 2016).
Notable features of the soil include an abrupt textural contrast from sandy clay loam in the E
horizon to medium heavy clay in the Btl horizon (Table 3.1). The Btl horizon was also
found to be strongly acidic, pH (1:5 H20) < 5.5 (Hazelton and Murphy, 2016). A small
quantity of magnetic gravel (~2-4 mm diameter) was found in the A and E horizons, and
heavy mottling occurs in the Bt2. Horizon based sampling and laboratory analysis was
conducted to further characterise the soil, including a surface sample taken at 0-2 cm depth
(Table 3.2).

A 1 m x 1 m sampling region was delineated on the pit wall and sheared to a smooth surface
(Fig. 3.2). The final shearing was conducted in a horizontal direction, progressing vertically
from the soil surface to the bottom of the sampling region to limit surface contamination from

falling debris. Galvanised nails were inserted on a 10 cm grid to guide sampling.
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Table 3.1 Field observations

Depth Boundary  Munsell Carbonates

Horizon (cm)  Transition shape (moist)  Texture' Structure Mottling and inclusions (1 M HCI)
A 0-16 abrupt even 10YR 3/4 L Moderate Granular Magnetite/Maghemite negative
E 16-33 clear wavy 75YR4/4  SCL Strong subangular blocky Magnetite/Maghemite negative
Btl 33-47 gradual wavy 75YR4/6 MHC Strong angular blocky - negative
Bt2  47-100+ - - 10YR 4/6 HC Strong angular blocky ~ 20% red, 20% grey mottles  negative

"L — loam; SCL — sandy clay loam; MHC — medium-heavy clay; HC — heavy clay.

Table 3.2 Horizon-based bulk soil properties, including a 0-2 cm topsoil sample.

OC TN Clay Silt Sand EC _ } CEC
Depth (g 100 (g100 (g100 (g 100 (g 100 (dsS Each. Cations (cmol) kg™) (cmol) ESP
Horizon (cm) g% g g g g9 pHsw pHe m?) Ca K Mg Na Al  kgh (%)

- 0-2 339 0238 16 17 36 5.5 48 021 31 1.0 2.9 0.1 0.1 7.2 1.2
A 0-16 096 0.043 18 14 68 6.0 48 006 1.2 0.5 11 0.1 0.2 3.1 3.0
E 16-33 0.67 0.033 24 12 64 5.7 46 006 09 0.3 2.0 0.2 0.5 3.9 4.3
Btl 33-47 081 0.044 57 10 32 5.4 44 005 15 0.4 5.2 0.4 1.3 8.9 4.6
Bt2  47-100+ 0.37 0.002 67 11 22 5.3 40 007 02 0.2 5.1 0.8 72 135 58

OC - organic carbon; TN — total nitrogen; pHw — pH (1:5 H20); pHc — pH (1:5 CaCly); EC — electrical conductivity; CEC — cation exchange

capacity; ESP — exchangeable sodium percentage.
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S

Figure 3.2 Digital photograph of the prepared soil profile displaying a natural face
section (left) and the prepared 1 m x 1 m sampling area. Galvanised nails were inserted

on a 10 cm grid to guide sampling locations.

3.3.3 In situ scanning, sample collection and ex situ scanning

Visible near-infrared (VisNIR) readings were taken in 2.5 cm increments to give 41 readings
over each 1 m transect. Ten vertical transects were taken at 10 cm lateral spacing, as well as
three horizontal transects at 0, 50 and 100 cm depth (Fig. 3.3). Bulk density cores were
extracted on a 10 cm grid for further scanning under laboratory conditions (Fig. 3.3). Samples
at 0 cm depth were taken perpendicular to the soil surface, i.e. driven into the soil surface.
Those taken at depth were taken parallel to the soil surface, i.e. driven into the pit wall. Bulk
density cores were immediately placed in aluminium tins and sealed with vinyl tape to
conserve field condition moisture. The flat soil surface at the top of bulk density cores was
scanned with VisNIR in the laboratory under field-moist condition. The cores were then air-
dried at 40°C until constant weight was achieved, and the surface was scanned again to give
an air-dry reading. A subset of the sample was ground to pass through a 2 mm sieve for
laboratory analysis. The remaining intact soil was heated again at 40°C, reweighed and then
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heated to 105°C to obtain the oven-dried weight for calculation of gravimetric moisture

content.

Sampling design
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Figure 3.3 Schematic representation of sampling design of the soil profile.

3.3.4 Constructing the projection matrices

A single library was used to construct both EPO and DS transformation matrices, as it has
been observed that predictive calibrations are sensitive to the geographical range of the
calibration library (Sudduth and Hummel, 1996), and this is more widely applicable to
moisture correction factors. The DS transfer matrix was constructed as per Wang et al.,
(1991) (Fig. 3.4a) and the EPO projection matrix following Minasny et al., (2012) (Fig.
3.4b). A detailed description of EPO is given in section 2.2.5.2.

Structural differences in the EPO and DS matrices are immediately evident. However,

features around the 1,400 and 1,800 nm water absorption bands can be identified in both.
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Figure 3.4 Comparison of matrix structure: a) direct standardisation transfer matrix;

and b) external parameter orthogonalisation projection matrix.

3.3.5 Data processing

3.3.5.1 Principal component analysis

Principal component analysis (PCA) is a statistical procedure commonly utilised as a
dimensionality reducing technique when processing VisNIR spectra. Data are subjected to a
number of orthogonal projections, each accounting for the maximum variability remaining in
the dataset. The effectiveness of PCA is driven by a large amount of autocorrelation between
wavelengths in VisNIR spectra, which can be reduced so that a small number of variables
explain the vast majority of observed variance. The in situ VisNIR dataset was used to build
the principal component (PC) space. The PP, DS and EPO spectra were individually centred
and scaled to a mean of zero and unit variance and PCA performed. The centring and scaling
parameters, as well as the loadings of the PCs, were then used to project laboratory-based
VisNIR scans under field moist and air-dry condition onto the same PC space for

comparison.
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3.3.5.2 k-means clustering

k-means clustering is an iterative process which partitions observations into clusters based on
minimum distance from cluster centroids. Following partitioning new cluster centroids are
calculated and observations are repartitioned to the new centroids. The algorithm proceeds
until an error function is minimised (Egn 3.1), so as to minimise the within cluster variance
(MacQueen, 1967).

Equation 3.1

k
argsminz >l = gll?

i=1 x€S;

Where:

Given a set of observations (x4, x5, ..., X, ) Where each observation is a d-dimensional vector,
k-means clustering partitions the n observations into k sets S = {S;,S,, ..., Sk} SO as to

minimise the within-cluster sum of squares.

The PCs of in situ scans were subject to k-means clustering to identify zones of homogeneous
spectral response. The number of clusters was set equal to four, i.e. the same number of soil
horizons observed, for this investigation to standardise the analysis. Methods are available to
automate the selection of cluster number if the number of required clusters is unknown, e.g.
cubic clustering criterion (Sarle, 1983). The PCs of moist and air-dry laboratory scans were

fit to the cluster centroids established from in situ scans.

3.3.6 Statistics

Differences between PP, DS and EPO spectra under field moist and air-dry condition were
assessed by calculating the RMSE of PC scores projected into the PC space of in situ scans.
Quialitative assessment of homogeneous spectral response zones was provided by comparison

of the distribution of classes on the profile with field observed horizons.
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3.4 Results and discussion

3.4.1 Moisture variability of the soil profile

Gravimetric soil moisture content varied widely within the profile (Fig. 3.5). A local
maximum was seen at the soil surface before decreasing to 20 cm depth then increasing again
in the clayey subsoil. A maximum of 0.25 was observed at 50 cm depth and a minimum of
0.10 was observed at 20 cm depth. This large vertical distribution of moisture variability in
the vertical sense was also met with significant variability laterally. At 100 cm depth the
moisture content ranged from 0.17 to 0.24. The observed vertical and lateral variability in
moisture content reinforces the need to remove the effects of moisture to gain useful insights
from the spectra.
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Figure 3.5 Box plots displaying the distribution of gravimetric moisture content by
depth.
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3.4.2 Moisture and treatment effects on spectra

Spectra taken on field condition cores had reduced reflectance than those taken on air-dry or
ground samples, as noted previously (Bowers and Hanks, 1965) (Fig. 3.6a). The effect was
nonlinear, an increased reduction was generally observed with increasing wavelengths, and
two broad absorption bands were observed at 1400 nm and 1900 nm representing overtones
of the fundamental vibrations of water molecules (Stoner and Baumgardner, 1980). Pre-
processing only had little effect on removing the influence of variable soil moisture (Fig.
3.6b). Although spectra did converge around the mineral peak at 2200 nm, large differences
were still observed, specifically at the broad 1400 nm and 1900 nm water absorbance peaks.
Direct standardisation reduced the influence of soil moisture (Fig. 3.6¢). For topsoil samples,
DS resulted in near perfect alignment of moist samples. However, for subsoil samples DS
worked best between 800 — 1850 nm with divergence observed in the visible section and also
at wavelengths greater than 1850 nm. External parameter orthogonalisation produced a high
degree of convergence between air-dry and field moist samples in the orthogonal space (Fig.

3.6d). Differences between the topsoil and subsoil samples also appeared to be accentuated.

3.4.3 Transfer to principal component space

The first PC explained 0.69 of the variance for PP, 0.63 for DS and 0.79 for EPO
respectively. The cumulative proportion of variance explained by the first four PCs was
greater than 0.97 in each instance. All treatments showed a high correlation between scans
taken in situ and those taken in the laboratory under field moist condition, indicating that soil
moisture was effectively conserved and that field moist results can be extrapolated to in situ

readings (Fig. 3.7).
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a) Reflectance spectra b) PP

0.6
4

0.4

Reflectance
0.2
L1 |
‘\
\ \
\\
A
\
Al
i
]
-
3
.
i
h
i
10 1 2
| | |

0.0
2

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Wavelength (nm) Wavelength (nm)
c) DS d) EPO

1.0

0.5
1

Fi
-05 0.0

-1.0

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Wavelength (nm) Wavelength (nm)
— Topsoilmoist — = Topsoil dry Subsoil moist Subsoil dry |

Figure 3.6 Comparison of a representative topsoil and subsoil sample scanned in field
moist and air-dried condition: a) trimmed and splice corrected reflectance spectra (500-
2450 nm); b) pre-processed (PP) spectra; c) direct standardisation (DS) approach
whereby the moist sample is corrected to resemble the air-dry sample; d) external
parameter orthogonalisation (EPO) spectra whereby both moist and air-dry spectra are

projected into a new space orthogonal to moisture effects.

The effect of moisture can be seen by comparing PC scores of samples scanned in the
laboratory under moist and air-dry condition. Deviations between moist and air-dry PP
spectra occurred for all of PC1 and in the subsoil and topsoil for PC2 and PC3 respectively.
Direct standardisation exhibited a strong coherence for PC1 and PC2; however, deviations
occurred for PC3 and PC4 in the subsoil. Following EPO, there was a strong coherence
throughout all four PCs and the PC scores also exhibited stronger vertical differentiation than
was seen under PP and DS. Comparison of the first four PC scores for moist and air-dry scans
shows that EPO (LCCC = 0.84, RMSE = 9.6) conserved more intrinsic information than DS
(LCCC =0.58, RMSE = 22.3) and PP (LCCC = 0.44, RMSE = 37.0) (Fig. 3.8).
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Figure 3.7 Principal component scores for VisNIR spectra obtained in situ (black), field

moist in the laboratory (blue) and air-dry in the laboratory (red).
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Figure 3.8 The first four PCs of VisNIR spectra under moist and air-dry condition: a)

pre-processing only; b) direct standardisation; c) external parameter orthogonalisation.

3.4.4 Comparison of clusters to observed horizons

The four clusters identified from clustering the PP PC scores were only able to effectively
identify the A horizon in situ, as other horizons showed no continuous vertical disaggregation
(Fig. 3.9). Under moist conditions, PP effectively isolated the A and E horizon from the B
horizons. However, under air-dry conditions only one horizon was identified, indicating that
the spectra of air-dry subsoil samples are more similar to moist topsoil samples. This
reaffirms the notion that variation in moisture can greatly exceed variation between samples
(Wijewardane et al., 2016a).

Direct standardisation effectively identified three horizons in situ, despite the A and E
horizons being combined. Under field moist condition in the laboratory, the separation of the
two B horizons is less clear and is completely removed under ground condition; where DS

could only effectively identify two horizons, with the E horizon split in half.

External parameter orthogonalisation was the most effective approach for identify horizons in

situ, and for conserving class allocations under variable moisture conditions. Continuous
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horizontal bands, that resembled the field observed horizons were identified under all

scanning environments.
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The success of horizon identification by k-means clustering of VisNIR spectra is attributable
to horizon delineation being derived by strong changes in colour and clay content in this soil,
not properties less spectrally active, such as structure. Organic carbon ranged from 3.39 g 100
g for between the soil surface and 0.37 g 100 g* in the Bt2 horizon, while clay ranged from
16 t0 67 g 100 g* (Table 3.2).

Clusters often did not translate to contiguous zones on the soil profile. Associations of
clusters were observed, especially in the heavily mottled Bt2 horizon. Within horizon
variation is expected, as horizons are never uniform. Horizons may represent gradational
zones between two more clearly identifiable horizons, as distinguished with transitional AB
and BC horizons. Alternatively, discrete parts of one horizon may be present in another, as
represented by broken horizons A/B and B/C. In addition, VisNIR is capable of identifying

horizons not identified through field observations (Fajardo et al., 2016).

The preservation of the spatial variability of horizons when captured in this way will no
doubt provide insight into the development and functioning of soils. As opposed to the
homogenisation that occurs when soils are ground and sieved prior to analysis. The benefits

of this spatial disaggregation warrant further investigation.

3.4.4.1 Evaluation of DS and EPO

Direct standardisation produced variable results for the profile wall under the observed
moisture contents. Slight improvements in the prediction accuracy of models calibrated
following DS have been found when the moisture content of the training set is similar to the
moisture content of the unknown sample (Wijewardane et al., 2016b). This moisture-explicit
DS adds complexity to the moisture correction process. To apply the correct DS transfer set a
priori knowledge of the samples’ moisture content is required. Any method to ascertain soil
moisture that requires drying a sample fundamentally renders the correction processes
redundant, as the dried sample could instead be scanned, and it is also impractical in situ. One

approach is to predict the soil moisture content directly from the VisNIR spectra. Haubock et
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al., (2008) found that soil moisture could be predicted, R? = 0.71, with a normalised soil
moisture index utilising just the 1,800 and 2,119 nm wavelength channels. However, using
this approach could lead to compounding errors when a sample is placed in the wrong
moisture class. If creation of moisture classes were to be applied to this soil profile, three
different calibration models would be required in total, and two would be required within the
majority of lateral transects. It remains unclear if underlying homogeneous spectral response
zones would be retained or if they would become a reflection of predicted moisture content
and the subsequent transfer matrix applied.

As both moist and air-dry spectra are projected into the same space when applying EPO, a
priori knowledge of soil moisture content is not required. EPO was more effective under the
variable soil moisture levels seen in this soil profile and as expected when surveying a larger

area for delineation of soil map units. It is thus seen as a more effective approach.

3.5 Conclusion

Both EPO and DS were able to reduce the negative effects of soil moisture on VisNIR
spectra, whilst retaining useful spectral information. More intrinsic soil information was
retained following EPO, as opposed to DS, and k-means clusters consistent with field
observed horizons were better expressed under field moist and air-dry condition.
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4 DESIGNING SAMPLING TO
QUANTIFY SOIL PROFILE
VARIABILITY

4.1 Abstract

A range of field deployable soil sensors are available to investigate soil profiles and their
variability in situ. New sampling methodologies are required to use these sensors efficiently
while sufficiently characterising profile variability. To better inform sampling methodologies
the vertical and lateral variability of a soil profile was explored. A 1 m x 1 m surface of a soil
profile was intensively sampled on 2.5 cm increment transects using visible near-infrared
diffuse reflectance spectroscopy (VisNIR). The profile was physically sampled on a 10 cm
grid and characterised in terms of organic carbon, total nitrogen, pH, clay content, bulk
density, gravimetric soil moisture and electrical conductivity. Visible near-infrared diffuse
reflectance spectroscopy and portable X-ray fluorescence spectroscopy (pXRF) scans were
taken in field moist, air-dried, and ground (<2 mm) condition. The vertical and lateral
variance of soil properties and sensor readings were characterised by constructing directional
variograms. The junction of the lateral sill with the vertical modelled variogram occurred
below the sampling interval of 10 cm for laboratory and pXRF data. As extrapolating below
the minimum sampling interval can be unpredictable, the high resolution VisNIR information

was used to investigate below this interval. In situ VisNIR spectra were a suitable proxy for

77



Chapter 4: Designing sampling to quantify soil profile variability

soil properties, as the principal components of the VisNIR spectra were correlated with soil
properties. A 4.3 cm increment in the vertical component was found to experience the
equivalent variance in soil properties as an entire 1 m lateral cross section. This finding
informed the development of a sampling methodology that focussed on intensive vertical
sampling, while still capturing the spatial variability of the profile. Following analysis of an
additional fourteen profiles, the vertical increment was refined to 4.1 c¢cm, while lateral

variability was characterised with a range of 38.1 cm.

4.2 Introduction

Understanding soil spatial variability is paramount to understanding pedogenic processes and
for reaching the potential of the soil resource. New devices are available that allow more
efficient investigation of soil properties and their variability at the profile level (Hartemink

and Minasny, 2014). These devices will change the way soils are described and reported on.

A soil profile is inherently anisotropic (Bathke and Cassel, 1991). Multiple gradients traverse
a soil profile, including thermal, redox and moisture potentials, and input of organic
substrates (Jenny, 1994). Generally, these gradients apply perpendicular to the soil surface.
Differential influences of these gradients form layers in the soil referred to as horizons. Soil
horizons are layers of relatively uniform soil properties, whereby variability within a layer is
smaller than between layers. Soil variability must be considered when developing a sampling
methodology. There are many scales of soil variability. Spatial variability is expressed at the
aggregate (Cruvinel et al., 1993), field (Cambardella et al., 1994), landscape (Cook et al.,
1996) and global scale (Arrouays et al., 2014). The investigation of profile-scale variability,

relevant to the use of proximal soil sensors, warrants further investigation.

The support size of proximal sensors provides a minimum sampling interval, below which
inbuilt redundancies will prevail. Soils vary more vertically than laterally at the profile-scale.
Thus, a single vertical transect through a profile may encompass a significant quantity of the
total variance of a profile. However, describing a soil profile involves analysing more than a

single vertical transect, as there is also known variation in the lateral component. Initial
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studies analysing soil profiles with proximal sensors have sampled with equal vertical and
lateral intensity (e.g. Adhikari et al., 2016; Grauer-Gray and Hartemink, 2016). However, this
may be an inefficient method.

Another consideration is the lateral variability of soils as a function of depth. If more
variability is expressed at the soil surface, or at depth, then sampling intensity can be scaled
accordingly to efficiently capture the variability. There are multiple factors affecting
variability with depth. Topsoils may be more homogeneous due to bioturbation and/or
cultivation, meanwhile, subsoils are more directly influenced by parent material, preferential

flow paths and localised organic input from root exudates.

Uncertainties prevail in terms of an efficient vertical and lateral sampling intensity. To guide
effective sampling methodologies using proximal soil sensors, better understanding of soil
spatial variability at a relevant scale is required. This study investigated the development of
an improved sampling methodology by exploring profile-scale variability in terms of soil
properties and proximal soil sensor readings. Vertical and lateral variability were
characterised independently, as well as topsoil and subsoil variability.

4.3 Methods

4.3.1 Proximal sensor scanning, sampling and laboratory analysis
This research was conducted in two parts. An initial investigation was conducted by
intensively sampling a single soil profile. Findings from this initial investigation were used to

formulate a sampling methodology for an additional fourteen soil profiles.

4.3.1.1 Preliminary investigation site, intensively sampled profile
The initial sampling was conducted on the same soil profile and sampling methodology as
used in Chapter 3. Briefly, a 1 m x 1 m surface of a soil pit wall was sheared to a smooth

surface and a 10 cm sampling grid was outlined with galvanised nails. The profile was
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sampled in situ using VisNIR at 2.5 cm increments along 1 m transects. Vertical transects
was space 10 cm apart, to give eleven separate transects in the profile. Lateral transects were
scanned at 0, 50 and 100 cm depth respectively. Bulk density cores were taken on the 10 cm
grid. The bulk density cores were transported to the laboratory and rescanned using VisNIR
and also pXRF in field moist, air-dry, and air-dry and ground (<2 mm) condition. The
sampling grid was characterised in terms of TC, TN, pH (1:5 H20), pH (1:5 CaCly), and EC,
as outlined in section 2.2.4. However, clay content was calculated using the pipette method
(Gee and Bauder, 1986) for this investigation. Measurement of bulk density and gravimetric

moisture content were also obtained from the bulk density cores.

4.3.1.2 Additional fourteen sites

Results from the preliminary investigation were used to construct a revised sampling
methodology that was used at an additional fourteen profiles. The fourteen profiles
represented a diverse selection of soils from across the state of New South Wales, Australia.
For a full description of the profiles see section 2.3. For these additional sites, VisNIR spectra
were recorded on three vertical transects at 0, 50, 100 cm lateral spacing, and lateral transects
were taken at 0, 50 and 100 cm depth, as described in section 2.2.2. Horizon-based sampling
was conducted, and samples were characterised for TC, TN, pH (1:5 H20), pH (1:5 CaCl,),

EC, texture, OC, COs equivalent, CEC and exchangeable cations, as outlined in section 2.2.4.

4.3.1.3 Spectral pre-processing and EPO transformation

To reduce the negative effects of variable soil moisture and facilitate comparison of field
condition and air-dry VisNIR spectra, all spectra were subject to routine pre-processing and
EPO transformation, as outlined in section 2.2.5.1 and section 2.2.5.2. Dimensionality
reduction was achieved through PCA, as described in section 3.3.5.1. Laboratory scans in
field condition, air-dry, and air-dry and ground (<2 mm), where all projected into the PC

constructed utilising their corresponding in situ scans for direct comparison.
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4.3.2 Variogram construction and evaluation

Variograms were used to characterise profile-scale variability. Variograms describe the
spatial dependence of a variable, i.e. the expected magnitude of variance between two
observations as a function of the distance between them. Empirical variograms are
constructed for observations z;,i = 1,2, ..., k by summation of the variance between pairs of
observations, N(h), separated by a given lag distance h (+ lag tolerance) and dividing by
twice the number of pairs of observations (Eqn 4.1).

Equation 4.1
1 |2

Zi — Zj
2|N(h | b
INC )l(i,j)EN(h)

y(h) =

Empirical variograms are used as estimators of an underlying theoretical variogram which
must be calculated for geostatistical applications such as kriging and stochastic simulations
(Oliver and Webster, 1990). Model functions used to fit empirical variograms must be
conditional negative semi-definite (McBratney and Webster, 1986). Common examples are
circular, spherical, exponential, Gaussian- and Matérn-based models. These models are often
used to described the spatial dependence of the observations in terms of a sill, range and

nugget. Where:

e The sill is the limit of the semivariance. Representing the maximum semivariance
over the study area.

e The range is the lag distance at which the sill value is first acheived. Autocorrelation
is essentially zero beyond the range.

e The nugget describes significant semivariance at zero lag distance. Theoretically the
variogram should pass through the origin, as at a lag distance of zero no semivariance
is expected. Nuggets exist due to semivariance at lag distances smaller than the

minimum sampling spacing, and measurement error.

To characterise vertical and lateral variation independently, the two components must first be

separated. This can be achieved through the use of directional variograms (St-Onge and
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Cavayas, 1995). Directional variograms are commonly used when describing relationships
that are direction dependent, such as the dispersion of point source pollution by prevailing
winds (e.g. Potoglou and Kanaroglou, 2005). Directional variograms restrict the search
criterion for valid lag distance pairs to a directional band specified by an azimuth direction,

angular tolerance and bandwidth (Fig. 4.1).

N
A / \

(_azmuth /\

'httol

'Iang tol.
bandwidth

— !_——
v

Figure 4.1 Schematic representation of the directional band used to isolate pairs when

constructing an empirical directional variogram.

To isolate vertical and lateral transects the directional angle, a proxy azimuth from a vertical
reference plane towards the soil surface, is set to 0° for vertical components or 90° for lateral
components. Angular tolerance and bandwidth are both set equal to 0. This isolates each
transect for variance calculations which are then combined for construction of the empirical

variogram.

Empirical directional variograms were constructed for principal component scores using the
variog() function from the “geoR” package (Ribeiro and Diggle, 2016). Model functions
were constructed from the empirical variograms using the variofit() function from the same

package.
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4.3.2.1 Comparing vertical and lateral variability

To characterise the relationship between vertical and lateral variance, the point of intersection
of the lateral sill with the modelled vertical variogram was identified for each principal
component score. The points of intersection were then weighted by the amount of variation
explained by each principal component, to give an estimation of the deviation in the vertical
component required to experience the same amount of variation as that experienced across an

entire 1 m lateral cross-section of the profile.

4.3.3 Statistics

4.3.3.1 Coefficient of variation
To explore soil variability with depth the coefficient of variation (CV) was calculated for
laboratory derived properties and pXRF reported elemental composition on individual lateral

transects.

The coefficient of variation is a unitless measure developed to characterise the dispersion of a
dataset. It is a useful technique to standardise and compare variability measures where mean
values vary significantly, such as mean values of organic carbon in topsoil versus subsoil
samples. The CV of a sample is calculated as the ratio of the standard deviation, s, to the

mean, i, of a dataset (Eqn 4.2).

Equation 4.2

CV =

Kl @«

4.3.3.2 Pearson’s correlation coefficient

Pearson’s correlation coefficient (r) was used to describe the relationship between principal
component scores of VisNIR spectra and laboratory derived data to determine if they are a
suitable proxy for describing soil variability.
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Pearson’s correlation coefficient is a widely used measure to describe the linear correlation
between two variables. Pearson’s correlation coefficient is calculated as the covariance of
two variables divided by the product of their standard deviations (Egqn 4.3). Values range
between +1 for perfect positive correlation to -1 for a perfect negative correlation.

Equation 4.3

. 2ie1 (i — 0@ —y)
VI (g — )2 X (v — 7)?

Where:
x;, y; are the i™ observed values for x and y respectively

X, y are the mean values of variable x and y respectively

4.4 Results and discussion

4.4.1 Laboratory and pXRF data

Soil properties were found to vary vertically and laterally. No property exhibited vertical
stationarity, and only pH (1:5 CaCl,) exhibited a monotonic change with depth (Fig. 4.2).
Summary statistics of the laboratory derived and pXRF data may be found in Table 4.1.

Total carbon and TN were highly correlated. Their largest values were observed at the soil
surface before decreasing rapidly to 30 cm. Values then increased slightly to 40 cm before
decreasing again. This increase is likely driven by the corresponding increase in clay at this
point, as clay particles offer a number of mechanisms to stabilise organic matter particles and
protect them from decomposition (Six, et al., 2002). All horizons tested negative for the
presence of carbonates, therefore total carbon is equivalent to organic carbon.

pH (1:5 CaCly) displayed high variability in the topsoil, with a substantial decrease in
variability with depth. pH (1:5 H20) displayed high variability throughout the profile and
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increased over the 70 to 100 cm depth range. This increase in pH (1:5 H20) is thought to be
due to decreasing EC values found over this depth range. Smaller levels of EC reduce the
exchangeable acidity that is displaced into the solution and accentuate differences between
pH measured in deionised water and CaCl. solution (Minansy et al., 2011).

Clay content was small in the top 10 cm, with an average of 11.8 g 100 g*. Clay content then
rose sharply in the argillic horizon, reaching a mean value of 68.1 g 100 g* at 60 cm, before
decreasing gradually with depth.

Bulk density showed an inverse relationship with clay, except for the soil surface, where high
OC contributed to the smallest observed bulk density of 1.32 g cm™. Values increased rapidly
to a maximum of 1.62 g cm™ at 20 cm. Bulk density then decreased to a local minimum
between 50 — 60 cm before increasing slightly. Gravimetric soil moisture and EC both
showed inverse relationships to bulk density, although soil moisture remained relatively

stable below 60 cm.

Al, Si, K and Fe accounted for 99.8% of the mass of all observable elements in the profile.
The parent material of the site is Ashfield Shale, a Triassic sedimentary rock comprising
black mudstones and grey shales (Howard,1969). The pXRF reported elements showed high
levels of Fe levels and negligible Ca, reflecting the known geochemistry of this shale parent
material. Conserved relationships, observed using pXRF, between parent materials and soil

geochemistry have previously been demonstrated by Stockmann et al. (2016)

Al, K and Fe were all correlated with clay to varying degrees. Al values had the strongest
correlation with clay. Average Fe values increased with depth, although variation was much
greater in both the topsoil and deep subsoil. This was attributed to the presence of
magnetite/maghemite inclusions in the topsoil and heavy mottling in the subsoil, which is
attributed to dissolution and precipitation of Fe resulting in spatial disaggregation
(Rabenhorst and Parikh, 2000). Conversely, Si was inversely correlated with clay content.
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Figure 4.2 Box plots displaying the vertical distribution of soil organic carbon, total

nitrogen, pH (1:5 H20), pH (1:5 CaCl), clay, bulk density, gravimetric soil moisture,
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Chapter 4: Designing sampling to quantify soil profile variability

Table 4.1 Summary statistics of laboratory and pXRF data of air-dry samples. IQR =

interquartile range.

Laboratory data PXRF (%)
OC TN pHw pHc Clay BD 63 EC Al Si K Fe
Minimum  0.17 0.01 5.0 4.1 11.0 1.19 0.10 254 40 155 039 32
Maximum 3.06 0.23 6.3 5.2 73.7 1.67 0.25 1035 15.6 46.7 0.87 10.8
Median 062 005 53 44 574 148 0.19 644 12.4 241 0.64 6.7
IQR 0.47 002 04 05 485 0.15 0.06 258 6.4 155 017 1.7
Mean 0.69 007 54 44 449 148 0.18 62.9 109 28.1 0.64 6.5

4.4.1.1 Coefficient of variation with respect to depth

Individual properties exhibited variation of CV with depth. In the top 50 cm of the profile Fe
and EC had the largest CV. Below 50 cm, Fe and OC had the largest CV. pH (1:5 CaCly), pH
(1:5 H20), clay and BD all had a low CV value which were relatively stable with depth. OC,
TN, gravimetric soil moisture, EC and all pXRF elements had relatively high CV values. The
pXRF elements had relatively high CV values when scanning intact samples, as the spatial
heterogeneity of the sample is reserved. Rescanning of the samples following grinding and
passing through a 2 mm sieve greatly reduced the CV, except for Fe the topsoil. A global
median lateral CV value of 7.2% for was identified for laboratory derived data and pXRF of
air-dry samples. If samples were ground and sieved prior to pXRF scanning this value was

reduced to 5.6%. The median CV value is 5.2% when considering laboratory data alone.

No trend with depth was observed with the CV values of lateral transects when considering

all properties (Fig. 2.3). This demonstrates that lateral variance was consistent in both the
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topsoil and subsoil. Therefore, sampling intensity in the topsoil and subsoil must be

equivalent to capture the full spatial variability of a profile.

Depth (cm)

10
20
30
40
50
60
70
80
90
100

Coefficient of variation

40

Figure 4.3 Box plots displaying coefficient of variation values for laboratory and

pXRFair-dary data with depth. The dotted red line indicates the global median lateral

coefficient of variation value of 7.2% for comparison.

4.4.1.2 Variogram construction and evaluation

The variance of the laboratory data had not stabilised to a sill over the depth of the profile for

vertical transects. This is not surprising, given the large variation of soil properties with

depth. The junction of the sill of lateral variograms with the modelled vertical theoretical

variogram occurred below 10 cm in all laboratory data and pXRF elements, except pH (1:5

H20) and Fe where it occurred at ~12 cm (data not presented). Extrapolating variogram

models below this minimum distance is likely to introduce errors. Therefore, to characterise

variance below the 10 cm interval, the VisNIR spectra was explored.
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4.4.2 Intensively sampled profile

4.4.2.1 Correlation with laboratory data

The first four principal components of the in situ VisNIR spectra explain 97.3% of the total
variance of the spectra (Fig. 4.4). The use of EPO reduced the deleterious effects of variable
moisture such that projected VisNIR scans under moist, dry and ground condition had very
similar correlations with laboratory data (Table 4.2). Although PC1 is correlated with
gravimetric soil moisture, this is most likely due to the relationship between clay and soil
moisture. The PCs of the intensively sampled VisNIR spectra were therefore used as proxies
for soil properties; given that they were correlated with soil properties and that the PC scores

were stable under variable moisture and surface conditions.
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Figure 4.4 Proportion of variance explained by the first ten principal components of the
intensively sampled profile.

Table 4.2 Pearson correlation coefficient (r) of soil properties and PC1 under variable
scanning conditions.

Property

Condition OC TN pHw pHc Clay BD g EC

Field moist -0.80 -0.57 -0.86 -0.92 098 -0.25 0.66 0.61
Air-dry -0.77 -0.52 -0.86 -091 099 -0.30 0.71 0.64

Ground -0.75 -0.53 -0.86 -0.87 098 -0.29 0.68 0.63
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4.4.2.2 Variogram construction and evaluation
Similarly to the laboratory data, the variance of PC1 and PC2 also did not produced a sill
over the 1 m vertical transects. However, valid variograms could still be fit to the data. The

point of interection of the laterial sill with the vertical variogram model was found to occur at

3.4,7.7,10.7 and 7.4 cm for the first four PCs respectively (Fig. 4.5).
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Figure 4.5 Empirical variograms and fitted models for vertical directional variograms.
The sill of the equivalent lateral variogram is indicated by the dotted grey line with the
point of intersection, p, inscribed in the upper left corner. A Gaussian function was used

to fit the model for PCs 1 and 2, a Matérn function was used for PCs 3 and 4.

Weighting results by the amount of variance explained by each PC gives 4.3 cm as the
vertical increment required to experience an equivalent amount of variation in soil properties
as you would experience across an entire 1 m lateral cross-section. This suggests an optimal

sampling grid would have vertical transects space 1 m apart with observations 4.3 cm apart
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on each transect, or some multiple thereof. This information was combined with the
observation that soil properties have similar variance in both the topsoil and subsoil, to
construct the revised sampling methodology that was applied to an additional fourteen soil
profiles. Corresponding scans from the intensively sampled profile were also utilised, to give

observations at fifteen soil profiles in total.

4.4.3 Fifteen soil profiles

4.4.3.1 Correlation with laboratory data
The first four principal components accounted for 95.0% of all variation in the spectra from
the fifteen profiles (Fig. 4.6).
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Figure 4.6 Proportion of variance explained by the first ten principal components for

the fifteen soil profiles.

As with the intensively sampled profile, the PCs of the VisNIR spectra from all fifteen
profiles were correlated with soil properties, reaffirming their use as a proxy for soil
properties (Fig. 4.7). Horizon aggregated PC scores were used for the correlation calculation

in this instance.
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Figure 4.7 Biplot of the first four principal components from in situ scans of all fifteen

soil profiles.

PC1 was negatively correlated with exchangeable Al and positively correlated with pH. PC2
describes a depth component. It is positvely correlated with sand, OC and TN all of which are
more strongly expressed in the topsoil. Conversely negative correlations are seen with mid-
depth and clay. PC3 is postively correlated with pH and some base cations and negatively
correlated with exhangeable Al, OC and TN. PC4 contains some information related to soil
fertility, as it is positively correlated with sand and exchangeable Al and negatively correlated

with clay, CEC and exchangeable base cations.

4.4.3.2 Variogram construction and evaluation

The range of lateral variograms was found to be equivalent to 24.7, 33.6, 83.9 and 77.3 cm
for the first four PCs respectively (Fig. 4.8). The weighted mean of the ranges was 38.1 cm.
This represents the distance at which samples are no longer correlated, at the profile-scale. As
such, sampling at a lateral increment much smaller than this is redundant, as sample sites will
likely be correlated. Further, sampling at a lateral distance more than double this distance,

will likely miss variability.
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It should be noted that this analysis considers the entire 1 m lateral cross-section when
calculating lateral sills and ranges. Normally when constructing empirical variograms, the
maximum distance will be limited to one-third of the maximum distance between samples.
This is to limit the effect of a small number of observations at large distances on the overall
variogram form. However, in this analysis, with the use of directional variograms, there are a
total of 45 observations at the maximum distance, and observation of the empirical
variograms indicate that inclusion of the entire 1 m transect did not hindered the construction

of empirical variograms.
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Figure 4.8 Empirical variograms and fitted models for lateral directional variograms. A

Matérn function was used to fit the variogram models.
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The point of intersection of the lateral sill with the vertical variogram model was found to
occur at 2.8, 3.7, 8.4 and 7.8 cm for the first four PCs respectively (Fig. 4.9). The weighted

mean of the vertical increment was 4.1 cm.
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Figure 4.9 Empirical variograms and fitted models for vertical directional variograms.

The sill of the equivalent lateral variogram is indicated by the dotted grey line with the

point of intersection, p, inscribed in the upper left corner. A Matérn function was used

to fit the vertical and lateral variograms.

Given the weighted range of the lateral transects of 38.1 cm, and the vertical increment of 4.1

cm. The sampling design of three vertical transects, at 0, 50 and 100 cm lateral spacing, with

observations taken at 2.5 cm increments, would effectively and efficiently characterise profile

variability.
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4.5 Conclusion

Variation in soil property variance was stable with depth, indicating that a soil profile should
be sampled with equal density in the topsoil and subsoil. The variance in soil properties
experienced from a 4.1 cm vertical increment was found to be equivalent to the variance
experienced over an entire 1 m lateral cross-section for fifteen profiles. This indicates that to
fully capture profile variability it must be sampled with a greater density in the vertical
dimension, and sampling intensity should be constant in topsoil and subsoil locations. The
weighted range of lateral sills was found to be 38.1 cm. In general, sampling much below

these increments for the purpose of routine soil description is redundant.

95



Chapter 4: Designing sampling to quantify soil profile variability

4.6 References

Adhikari, K., Hartemink, A. E., Minasny, B., 2016. Mapping a Profile Wall of a Typic
Udipsamments from the Central Sands in Wisconsin, USA, Digital Soil
Morphometrics. Springer, pp. 191-206.

Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B., Hong, S.
Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., (2014).
GlobalSoilMap: toward a fine-resolution global grid of soil properties, Advances in
Agronomy. Elsevier, pp. 93-134.

Bathke, G., Cassel, D. (1991). Anisotropic variation of profile characteristics and saturated
hydraulic conductivity in an Ultisol landscape. Soil Science Society of America
Journal 55(2), 333-3309.

Cambardella, C., Moorman, T., Parkin, T., Karlen, D., Novak, J., Turco, R., Konopka, A.
(1994). Field-scale variability of soil properties in central lowa soils. Soil Science
Society of America Journal 58(5), 1501-1511.

Cook, S., Corner, R., Groves, P., Grealish, G. (1996). Use of airborne gamma radiometric
data for soil mapping. Soil Research 34(1), 183-194.

Cruvinel, P. E., Flocchini, R. G., Artaxo, P., Crestana, S., Herrmann Jr, P. S. (1999).
Elemental analysis of agricultural soil samples by particle induced X-ray emission
(PIXE) technique. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms 150(1), 478-483.

Gee, G. W., and Bauder, J. W. (1986). “Particle-size analysis,” in Methods of Soil Analysis:
Part 1. Physical and Mineralogical Methods Il. A. Klute (Ed.), Soil Science Society
of America, Madison.

Grauer-Gray, J. R., Hartemink, A. E., 2016. Variation of soil properties in a Mollisol profile
wall, Digital Soil Morphometrics. Springer, Dodrecht.

Hartemink, A. E., Minasny, B. (2014). Towards digital soil morphometrics. Geoderma 230,
305-317.

Howard, G. (November 1969). The Geology of New South Wales. Sydney: Geological
Society of Australia. pp. 417-421. Packham (Ed.).

Jenny, H. (1994). Factors of soil formation: a system of quantitative pedology. Dover
Publications, New York.

McBratney, A., Webster, R. (1986). Choosing functions for semi-variograms of soil
properties and fitting them to sampling estimates. European Journal of Soil Science
37(4), 617-639.

Minasny, B., McBratney, A., Brough, D., Jacquier, D. (2011). Models relating soil pH
measurements in water and calcium chloride that incorporate electrolyte
concentration. European Journal of Soil Science 62(5), 728-732.

Oliver, M. A., Webster, R. (1990). Kriging: a method of interpolation for geographical
information systems. International Journal of Geographical Information System 4(3),
313-332.

96



Chapter 4: Designing sampling to quantify soil profile variability

Rabenhorst, M., Parikh, S. (2000). Propensity of soils to develop redoximorphic color
changes. Soil Science Society of America Journal 64(5), 1904-1910.

Ribeiro, P.J. Jr., Diggle, P.J. (2016). geoR: Analysis of Geostatistical Data. R package
version 1.7-5.2. https://CRAN.R-project.org/package=geoR

Potoglou, D., Kanaroglou, P. S. (2005). Carbon monoxide emissions from passenger
vehicles: predictive mapping with an application to Hamilton, Canada.
Transportation Research Part D: Transport and Environment 10(2), 97-109.

Six, J., Conant, R., Paul, E. A., Paustian, K. (2002). Stabilization mechanisms of soil organic
matter: implications for C-saturation of soils. Plant and Soil 241(2), 155-176.

St-Onge, B., Cavayas, F. (1995). Estimating forest stand structure from high resolution
imagery using the directional variogram. International Journal of Remote Sensing
16(11), 1999-2021.

Stockmann, U., Cattle, S., Minasny, B., McBratney, A. B. (2016). Utilizing portable X-ray
fluorescence spectrometry for in-field investigation of pedogenesis. CATENA 139,
220-231.

97


https://cran.r-project.org/package=geoR

Chapter 5: Checks and mass balances for in situ quantification of soil mineral composition

5 CHECKS AND MASS BALANCES
FOR IN SITU QUANTIFICATION
OF SOIL MINERAL
COMPOSITION

5.1 Abstract

Soil mineral composition impacts soil behaviour but field estimation of mineral composition
until now has been nigh on impossible. To investigate the potential of predicting soil mineral
composition in situ, fifteen soils representing diverse mineral composition from New South
Wales, Australia, were scanned with visible near-infrared (VisNIR) and portable X-ray
fluorescence (pXRF) spectrometers to a depth of 1 m at 2.5 cm sampling increments. The
presence of phyllosilicate and Fe-oxide species was assessed using a pattern-matching
algorithm utilising mineral end-member libraries. Rule-based iterative partitioning was then
applied on the recorded pXRF elemental compositions based on known stoichiometry of the
minerals to give the abundance of kaolinite, smectite, illite, heematite, goethite, CaCOs3,
gypsum and quartz in a sample. This fusion model was able to correctly identify the most
abundant mineral in a sample with 72% accuracy, with the remaining 28% assigned to the
second most abundant mineral of the sample. The second, third and fourth most abundant

minerals were correctly assigned in 51%, 49% and 48% accuracy respectively. Mineral
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predictions were stable under variable moisture and surface conditions, as experienced when
scanning samples in situ and under air-dry and ground condition. Relative changes in mineral
composition within a profile and across horizon boundaries were accurately expressed. The
model was able to quantify the abundance of quartz with a «(linear weighting) of 0.67 and
CaCO; with a x(linear weighting) of 0. 76 (LCCC = 0.96, RMSE = 2.1 g 100 g!). The
dominant phyllosilicate species was identified correctly with 86% accuracy, although
accurate quantification of phyllosilicates and Fe-oxides was not achieved. This may be due to
variation in the elements involved in isomorphic substitution and charge balancing of these
minerals, non-crystalline species in the sample that were not identified from XRD analysis, or
dilution of readings through the presence of lattice water, variable organic matter levels.

Local calibration will undoubtedly further improve model outcomes.

5.2 Introduction

Soil mineral composition impacts nearly all soil properties and has a large impact on soil
behaviour. To gain insight into soil function, the spatial variability of soil minerals must be
captured and explored. Laboratory-based X-ray diffraction (XRD) has been the standard in
analysing soil minerals. However, preparing samples for XRD analysis is a labour intensive
task. Random powder samples must be ground to a fine powder, and clay samples must be
isolated, basally oriented and subject to appropriate pretreatments, e.g. Mg/K saturation,
ethylene glycolation, and heating to 550°C. Despite the availability of diffractogram
interpretation software, expert interpretation is often required, and the reporting mineral

composition remains semi-quantitative.

Field portable XRD devices are available. These field portable XRD devices require samples
to be relatively dry and also ground before analysis (Sarrazin et al., 2005). Moreover, it can
take several hours to analyse complex materials such as soil. Non-destructive, in situ XRD
devices are also available although they commonly have a reduced range and are limited to
angles greater than 20° 20 (Gianoncelli et al., 2008). This is problematic as most
phyllosilicates have primary peaks at smaller angles (<10° 20), thus these devices are less

equipped to estimate these important soil constituents. Subsequently, portable XRD devices
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do not offer a solution for rapid soil assessment and have been mostly limited to
archaeological and lithological investigations (e.g. Uda, 2004; Nakai and Abe, 2012; Cannon
etal., 2015).

In recent times, there has been a growing interest in using proximal soil sensors to obtain
information on soil systems. Two devices — visible near—infrared diffuse reflectance
(VisNIR) and portable X-ray fluorescence (pXRF) spectrometers, have shown potential as
field diagnostic devices, as they can provide a wealth of information in a timely manner (e.g.
Viscarra Rossel et al., 2011; Weindorf et al., 2014).

Many soil minerals have characteristic absorption features in the VisNIR range (Clark et al.,
1990). Studies have successfully predicted a range of minerals in air-dry and ground samples.
Brown et al. (2006) used boosted regression trees to predict the presence of kaolinite and
montmorillonite in the clay fraction on a 0-5 ordinal scale, with 96% and 88% of samples
falling within one ordinal unit respectively. Mulder et al. (2013) parameterised absorption
features in the 2.1 — 2.4 um band of the VisNIR spectrum and predicted the abundance of
kaolinite, dioctahedral mica, smectite and calcite using regression tree analysis. The model
worked well in the presence of ancillary minerals not accounted for in the training phase with
kaolinite, dioctahedral mica and calcite having RMSE values of less than 8%. Meanwhile,
Malone et al. (2014) used a pattern-matching algorithm based on diagnostic absorbance of
mineral end members first demonstrated by Clark et al. (2003). This approach predicted the
presence of kaolinite, smectite, illite, heematite and goethite, which were used to map terrons

in the viticultural study area.

Studies predicting minerals in situ are limited. Viscarra Rossel et al. (2009) investigated
absorbance values at diagnostic wavelengths from continuum removed spectra, collected in
situ, to gain estimates of kaolinite, smectite, illite, heematite, goethite, gibbsite, calcite and
attapulgite. The authors describe qualitative agreement with observations from XRD
diffractograms but noted that quartz could not be estimated from this approach.
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One limitation of VisNIR for comprehensive mineral characterisation is a lack of absorbance
features for quartz, and also low-Fe feldspars, in the 350-2,500 nm wavelength range (Clark
et al.,, 1990). To date, no attempt has been made to quantify quartz and feldspars from
VisNIR spectra, and subsequently no attempt has been made to offer a full description of
sample mineralogy. To provide a full description of sample mineralogy, other solutions must

be explored.

Applications of pXRF to pedology and soil science are increasing (Weindorf et al., 2014).
Zhu et al. (2011) demonstrated pXRF’s ability to predict soil textural attributes, which is of
interest as texture is related to mineral composition (McKenzie et al., 2004). Another study
found that after correcting for Ca associated with calcite, pXRF data could predict soil
gypsum content within 6% of laboratory values (Weindorf et al., 2009).

There is a clear benefit in combining the two devices. Visible near-infrared diffuse
reflectance spectroscopy gives information on sample colour as well as molecular overtones
and combination vibrations (Burns and Ciurczak, 2007). Portable X-ray fluorescence
spectroscopy can give an estimate of the concentration of elements with atomic number >12,
and is also relatively stable under varying moisture conditions (Stockmann et al., 2016).
Using the data from both devices, information on the elemental composition of a sample is
provided via pXRF, and some molecular information is provided via VisNIR. Weindorf et al.
(2016) showed that combining the two devices produced the best prediction of calcium

carbonate equivalent in a diverse set of arid soils from Spain (RPD = 1.74).

This study investigates the potential of combining VisNIR and pXRF data, using pattern-
matching and an elemental mass balance, to characterise the full soil mineral composition of

soil profiles in situ.
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5.3 Materials and methods

5.3.1 Site descriptions
Fifteen sites were chosen that exhibited a diverse range of mineralogy from across the state of

New South Wales, Australia. For a full description of the fifteen sites see section 2.3.

5.3.2 In situ scanning procedures

At each site a soil pit was excavated, and a 1 m x 1 m surface of the pit wall was prepared.
The soils were scanned in situ using VisNIR and pXRF at 2.5 cm increments in three vertical
transects. Justification for this sampling procedure is given in Chapter 4. Horizons were
identified, and samples taken for laboratory analysis and for scanning in under air-dried,

ground condition. For a full description of scanning procedures see section 2.2.2.

5.3.3 Data-fusion

Mineralogical prediction was based on a data-fusion approach. The VisNIR spectra were
utilised to predict clay content, phyllosilicate speciation and Fe-oxide speciation. The results
were then moderated using an elemental mass balance from pXRF data (Fig. 5.1). This
approach differs from that presented by Jones and McBratney (2016) in that clay content is
predicted using VisNIR alone and not in conjunction pXRF data. Gypsum has also been

added to the model. The data-fusion approach was implemented in R (R Core Team, 2016).
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Figure 5.1 The data-fusion approach. VisNIR and pXRF data are input into the model
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and the mass contributions of individual species to total mineral mass is returned. Ka -
kaolinite; Sm - smectite; Il - illite; He - haematite; Go - goethite; Gy — gypsum; Ca -
CaCOgs; and Q - quartz.

Prediction of phyllosilicates (kaolinite, smectite and illite), as well as Fe oxides (ha&matite
and goethite), was performed using a shape-fitting algorithm across diagnostic wavelength
ranges, to quantify the deviation from convex hull corrected reference mineral spectra. This
method is defined in more detail in Malone et al. (2014) and previously utilised in the
Tetracorder decision-making framework by the U.S. Geological Survey (Clark et al., 2003).
The VisNIR spectra were also used to predict total clay concentration using existing Cubist
spectral models. Total clay content was then used to scale phyllosilicate speciation ratios to
give quantitative predictions of each phyllosilicate species. It should be noted that the soils
did not contain any muscovite or biotite, which would influence the prediction of illite, and
the clay fraction of these soils consists mainly of secondary minerals (McKenzie et al., 2004)
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The average stoichiometry of minerals were used to calculate the proportional element mass
contribution of Al, Si, S, K, Ca, Ti and Fe, as well as light elements (LE), which represent
constituent elements unquantifiable using pXRF, i.e. Z < 12 (Table 5.1). Stoichiometric
values were derived from the U.S. Geological Survey digital spectral library (Clark et al.,
2007) and other sources (Brigatti et al., 2006). The seven elements made up a mean of
99.45% (s.d. = 0.65%) of the mass of total identifiable elements (Z>12) for all in situ scans.
The required elements for each phyllosilicate species was then tested against the pXRF
reported elemental concentrations by iteratively subtracting 1% of the predicted elemental
requirement from the available elements. In the event that individual quotas are filled or until
a constituent elemental is exhausted, the partitioning of further elements to that species is
halted, but the remaining species may continue to draw elements to fill their quota. For
example, illite requires contributions from Si, Al and K. In the event that K runs out before
the illite quota is filled then the partitioning of elements to illite is halted, but kaolinite may

continue to fill its quota if Si and Al are still available.

Once all quotas have been filled or constituent elements exhausted, the moderated values
were recorded, and the remaining elements were passed for Fe-oxide prediction in a similar
fashion. Residual elements were then used to predict gypsum, CaCOs and quartz using
known stoichiometry of these minerals. Gypsum content was dictated by the least limiting
availability of S and Ca. The assumption was made that all remaining Ca was in the form of
CaCOs and that all remaining Si was in the form of tectosilicates, i.e. quartz and feldspars,
simplified in this model to quartz. Reported values for individual minerals were divided by

the sum of observed mineral mass of a sample to give the proportional mass contribution.
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Table 5.1 Average mass-based mineral stoichiometry used in the elemental mass

balance.
Element contribution to total mineral mass (g 100 g%
Mineral LET Al Si S K Ca Ti Fe
Kaolinite 576 201 212 0.0 0.1 0.0 0.7 0.5
Smectite 58.8 9.8 279 00 0.3 1.1 0.1 2.1
llite 545 118 243 0.0 6.3 0.3 0.4 2.6
Heematite 301 00 0.0 0.0 0.0 0.0 00 699
Goethite 37.1 0.0 0.0 0.0 0.0 0.0 0.0 62.9
CaCOs 60.0 0.0 0.0 0.0 00 400 00 0.0
Gypsum 58.1 0.0 0.0 18.6 0.0 23.3 0.0 0.0
Quartz 533 0.0 46.7 0.0 0.0 0.0 0.0 0.0

Light elements (LE) are those with atomic number <12, which are unidentifiable by pXRF.

5.3.4 X-ray diffraction

Horizon-based samples were ground to a fine powder, and randomly oriented samples were
analysed using monochromatic CuKo radiation at 30 kV and 28.5 mA (GBC MMA

diffractometer). The samples were scanned from 4 to 65° 20 at a speed of 1° 20 min ' and

using a step size of 0.01° 26. The clay fraction of samples was isolated using a sedimentation

process based on Stoke’s Law. Oriented samples from the clay fraction were analysed

following four pre-treatments for the identification of phyllosilicate species, i.e. Mg-

saturated, Mg-saturated and ethylene glycol solvated, K-saturated, and K-saturated and

heated to 550°C (Brown and Brindley, 1980). A randomly oriented sample of the clay

fraction was also scanned to aid in the identification of minerals which were masked by the

dominant quartz peaks of the bulk sample.
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5.3.5 Semi-quantitative XRD interpretation

The presence of kaolinite, smectite, illite, heematite, goethite, calcium carbonate, gypsum and
quartz were quantified into six ordinal classes representing 0, 0-5,5-20, 20-40, 40-60, 60-80,
80-100% of the total mineral composition. The four most abundant minerals in each sample

were identified and used for comparison with fusion model reported values.

5.3.6 Correlation between minerals and pXRF values

Spearman’s rank order correlation coefficient (p) was used to explore relationships between
XRD reported mineral abundance and pXRF reported elemental composition under air-dry,
ground condition. Spearman’s rank correlation coefficient was chosen over Pearson’s
correlation coefficient as the XRD ranking scale was not based on a uniform interval and
observations were not normally distributed. The Spearman’s rank order correlation
coefficient describes how well the relationship between two variables can be described using
a monotonic function, which is not necessarily linear as is stipulated with Pearson’s
correlation coefficient. Spearman’s rank correlation coefficient is defined as the Pearson

correlation coefficient between ranked variables (Eqgn 5.1).

Equation 5.1

b= Vi1 (rx; = TX)(ry; — TY)
VIR (rx; —TX)2 X (ry; — TY)?

Where:
rx; , ry; are the i"" ranked variables of rx and ry respectively

7x , Ty are the mean values of the ranked variables rx and ry respectively

5.3.7 Evaluation of mineral estimations

In situ mineral estimations were aggregated by horizon and the mean value was compared to
XRD estimations of ordinal abundance, by calculating the linear weighted Cohen’s Kappa
coefficient (Cohen, 1960). This statistic measures the inter-rater agreement between the

fusion model and XRD analysis (Egn 5.2).
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Equation 5.2

k vk
i=1 Zj:l Wi jXi,j

k k
i=12y=1Wi,jMij

k=1-—

Where:
k is the number of ordinal classes
w, x and m are the weight, observed and expected matrices respectively.

The weight matrix consisted of zeros on the diagonal, cells one off the diagonal are
weighted 1, cells two off the diagonal are weighted 2, etc.

5.3.8 Evaluation of carbonate prediction

CaCOs estimations were further validated using carbonate equivalent values obtained by the
rapid titration method (Rayment and Lyons, 2011, pp. 415-7). As these results are continuous
in nature, validation metrics such as the Lin’s concordance correlation coefficient (LCCC),
root-mean-square error (RMSE), and the ratio of performance to deviation (RPD) could be
calculated, see section 2.2.6. In situ estimations of CaCO3 were aggregated by horizon and

mean values compared to laboratory measurements.

The CaCO3 values predicted using the fusion model were modified prior to validation. The
CaCOz contribution to the mineral soil fraction ([CaCO3]minera;) Was converted to the
CaCOz contribution of total soil mass ([CaCOs]s,;;) by incorporating the mass of organic
matter (Eqn 5.3).

Equation 5.3

100 — organic carbon (g 100 g71) x 1.72

[CaCO3]soil = [CaCO3]mineral X 100
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5.4 Results and discussion

5.4.1 Mineral composition

5.4.1.1 Dominant minerals

The fifteen soils showed diverse mineral composition between sites and frequently between
horizons within a profile. Five separate minerals were identified as the most dominant in at
least one of the horizons, demonstrating the diversity of soils sampled (Table 5.2). Quartz and
kaolinite were the most ubiquitous minerals, both were identified in every sample, although
at times only in trace amounts. Quartz was the most dominant mineral in half of the samples,
reflecting the parent material and highly weathered nature of many of the profiles.
Relationships between mineralogy and soil type were observed. Smectite was the dominant
mineral in seventeen samples, corresponding mostly with Vertosol profiles. Fe-oxides were
dominant in the Ferrosol. CaCOs was dominant in two of the subsoil horizons of the
Calcarosol. Illite and gypsum were not the most dominant mineral in any soil. Illite was
found to be the second most dominant mineral in three horizons. Gypsum was only identified

in a single horizon, and thirteen horizons had only three identifiable minerals.

Table 5.2 Count of dominant mineral allocation from XRD analysis of 65 soil horizon

samples.

XRD dominant

Mineral I 1 i [\ Total
Kaolinite 9 32 14 10 65
Smectite 17 4 5 2 28
Hlite 0 3 15 21 29
Fe-oxide 5 0 20 14 39
CaCOs 2 1 2 5 10
Gypsum 0 0 1 0 1
Quartz 32 25 8 0 65
Total 65 65 65 52
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Random powder and oriented diffractograms for each sample may be found in Appendices
B1 and B2 respectively. The full XRD semi-quantitative composition assessment including
auxiliary minerals may be found in Appendix B3.

5.4.1.2 Auxiliary minerals

A number of minerals not directly accounted for in the fusion model were also observed.
These were vermiculite, hydroxy-interlayered vermiculite, rutile, anatase and gibbsite. K-
feldspar, anorthite and albite were also identified in a number of horizons. However, these
feldspars were not found to be dominant in any sample. The low quantity of feldspars in these
profiles is to be expected as parent materials were identified as Jurassic sandstones and
shales, basaltic alluvium or marl. No parent materials were identified as feldspar-rich
granites. Although Site 9 contained trachyte saprolite in the subsoil, feldspars were not
identifiable in the soil matrix. Many profiles were also heavily weathered. The inclusion of
feldspars to the quartz category in the fusion model is logical, given their similar physical and
chemical attributes in soils, and low concentrations observed in these soils. Future efforts
should attempt to quantify all auxiliary minerals and individual feldspar species for

comprehensive mineral characterisation.

5.4.2 Correlation between mineral composition and pXRF reported elements
Spearman’s rank correlation coefficients revealed that mineral abundance was significantly
correlated with pXRF reported elemental composition. Each mineral being positively
correlated with at least one element, and significant negative correlations were also observed
(Table 5.3).
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Table 5.3 Spearman’s rank-order correlation coefficient between XRD observed ordinal

mineral abundance and pXRF reported element composition.

pXRF elements

Mineral |t Al Si S K Ca Ti Fe
- -0.16 056 -0.12 005 0.01 -050 -0.09 0.33
Kaolinite ook ko ok
s : 045 -005 -029 -0.10 038 078 -0.13 0.14
mectite — * *%k *kk

: 005 003 029 -036 052 0.09 -045 -0.33
llite .

*k*k **k*k *k*k **
. 000 062 -057 036 -021 -0.12 0.62 0.81
H%matlte *kk *k*k ** *k*k *k*k
. -036 028 -0.08 035 -047 -0.60 0.32 0.25
GOEthIte ** * ** *kxk *k*k ** *
038 -0.07 -040 -0.06 0.23 082 -0.07 0.15
CaC03 ** *k*k *k*k
-0.1v -011 003 046 -014 019 000 -0.04
Gypsu m *k*k
-023 -054 077 -043 001 -044 -019 -071
Quartz *kk *k*k *k*k *k* *k*k

Light elements (LE) are those with atomic number <12, which are unidentifiable by pXRF.

Significant correlations are indicated below entries at three levels: p<0.05*; p<0.01**; and
p<0.001***,

Kaolinite was found to be positively correlated with Al (0.56***). This may be due to two
factors. Firstly, kaolinite is a 1:1 layer silicate meaning it has a greater proportion of
octahedral alumina sheets compared to 2:1 layer silicates such as illite and smectite.
Secondly, kaolinite is the most abundant phyllosilicate in heavily weathered soils, such as
Ferrosols, which are also more likely to contain Al in the form of gibbsite or associated with
Fe-oxides (Isbell, 1994). This is also supported by a positive correlation of kaolinite with Fe
(0.33**).

Illite had a significant positive correlation with K (0.52***). In contrast to other
phyllosilicates, illite has a large amount of K ions in the interlayer space of the phyllosilicate

to offset the charge associated with isomorphic substitution in the mineral. The strong
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correlation here may also be attributable to the lack of significant quantities of other K
enriched minerals, such as K-feldspars which were only observed in trace amounts in two

horizons.

Smectite had a significant positive correlation with Ca (0.78***). While Ca is not a structural
element of smectite it is often found as a hydrated ion in the interlayer space. The correlation
between smectite and Ca could also be attributable to the fact that both are easily weatherable
and the presence of one indicates favourable conditions for the other. Intuitively, an even

stronger correlation was observed between CaCO3 and Ca (0.82***).

Haematite had a significant correlation with Fe (0.81***), Al (0.62***) and Ti (0.62***)
respectively. This reflects the strong association with Al and Ti oxides in heavily weathered
soils (Isbell, 1994). Goethite showed similar but less significant relationships. Goethite was
often found in small quantities in sandstone-derived alluvial soils which may have influenced
the correlation values and explain why it does not have a significant negative correlation with

Si, as observed with heematite.

Intuitively, gypsum showed a significant relationship with S (0.46***), although only one
sample contained identifiable levels of gypsum. Meanwhile, quartz showed a highly
significant positive relationship with Si (0.77***) and a negative or null correlation to all

other elements.

These significant relationships between pXRF reported elemental composition and ordinal
XRD mineral abundance measures underlie the potential of the device compared to using
VisNIR alone. Although the pXRF and VisNIR must be used conjointly to elucidate soil
mineralogy as multiple minerals may be correlated with each element, i.e. Al has a significant

positive correlation with both kaolinite and haematite.
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5.4.3 Fusion model predictions

5.4.3.1 High resolution mineral composition estimations

Fusion model predictions gave high resolution estimates of mineral composition within a
profile. Mineral composition estimates often matched XRD reported values. Comparing
estimated values between two distinct profiles demonstrates the success of the fusion model
(Fig. 5.2). Dominant mineral abundance between profiles and relative changes within profiles
were well represented. Changes in mineral composition often occurred across horizon
boundaries. Fusion model predictions for all sites may be found in Appendix B4.

b) Site 7
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Figure 5.2 Predicted soil mineral contribution to total mineral mass for a) Site 3 and b)
Site 7. Ka - kaolinite; Sm - smectite; Il - illite; He - haematite; Go - goethite; Ca -
CaCOs; Gy - gypsum; and Q - quartz. The average of three vertical transects is
presented. Horizon designations are indicated.

X-ray diffraction analysis of Site 3 indicated that the A and E horizons of this profile were
dominated by quartz, while kaolinite was the dominant phyllosilicate in the clay fraction and
Fe-oxides were identified in trace amounts. In the Btl and Bt2 horizons, kaolinite and Fe-
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oxides became more dominant, while traces of illite appeared and the overall abundance of
quartz decreased. These observations closely matched to the fusion model predictions (Fig.
5.2a).

The A horizon of Site 7 was also observed to be quartz dominated by XRD analysis.
Kaolinite, smectite and illite were all observed in the clay fraction, and no Fe-oxides were
identified. A texture contrast boundary was observed between the A and Bt. The Bt horizon
experienced a decrease in quartz and an increase in all phyllosilicates, as expected.
Phyllosilicate content remained constant throughout the B horizons. CaCO3 was observed in
Btkl and Btk2 horizons only. Again, these observations closely matched the fusion model
predictions (Fig. 5.2b).

5.4.3.2 Dominant minerals

The fusion model was very effective in identifying the dominant mineral in a sample. After
aggregating in situ scans by horizon, it was observed that the dominant mineral was correctly
assigned with 72% accuracy, while the dominant mineral was incorrectly assigned in 28% of
cases to the second most dominant mineral (Table 5.4). Four of the incorrect assignments
occurred when quartz was assigned as the dominant mineral in place of kaolinite, however, in
each case XRD analysis identified quartz as constituting 20-40% of the mineral phase. One
incorrect assignment occurred in the 2Bs horizon of Site 15, where kaolinite was assigned in
place of quartz, this may be attributable to the increased Fe and Al in this horizon, incorrectly
assigned to kaolinite. Five incorrect assignments occurred in the Ferrosol, where kaolinite
and not Fe-oxides, was identified as the dominant mineral. Eight occurred in Vertosols,
where XRD showed smectite as the dominant mineral, although smectite was correctly
estimated as the dominant phyllosilicate in each instance. This suggests the model could be
improved for Vertosols and Ferrosols, which are dominated by smectite and Fe-oxides
respectively. The second, third and fourth most dominant mineral was estimated with 51%,
49% and 48% accuracy respectively. When scanning under air-dry, ground condition and
with the provision of laboratory-based clay content, the correct allocation was improved to

77%, 60%, 60% and 48% accuracy respectively.
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Table 5.4 Contingency table of XRD identified dominant mineral order and those
predicted using the approach. The most abundant mineral in a sample is signified with
the roman numeral 1, the second most with 11, et cetera. For thirteen of the samples only

three minerals were identified.

XRD dominant

Model

dominant I I "I v
| 47 18 0 0

I 18 33 7 4

1l 0 7 32 15

v 0 5 16 25
>V 0 2 10 8
Total 65 65 65 52

Two of the profiles that gave poor predictions of dominant mineral were in smectite-rich
Vertosols. The under-prediction of smectite in these soils may be due to differences in the
elements involved in isomorphic substitution and charge balancing (Moore and Reynolds,
1997), which may also impact absorbance features in the VisNIR spectra (Clarke et al.,
1990). Analysis of the seven minerals in the USGS library used to construct the smectite
mass balance had the following ranges in consituent oxides: 52.0 — 69.6% SiO2; 15.0 — 20.9%
Al>O3z; and 1.17 — 5.18% Fe»0s. In contrast the six minerals used to construct the kaolinite
mass balances had much smaller ranges: 42.0 — 47.1% SiO3; 36.4 — 38.0% Al>Oz3; and 0.26 —
1.61% Fe203. Smectite was also over-predicted in agriculture topsoil samples. This may be
due to enrichment of Ca from plant material, organic matter, fertilisers or lime application.

Both of these areas of future improvement for the model.

5.4.3.3 Phyllosilicate prediction by VisNIR and fusion model
VisNIR predictions of phyllosilicate speciation were stable under variable moisture content

and surface condition, as observed by scanning in situ and also under air-dry, ground

114



Chapter 5: Checks and mass balances for in situ quantification of soil mineral composition

condition in the laboratory. The LCCC values were greater than 0.90 for each phyllosilicate
species (Fig. 5.3). This demonstrates that the metrics chosen to estimate phyllosilicate

speciation were robust under variable moisture conditions.
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Figure 5.3 Comparison of the proportion of phyllosilicate speciation predicted using
VisNIR in situ and aggregated to horizon versus horizon-based samples scanned under

air-dry and ground condition. Ka — kaolinite; Sm - smectite; Il - illite.

The chosen metrics were also effective at identifying the dominant phyllosilicate. The
dominant phyllosilicate was identified correctly using only VisNIR in 85% and 88% of cases
in situ and in air-dry, ground condition respectively (Table 5.5). However, VisNIR alone was
less effective at predicting the ordinal dominance of all three phyllosilicate species in a
sample. This was only achieved in 34% of cases in both in situ and under air-dry and ground
condition in the laboratory. The fusion model outperformed VisNIR alone when estimating
the dominance of all three phyllosilicate species. The correct order of phyllosilicates was

identified in 63% of cases under both in situ and air-dry, ground condition for the fusion
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models. However, the estimation of the dominant phyllosilicates in a sample was very

effective, the absolute abundance of individual phyllosilicates was poorly estimated.

Table 5.5 Comparison of the ability to predict the dominant phyllosilicates by VisNIR

only and using the fusion model.

VisNIR only Fusion model
Phyl_losghcate In situ Air-dry, In situ Air-dry,
prediction ground ground
Dominant 85% 88% 86% 86%
All three 34% 34% 63% 63%

5.4.3.4 CaCOgz and gypsum predictions from the fusion model

The fusion model was effective at predicting CaCOs equivalent (LCCC = 0.96, RMSE = 2.1
g 100 g1, RPD = 4.47) (Fig. 5.4). It must be acknowledged that 47 of the 65 samples did not
contain observable levels of CaCOs, which may have enhanced validation statistics. The
fusion model results compare favourably with other studies that were conducted on air-dry
and ground samples. Mulder et al. (2013) predicted calcite with an RMSE of 7 g 100 g*
using deconvolution of the 2,100 — 2,400 nm range of the spectrum, combined with
regression tree analysis. Weindorf et al. (2016) achieved an RPD of 1.74 when attempting to
estimate CaCOs equivalent. This study utilised penalised spline regression and random forest
modelling of XRF data and VisNIR spectra. The samples were from an arid region of Spain
and CaCOj3 equivalent values range from 2.67 to 47.6 g 100 g. The same study achieved an
RPD of 4.60 for the prediction of gypsum. While the fusion model achieved a perfect
correlation with observed gypsum, this was based on only one observation, therefore

validation statistics are not offered.
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Figure 5.4 CaCOs equivalent (g 100 g*) from horizon-based carbonate equivalent data
acquired by the rapid titration method, and horizon aggregated in situ predictions
(LCCC =0.96, RMSE =2.1g 100 g}).

5.4.3.5 Quartz prediction from the fusion model

Quartz was also estimated with high accuracy, given its k(linear weighting) of 0.67 (Table
5.6). As quartz has no spectral response in the VisNIR region, the accuracy of this prediction
is attributable to the fusion model approach and the strong relationship between quartz and
pXRF recorded Si, p =0.77 (Table 5.3).
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Table 5.6 Contingency table of semi-quantitative quartz abundance from XRD analysis

and the fusion model approach. Grey squares on the diagonal represent a perfect

match.

Model XRD abundance

estimated tr X XX XXX XXXX XXXXX
; 0 0 0 0 0 0 0

tr 0 0 0 0 0 0 0

X 0 2 5 3 0 0 0
XX 0 0 3 16 2 0 0
XXX 0 0 3 3 3 3 0
XXXX 0 0 1 0 2 13 1
XXXXX 0 0 0 0 0 2 3

Key: (-) not present, (tr) trace <5%, (x) 5-20%, (xx) 20-40%, (xxx) 40-60%, (xxxx) 60-80%,
(xxxxx) 80-100%.

The accurate estimation of quartz, gypsum and CaCOs compared to the phyllosilicates and
Fe-oxides may be driven by the fact that these minerals have a relatively fixed elemental
composition and crystal structure. These minerals are not as heavily influenced by
isomorphic substitution as phyllosilicates, or by lack of crystallinity affecting XRD

identification as with Fe-oxides.

5.4.4 Model improvements

A number of improvements could be made to the model. The inclusion of gibbsite, Ti-oxides,
feldspars and vermiculite must be addressed, as well as any other relevant minerals. Gibbsite
and vermiculite have absorbance features in the VisNIR region, which could be incorporated
into the fusion model. The lack of absorption features of low Fe feldspars in the VisNIR

range will continue to limit their prediction. Distinguishing between hamatite and goethite
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also presented difficulty as identified previously (e.g. Vendrame et al., 2012; Malone et al.,
2014). Raman spectroscopy may offer a solution, as it has been demonstrated to provide,
under laboratory conditions, a number of absorption peaks related to feldspars and Fe-oxides,
as well as quartz and common igneous minerals such as olivine and pyroxene (Freeman et al.,
2008). Mid-infrared spectroscopy would also be useful to incorporate as it contains
fundamental absorbances of phyllosilicate minerals and calcite (Farmer and Russell, 1964;
Janik et al., 1995). Although the mid-infrared spectrum is more susceptible to variable
moisture compared to VisNIR, although field portable devices are available (Sorak et al.,
2012).

The mass balance is limited in that the pXRF sensor was only able to detect elements heavier
than Mg. Other pXRF sensors are available with the capacity to measure Mg in the field,
which is an integral component in many of the predicted minerals, and also vermiculite. An
alternative to pXRF in the model would be laser-induced breakdown spectroscopy. Laser-
induced breakdown spectroscopy is able to provide quantitative estimates of light elements
that cannot be quantified using pXRF, including Li (Jantzi and Almirall, 2011). However,
laser-induced breakdown spectroscopy is also affected by moisture content, and the amount
of sample analysed is in the range of nanograms to picograms, which suggest small

heterogeneities in a sample will greatly influence results.

This investigation presented the most comprehensive attempt at estimating the mineral
composition of soil in situ. The limitation of a comprehensive prediction of mineral
abundance is that if one prediction is incorrect, then the accuracy of all other predictions is
reduced as well. It is difficult to assess the performance of the fusion model in context with
previous studies. Many existing studies give only qualitative description of the strength of the
mineral signal and relative changes therein without formal validation (e.g. Viscarra Rossel et
al., 2009; Malone et al., 2014). In other instances, validation is only recorded for the clay
fraction and not the entire soil (e.g. Brown et al., 2006). Future studies should aim at

providing comprehensive mineral estimations, and appropriate validation statistics.
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5.5 Conclusion

A new method for in situ quantification of soil mineral composition based on VisNIR and
pXRF spectroscopy was investigated. This fusion model was centred on pattern-matching of
VisNIR spectra to identify the relative abundance of phyllosilicates and Fe-oxides, combined
with an elemental mass balance based on pXRF reported elemental composition. Kaolinite,
smectite, illite, heematite, goethite, CaCO3, gypsum and quartz were estimated, making this
model the most comprehensive attempt to estimate soil mineral composition using proximal
soil sensors. The fusion model correctly identified the most abundant mineral in a sample
with 72% accuracy, with the remainder assigned to the second most abundant mineral of the
sample. The second, third and fourth most abundant minerals were correctly assigned with
51%, 49% and 48% accuracy respectively. Prediction of CaCOs, quartz and gypsum were
quantitative. The abundance of phyllosilicates was qualitative only, as the model was able to
predict the relative dominance of phyllosilicate species, but not their absolute abundance. The
model was stable under both in situ, as well as air-dry and ground condition, demonstrating it
is a viable field technique. Further investigation is required to determine if these predictions

can be connected to soil function rather than characterisation.
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6 ESTIMATING PROFILE
CHARACTERISTICS WITH
PROXIMAL SENSORS AND A
SPECTRAL SOIL INFERENCE
SYSTEM

6.1 Abstract
Proximal soil sensors are moving the domain of quantitative soil science from the laboratory
into the field. To utilise these sensors effectively platforms must be developed to access
sensor information and predict soil properties in near real-time. A framework is presented to
estimate soil properties in situ from visible near-infrared (VisNIR) diffuse reflectance
spectroscopy. These estimates were used to initiate a spectral soil inference system (SPEC-
SINFERS) to greatly augment information gain. An automated platform was constructed to
link pedotransfer functions in a logical network and predict 29 soil attributes directly from the
VisNIR spectra or in conjunction with pedotransfer functions. The platform was implemented
on fifteen diverse soil profiles from the state of New South Wales, Australia. At each
location, three 1 m vertical transects were scanned using VisNIR at 2.5 cm intervals.

Scanning took place under field moist conditions, and observed horizons were sampled for
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laboratory analysis. Local versus Global spectral calibration models were tested. Effective
characterisation was assessed in terms of organic carbon content, clay, sand, cation exchange
capacity, pH, electrical conductivity and bulk density. Local calibration models provided the
best estimates for the two profiles within the geographic domain of the calibration library
(RMSE values: OC = 0.26 g 100 g*; clay = 8.7 g 100 g'*; sand = 9.4 g 100 g, CEC = 2.0
cmolw) kgt pH (1:5 H20) = 0.55; EC = 0.21 dS m?; BD = 0.11 g cm™). Transformation
using external parameter orthogonalisation improved outcomes in situ. However, the best
results were achieved when scanning under air-dry and ground condition in the laboratory
still provided the best results (RMSE values: OC = 0.13 g 100 g%; clay = 6.0 g 100 g%; sand
=7.19100 g?, CEC = 1.85 cmol) kg'%; pH (1:5 H20) = 0.48; EC = 0.23 dS m™%; BD = 0.07
g cm). Applying models outside of their calibration domain generally doubled RMSE
values. Attempts to identify if spectra fit within the spectral domain of the calibration library
produced mixed results. In contrast, the size of the prediction interval gave a good indication
of model performance. This information may be utilised in the field for improved decision
making, including adaptive mapping techniques, management zone delineation and

pedogenetic investigations.

6.2 Introduction

The world needs more soil information for use in food (Godfray et al., 2010), water (Blanco
and Lal, 2010) and soil security (McBratney et al., 2014), climate-change adaptation and
mitigation (Lal, 2004), and ecosystem management (Kreuter et al., 2001). Traditional
laboratory techniques are time and cost inhibitive to fill this knowledge gap. Provision of
sufficient soil information will require data to be gathered more efficiently, and available data
to be used more effectively. Devices are available that can provide quantitative soil
information in the field (Hartemink and Minasny, 2014). Invariably, these devices are used to
gather information in the field, which is then processed into useful soil information off-site.
To utilise these devices effectively, systems must be developed to process sensor streams into

actionable soil information in near real-time.
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One method of using available data more effectively is the employment of pedotransfer
functions (PTF) (Bouma, 1989). Pedotransfer functions are empirical equations that build
relationships between data to estimate properties which are difficult to obtain, using
properties that are easier to obtain. Briggs and McLane (1907) are credited with developing
the first recognised PTF in the form of a regression equation to estimate the amount of water

retained in the soil when a plant begins to wilt (Egn 6.1).

Equation 6.1

Wilting coef ficient = 0.01 X sand + 0.12 X ssilt + 0.57 X clay

Soil physical parameters, especially soil hydraulic properties, have received significant
attention in PTF development. Saturated hydraulic conductivity, sorptivity and measures of
soil moisture at key matric potentials directly, or through construction of soil moisture
characteristics, have all received notable attention (e.g. Schaap et al., 2001; Cornelis et al.,
2001). Pedotransfer functions have also proven useful for converting between parallel
systems, thus facilitating global data sharing. Padarian et al., (2012) demonstrated how PTFs
could be used to convert silt percentages between the international (2 — 20 um) and USDA (2
— 50 um) particle size diameter thresholds. Measurements of pH (1:5 H20O), compared to pH
(1:5 CacCly), have also been reconciled using PTFs (Minasny et al., 2011). Commonly, PTFs
take the form of regression equations, although machine-learning techniques such as Cubist
models, random forest, neural networks or support vector machines may also be utilised (e.g.
Lamorski et al., 2008; Twarakavi et al., 2009).

Environmental models link soil properties, PTFs and other biotic and/or abiotic factors to
model complex systems, such as sediment transport (Morgan et al., 1998) and soil carbon
dynamics (Coleman and Jenkinson, 1996). McBratney et al., (2002) proposed to further
broaden the use of PTFs, which were commonly focussed on estimating a single property for
a single soil type, in a limited geographical region. The authors suggested linking PTFs to
form a directional network, or soil inference system (SINFERS). In such a network, the

output from one PTF may act as the input for another PTF, and the number of properties
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estimated increases dramatically. This first demonstration of SINFERS consisted of a large
Excel spread sheet that linked laboratory measured organic carbon, sand, clay and bulk
density with a logical sequence of PTFs. This allowed the prediction of a large number of
physical and chemical attributes from the limited supply of input properties.

The concept of SINFERS was further extended with the advent of a spectral soil inference
system (SPEC-SINFERS) (McBratney et al., 2006). This advancement is characterised by
SINFERS being initiated with spectroscopic methods, instead of laboratory or field
observations. Spectroscopic methods have the advantage of being cost-effective and timelier
than laboratory techniques, and they are more objective than field observations. Additionally,
a single spectrum can hold information on many soil properties (Viscarra Rossel et al., 2010).
While spectroscopy can provide a vast amount of information about a soil, two limitations
remain: i) not all attributes of interest are spectrally active; and ii) the development of
calibrations for all properties may be restricted. Restrictions may be imposed when an
existing spectral library is available, however measures of hydraulic conductivity were not
obtained at the site or prior to air-drying and grinding the samples. These are the situations
where SPEC-SINFERS may be implemented. Tranter et al. (2008) demonstrated the potential
of SPEC-SINFERS. The authors identified that moisture retention of soil was more
accurately estimated by coupling mid-infrared predicted basic soil properties with PTFs,
rather than attempting to estimate moisture retention directly from the spectra. This system
proved especially effective at lower matric potentials, where texture was the dominant
influence on volumetric moisture content. If such a system were to be initiated using

proximal soil sensors it would be fully functional in the field.

This study assesses the effectiveness of combining VisNIR readings with pre-calibrated
spectral models and SPEC-SINFERS to predict a large number of soil properties in situ and

in near real-time.
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6.3 Materials and methods
To run SPEC-SINFERS, a number of different disciplines and techniques must be brought
together. An overview of the approach is shown in Figure 6.1; detailed description of each

process follows.

6.3.1 Spectral libraries

Two calibration libraries were tested for this investigation: a Local library based on samples
from within a limited geographic region only, and a Global library formed by supplementing
the Local library with addition datasets, primarily from within the state of New South Wales
(Fig. 6.2).

6.3.1.1 Local library description

The Local library was derived from two soil surveys in a semi-arid, cotton-growing region,
centred around the township of Hillston, NSW. Soil samples were taken from all land uses to
a depth of 150 cm (Onus et al., 2003; Filippi et al., 2018). There are 1,292 samples in the
library, with varying numbers of observations for the properties of interest. The total land
area of the study site is 265,000 km?.

6.3.1.2 Global library description
The Global library was constructed utilising the Hillston library and four other independent

datasets:

Dataset 1 consisted of 391 horizon-based samples from agricultural areas in southern New
South Wales and Victoria (Geeves et al., 1995; Minasny et al., 2009; Minasny et al., 2011).
The samples represented a diverse range of soil types in the study area. Samples located in

Victoria are not shown.

Dataset 2 consisted of 464 samples from 100 sites within the Hunter Valley, NSW (Malone
et al., 2011). Sites were selected via strata-based sampling. Samples were taken from depth

intervals corresponding to the GlobalSoilMap project to a maximum depth of 1 m.
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Hillston dataset

Dataset 1 individual sites

Datasets 2 and 3

-
®
.

Dataset 4 individual sites

Figure 6.2 Location of individual and intensive sample sites within the state of New
South Wales. Points indicate individual sites, drums represent databases of intensively

sampled locations. The Hillston dataset serves as the Local library for this research.

Dataset 3 consisted of 200 samples from 56 sites within the Hunter Valley, NSW (Fajardo et
al., 2016). Sites were determined in a previous investigation using conditioned Latin
hypercube sampling (Minasny and McBratney, 2006). Samples represent 2 cm sections of

soil cores.

Dataset 4 consisted of 247 samples derived from two large transects dissecting the state of
New South Wales (Pino, 2016). The North-South transect follows a 550 mm mean annual
rainfall isohyet, meanwhile the East-West transect experiences a mean annual rainfall
gradient of >1,500 mm to <300 mm. Paired sites were sampled to reflect agricultural and

natural use.
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All samples were scanned with the same AgriSpec™ spectrometer (Analytical Spectral
Devices, Boulder, Colorado, USA). Samples were scanned with 3-5 replicates per sample, a
baseline white reference reading was taken every 15-21 scans and the corresponding
reflectance values of the replicates were averaged. Further description of the scanning for
each dataset may be found in Filippi et al. (2018), Minasny et al. (2011), Malone et al.
(2011), Fajardo et al. (2016) and Pino (2016).

6.3.2 Cubist models

6.3.2.1 Spectral pre-processing and external parameter orthogonalisation

Reflectance spectra of the spectral libraries were subjected to a number of pre-processing
techniques: conversion to absorbance; Savitzky-Golay filtering; standard normal variate
calculation; cropping to 500 — 2,450 nm; and resampling at 10 nm intervals. Libraries were
then either left as pre-processing only (PP) or subject to external parameter orthogonalisation
(EPO) to reduce the effects of moisture (Minasny et al., 2011). Four libraries were
constructed in total, reflecting combinations of the Local versus Global libraries, with PP or
transformed using EPO. For a full description of pre-processing techniques and EPO see
sections 2.5.5.1 and 2.5.5.2.

6.3.2.2 Producing calibration and validation datasets

Calibration and validation sets were constructed independently for each property, as available
observations varied between and within individual spectral libraries (see Table 6.1). Samples
were split into 80% calibration and 20% validation sets using conditioned Latin hypercube
sampling (Minasny and McBratney, 2006). The first four principal component scores of the
pre-processed spectra were used as input for conditioned Latin hypercube sampling, which
was implemented in the R platform for statistical computing using the ‘clhs’ package
(Roudier, 2011). The same calibration and validation sets were used for the construction of
both PP and EPO models.
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6.3.2.3 Producing 50 models via bootstrap aggregating

A bootstrap aggregating (bagging) method (Breiman, 1996) was applied to develop 50 cubist
models for each property. Bagging is a special case of model averaging that improves the
stability of machine-learning algorithms, by reducing the influence of over fitting. Bagging
also allows the construction of measures of uncertainty to accompany the bagging estimate,
based on the spread of individual estimates. External validation was achieved by comparing
the bagging estimate with laboratory data for the validation set.

6.3.3 Compiling pedotransfer functions

The PTF library was established from published regression equations and some internally
developed PTFs. Each variable was given a unique identifying code and units for each
variable were fixed to avoid any calculation errors (Appendix C1). For a full list of the PTFs

used in this study see Appendix C2.

6.3.3.1 Entering PTF information
Each PTF was recorded with the following information. Only the first field is mandatory.

1. The PTF written in R language
The PTF must be written in the form of a function executable in R. The function may
be a simple regression equation, a model executable using the predict function, or any
specialised function. Individual PTFs are stored externally and executed using the

source function when required.

The system will split a PTF into the following:
a. A vector containing the dependent variable

Required to determine if multiple PTFs are available for a dependent variable.

b. A vector containing each of the independent variables
Required to identify when a PTF can be executed. If all independent variables are

available, then the PTF is executed.
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An example of a PTF written in R script is shown in Equation 6.2. This PTF is registered as
PTF_043 in Appendix C.

Equation 6.2

ptf <- "ph_cacl2 = -0.05 + 0.9 * ph_hZo + 0.14 * log(ec_1_5)"

The system will source the PTF and split the character vector at the equals sign to
identify the dependent variable ph_cacl2, which is the unique identifying code for pH
(1:5 CacCly). The system will then search on the right hand side of the equals sign and
identify ph_h20 and ec_1 5 as the independent variables. These unique identifying
codes equate to pH (1:5 H20) and EC (1:5 H20) dS m™ respectively. The model will
not identify the log function as an independent variable as it was not established as a
unique identifier code. Care must be taken to ensure that there is not overlap between

unique identifier codes and R functions.

2. Measure of uncertainty
A measure of uncertainty is required for each PTF. Ideally, this is the variance of the
residuals from the validation set of the PTF. If the variance is not provided, then
model uncertainty is estimated as the square of the RMSE of the SINFERS estimates.
This uncertainty is added to the existing SINFERS variance for future Monte Carlo

realisations.

3. Clustered uncertainty
k-means clustering can be used to further refine the propagation of uncertainties by
identifying differences in PTF variance by cluster. Cluster centroids and the correct
variance are carried into SINFERS and an extragrade uncertainty is estimated as twice

the maximum cluster variance.

4. \ariance-covariance table
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Provision of a variance-covariance table allows more realistic Monte Carlo

realisations to occur which may increase the overall accuracy of SPEC-SINFERS.

Restrictions on the execution of individual PTFs can be implemented based on the range of

input values or locality if desired.

6.3.4 Running SPEC-SINFERS

When a new reflectance spectrum is supplied, SPEC-SINFERS is initiated. The spectrum is
pre-processed, and an EPO transformation may be applied in accordance with the spectral
calibration models to be utilised. The 50 Cubist bagging models are initiated, returning the
mean and estimate variance of OC, clay, sand, CEC, pH and EC. These VisNIR predicted
properties are then transferred to the pool of available independent variables. The system
searches through each PTF’s independent variable list and identifies which PTFs have all of
their independent variables available in the pool. Each viable PTF is then executed using 100
Monte Carlo realisations; the realisations are based on variance-covariance matrices if
provided. If multiple PTFs are available to predict a property, then each realisation is
inversely weighted by its uncertainty, as ensemble methods have been demonstrated to
outperform single PTFs (Guber et al., 2009). The PTF uncertainty is added to the estimate
uncertainty to provide a more realistic measure. The SINFERS predicted properties and their
associated uncertainty then become available in the pool of independent variables. The search
algorithm is initiated again, and the process proceeds until no new PTFs can be called, at

which point all estimates and their associated uncertainties are returned.

As the entire process is automated the SPEC-SINFERS network can be rapidly updated or
edited (Fig. 6.3).
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Figure 6.3 A SPEC-SINFERS network. Red properties are predicted using VisNIR in
situ. Black properties are provided by user input, e.g. mid-depth of sample. Blue
properties are predicted using the SPEC-SINFERS network. Dotted grey lines indicate
an input variable to one or more PTFs to predict the property on a lower tier.

Additional functionality has been added to the system for querying the network. When a user
clicks on a property, the SPEC-SINFERS pathway to predict this property is highlighted. An
example is given in Figure 6.4. By selecting “k_sat” (saturated hydraulic conductivity), a user
can observe the network path used to predict k_sat, progressing down each tier from the top
to the bottom of the network. In this instance, OC, clay, sand and pH (1:5 H2O) are predicted

from the VisNIR spectra, and sample mid-depth is provided by the user. Organic matter
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(OM) is predicted from OC on lower tier. Mid-depth, OM and sand content are then used to
predict bulk density on the third tier. Bulk density, OC, clay, sand and pH are then used to
predict Ofield capacityy Which is in turn combined with bulk density to predict Ksi. The
automation of this SPEC-SINFERS network is a major advantage, as constructing such a
network manually and updating such a large network as new PTFs became available would

be tedious.

Figure 6.4 Querying the SPEC-SINFERS network. By clicking on “k_sat”, the
properties used to predict k_sat (saturated hydraulic conductivity), are highlighted in
red and the network path is indicated by black lines. The prediction path proceeds from

the top of screen to the bottom.
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New PTFs and properties may be readily provided and modified using the purpose built
graphical user interface. The user interface also facilitates editing of properties, including
removing them completely if required. Such a scenario can be readily visualised if clay is
removed from the properties predicted using spectral models (Fig. 6.5). The importance of
clay in the underlying PTFs is demonstrated. Without a measurement of clay, the only
properties that can be estimated are the remaining five properties estimated from the spectral

calibration models, as well as organic matter, pH (1:5 CaCl>) and bulk density.
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Figure 6.5 The SPEC-SINFERS network without a clay prediction.
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6.3.5 Running SPEC-SINFERS in situ

6.3.5.1 Site descriptions
Fifteen sites were chosen that exhibited a diverse range of soil properties and climates from
across the state of New South Wales, Australia. For a full description of the fifteen sites see

section 2.3.

6.3.5.2 In situ scanning procedures

At each site, a soil pit was excavated, and a 1 m x 1 m surface of the pit wall was prepared.
The soils were scanned in situ using VisNIR, in three vertical transects, at 2.5 cm increments.
Horizons were identified, and samples taken for laboratory analysis and for scanning in under
air-dried, ground condition. For a full description of scanning procedures see section 2.2.2,

for justification of the sampling procedure see Chapter 4.

6.3.6 Validation of in situ results
In situ SPEC-SINFERS estimates were aggregated by horizon and the mean bagging estimate
was compared to laboratory data. Air-dry and ground horizon samples were scanned in the

laboratory, and analysed as a point of reference for the performance of in situ scans.

6.3.6.1 Convex hull screening

When applying models to a sample it must be assessed if it is represented in the spectral
domain of calibration library. Applying models outside of their calibration range can lead to
unexpected results. A convex hull was constructed from the first two principal component
scores of the calibration library. New points are projected onto the same principal component
space. If the new point lies outside the convex hull it is flagged as an outlier, as it does not
fall within the spectral domain of the calibration library. Performance of the models on those

samples inside and outside of the convex hull is assessed.
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6.4 Results and discussion

6.4.1 Model calibration

6.4.1.1 Calibration, validation and pit properties

Analysis of the datasets used for calibration and validation indicate that a diverse range of
soils were present in both the Local library (Table 6.1) and Global library (Table 6.2). The
semi-arid climate of Hillston is reflected in the low OC found in the Local library. Apart from

OC, the ranges of properties of the Local library are relatively large.

6.4.1.2 Performance of calibration models

The bagging approach maintained or improved validation statistics compared to using a
single Cubist model for both the Local library (Tables 6.3 and 6.4) and the Global library
(Tables 6.5 and 6.6). In each case, the bagging approach was equally or more accurate in
terms of larger LCCC and smaller RMSE values. This demonstrates the strength of the
bagging approach at producing models that are more robust than a single model. An average
decrease in RMSE of 13.3% was observed across all models. A maximum decrease in the
RMSE value of 26.4% was observed for sand in the Global library after EPO transformation.
Clay in the Hillston library without EPO transformation was the only model that experienced

an increase in RMSE using the bagging approach, although the increase was only 2.5%.

There was no discernible difference in performance between models calibrated on the EPO
transformed spectra and the PP spectra. This demonstrates that spectral information is
preserved in the transformation process. It should be noted that EPO models were developed
on dry samples only, the performance the models on field moist spectra is assessed in section
6.4.2.
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Table 6.1 Summary of the Local library (Hillston dataset) used for calibration and validation, and of the two soil profiles from the
Hillston area sampled in situ. OC — organic carbon, CEC — cation exchange capacity, EC — electrical conductivity, BD- bulk density, Cal.

— calibration datasets, Val. — validation dataset, Prof. — the two profiles being investigated.

OoC Clay Sand CEC pHw EC BD

(g 100 g1 (g 100 g} (g 100 g} (cmol+) kg™) (1:5 H.0) (dS m?) (g cm™)

Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Prof.

Minimum 0.09 021 0.00 44 95 177 00 197 210 20 28 48 51 50 64 001 0.02 0.08 1.28
1% quantile 0.38 0.43 0.00 46.7 470 54.4 318 319 247 189 160 160 78 78 7.2 012 013 0.17 1.57
Median 0.58 0.61 0.23 53.3 53.0 58.6 358 359 327 257 222 165 85 85 80 022 023 021 1.67
Mean 0.59 0.65 0.25 48.9 48.7 544 40.0 391 365 247 228 155 83 83 80 043 040 024 1.65
3" quantile 0.74 0.82 0.38 56.6 558 62.3 431 416 400 31.2 30.1 180 9.0 90 89 044 046 028 1.75

Maximum 175 1.77 066 644 63.7 67.0 947 888 759 50.7 53.8 180 10.1 99 9.6 4.53 4.04 053 1.86

Count 318 81 8 307 77 8 308 77 8 417 106 8 1030 261 8 1030 261 8 44
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Table 6.2 Summary of the Global library used for calibration and validation, and of the fifteen soil profiles sampled in situ. OC —
organic carbon, CEC - cation exchange capacity, EC — electrical conductivity, BD- bulk density, Cal. — calibration datasets, Val. —

validation dataset, Prof. — the two profiles being investigated.

OoC Clay Sand CEC pHw EC BD

(g 100 g1 (g 100 g} (g 100 g} (cmol+) kg™) (1:5 H.0) (dS m?) (g cm™)

Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Cal. Val. Prof. Prof.

Minimum 0.00 0.00 0.00 00 00 48 00 190 145 04 16 03 44 47 48 001 0.01 0.01 0.64
1% quantile 036 0.36 0.18 13.0 118 184 340 332 264 58 57 43 66 6.2 58 0.08 0.08 0.03 1.43
Median 0.64 0.68 042 29.0 298 389 437 443 431 106 107 95 80 75 65 017 0.18 0.08 1.55
Mean 099 098 0.75 311 30.7 39.8 48.1 49.7 489 133 133 112 77 74 68 033 033 0.16 1.52
3" quantile 116 125 0.72 512 499 584 630 655 684 182 189 178 88 85 7.6 035 038 0.14 1.67

Maximum 7.22 642 680 77.0 73.0 80.4 947 888 942 551 46.3 31.0 101 9.7 9.6 453 420 349 1.87

Count 1171 296 65 1020 260 65 621 155 65 648 166 65 1634 415 65 1789 448 65 330
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External validation showed that robust models were made for both the Hillston and Global
dataset for most properties. The Hillston library produced LCCC values > 0.80 for all
properties. The Global library produced robust models for OC, clay, sand and CEC.
However, EC and pH in the Global library only produced LCCC values between 0.65 — 0.72.

Organic carbon, clay, sand and CEC produced similar validation statistics for both the
Hillston and Global libraries, reflecting the underlying physical nature of these calibrations.
Meanwhile, pH and EC produced noticeably better validation statistics in the Hillston library
compared to the Global library. This finding reinforces the fact that these properties are not
always spectrally active; rather they may be correlated locally with other spectrally active
components. For example, Hillston soils that are higher in the landscape are generally redder,
have less clay and have a larger EC as a product of the high evapotranspiration deficit in the
area. Meanwhile, the less red, clayey soils found lower in the landscape have relatively
smaller EC, as soluble salts are flushed during flood events into the underlying aquifer. An
EC model calibrated in such an area would not transfer into a higher rainfall location. Under
a high rainfall scenario, a redder soil with less clay would typically experience greater
internal drainage rates and, subsequently, smaller EC than a corresponding less red and

higher in the landscape clay soil.

While it was stated above that pH and EC are generally not spectrally active, some pH and
EC influencing factors are spectrally active. E.g. CaCOz3 is spectrally active and will only be
found in soils in alkaline pH conditions, meanwhile gypsum is also spectrally active, and will

produce a high EC reading.
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Table 6.3 External validation of PP models for the Local library

R? LCCC MSE RMSE Bias MSEc; RMSE; RPD RPIQ
ocC Single 054 073 004 020 0.00 004 020 144 0.88
50 models 0.70 080 003 0.16 001 003 016 182 1.12
Clay Single 080 086 3133 560 108 3015 549 219 1.07
50 models 0.78 0.86 3298 574 063 3257 571 213 1.04
Sand Single 068 082 5370 733 078 5309 729 168 0.54
50 models 0.76 0.86 36.63 6.05 087 3587 599 204 0.65
CEC Single 080 084 638 252 -050 6.12 247 220 158
50 models 0.89 087 463 215 -055 433 208 259 1.86
pHw Single 069 082 025 050 -004 025 050 178 134
50models 0.76 0.86 0.19 043 -0.05 0.19 043 205 154
EC Single 058 075 012 034 -0.02 012 034 152 0.27
50models 0.70 082 0.08 0.28 000 008 028 185 0.33

Table 6.4 External validation of EPO models for the Local library
R? LCCC MSE RMSE Bias MSE; RMSE. RPD RPIQ
ocC Single 047 067 005 022 -002 005 021 137 084
50 models 0.67 0.79 0.03 0.17 001 0.03 017 176 1.08
Clay Single 076 084 3718 6.10 095 36.27 6.02 201 0.98
50 models 0.79 0.86 3138 560 0.71 3087 556 218 1.07
Sand Single 0.62 0.77 5758 759 047 5735 757 162 0.52
50 models 0.79 0.87 3121 559 0.75 3064 554 221 0.71
CEC Single 0.78 0.86 6.67 258 -0.25 6.60 257 216 155
50models 085 0.86 503 224 -021 499 223 248 1.78
pHw Single 068 081 026 051 -002 025 050 177 133
50models 0.74 084 021 046 -0.03 021 046 195 1.46
EC Single 067 081 009 030 -004 009 030 173 031
50models 0.69 080 0.08 0.29 -0.01 008 029 179 0.32
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Table 6.5 External validation of PP models for the Global library

R?> LCCC MSE RMSE Bias MSE: RMSEc. RPD RPIQ

oC Single 058 075 040 064 002 040 063 149 0.39
50 models 0.68 081 029 054 007 029 053 176 0.46

Clay Single 0.70 0.83 127.34 11.28 -0.48 127.11 1127 180 1.38
50 models 0.77 0.86 96.59 9.83 -0.50 9635 9.82 207 159

Sand Single 081 0.89 5698 755 119 5555 745 230 1.35
50 models 0.83 090 5056 7.11 110 4934 7.02 244 143

CEC Single 0.58 0.75 4042 6.36 -0.71 3993 6.32 154 0.78
50models 0.68 0.80 3039 551 -0.13 3037 551 1.78 0.90

pPHw Single 042 063 111 105 004 111 105 130 151
50 models 050 065 094 097 0.03 094 097 141 164

EC Single 042 065 015 039 -001 015 039 115 0.24
50 models 051 071 011 032 0.00 011 032 137 0.28

Table 6.6 External validation of EPO models for the Global library

R?> LCCC MSE RMSE Bias MSE: RMSEc. RPD RPIQ

OoC Single 065 080 032 057 001 032 057 166 044
50 models 0.70 082 027 052 0.08 027 052 181 048

Clay Single 0.67 081 139.15 11.80 -0.74 138.61 11.77 173 1.32
50 models 0.76 0.85 99.60 9.98 -0.02 99.60 998 204 156

Sand Single 075 085 7716 878 105 76.05 872 197 116
50 models 0.83 089 5340 731 119 5198 721 237 139

CEC Single 062 078 4846 6.96 0.61 48.09 694 155 142
50models 0.71 0.83 3349 579 030 3340 578 187 171

pHw Single 042 063 114 107 004 114 107 129 150
50 models 052 067 091 095 004 090 095 144 168

EC Single 044 066 013 035 -002 013 035 125 0.26
50 models 054 072 0.09 031 -001 009 031 145 0.30
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6.4.2 Application in the field

6.4.2.1 Applying the Local models to Hillston sites

The RMSE values of air-dry and ground spectra were comparable to those observed in the
validation set, indicating that the two sites were representative of the Local library. Two
exceptions were the maximum clay value of two profiles was slightly larger than observed in

the Local library, and the minimum OC value was slighlty less (Table 6.1).

Air-dry and ground samples scanned in the laboratory produced the best validation metrics.
The EPO transformation improved results from in situ scans compared to PP spectra;
however even EPO transformed predictions were not as accurate as those scanned in the
laboratory. This reinforces investigations showing that EPO can reduce the negative influence
of soil moisture on predictions (Minasny et al., 2011; Ge et al., 2014). The improved
performance of laboratory scanned soil may be due to the removal of moisture, but also due
to homogenisation of the sample and the benefit of scanning the exact sample that is

transferred for laboratory analysis.
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Table 6.7 Hillston models applied to Hillston sites

R?> LCCC MSE RMSE Bias MSE; RMSE:; RPD RPIQ

ocC Laboratory 097 076 002 013 012 000 004 196 1.76
InsiiuEPO 086 054 007 026 025 001 008 099 0.89
In situ PP 082 055 0.07 026 024 001 010 098 0.88
Clay Laboratory 096 080 3594 6.00 -510 992 315 260 0.69
InsituEPO 085 071 7579 8.71 -6.52 3326 577 179 047
In situ PP 0.63 0.64 116.26 10.78 -6.93 68.22 8.26 144 0.38
Sand Laboratory 0.79 079 5046 7.10 037 5032 7.09 253 112
In situ EPO 0.67 071 87.73 937 244 8175 9.04 192 0.85
In situ PP 0.39 058 174.70 13.22 394 159.21 1262 136 0.60
CEC Laboratory 089 080 342 185 128 179 134 238 0.27
InsittuEPO 084 077 416 204 136 230 152 216 0.25
In situ PP 044 056 1644 405 236 1086 330 1.09 0.12
pPHw Laboratory 08 077 023 048 019 019 044 247 167
InsituEPO 094 072 030 055 -0.19 026 051 218 1.48
In situ PP 069 073 034 058 -008 033 058 204 1.38
EC Laboratory = 0.60 042 0.05 023 019 0.02 014 059 0.15
InsituEPO  0.83 053 0.04 021 013 0.03 017 0.65 0.16

In situ PP 090 035 018 042 025 011 033 033 0.08

Visual observation of the bagged estimate values and prediction intervals demonstrate that
SPEC-SINFERS worked well in situ with the local calibrated models. Bagged estimates
aligned well with horizon-based laboratory values and the 95% prediction interval gave a

good indication of the accuracy of the estimate (Figs 6.6 and 6.7).
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Figure 6.6 Spectrally derived properties for Site 7. Solid red lines indicate mean bagged
estimates at 2.5 cm increments; black lines indicate horizon-based laboratory values;
broken red lines indicate the prediction interval; the area inside the prediction interval
is shaded. OC - organic carbon, CEC - cation exchange capacity, EC — electrical
conductivity.
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Figure 6.7 Spectrally derived properties for Site 8. Solid red lines indicate mean bagged
estimates at 2.5 cm increments; black lines indicate horizon-based laboratory values;
broken red lines indicate the prediction interval; the area inside the prediction interval
is shaded. OC - organic carbon, CEC - cation exchange capacity, EC — electrical

conductivity.
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6.4.2.2 SINFERS results for Hillston pits
The SPEC-SIFNERS approach allowed the prediction of 29 properties in situ, in near real-
time (Fig. 6.8). More properties could be estimated if appropriate PTFs were supplied.
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Figure 6.8 All SPEC-SINFERS results for Site 7. Black lines indicate bagging estimate
means; dotted lines indicate the prediction interval for spectrally derived properties
(red) and SINFERS derived properties (blue).

As SPEC-SINFERS relies on using estimates of soil properties as inputs to estimate further
soils properties, the correct propagation of both input and model uncertainties is paramount.
Each estimated value should be accompanied with a measure of its uncertainty (McBratney et
al., 2006). Bootstrap aggregating techniques provide a useful method to provide a bagged
estimate and prediction interval from a spectral library. Meanwhile, the Monte Carlo method
to can be used to draw realistic simulations of input variables from a probability distribution

to provide a measure of uncertainty from deterministic PTFs.

149



Chapter 6: Estimating profile characteristics with proximal sensors and a spectral soil inference system

Bulk density was predicted with an RMSE of 0.11 g cm™ in situ (Table 6.8, Fig. 6.9). This is
comparable with the standard deviation of paired BD samples of 0.10 g cm. As the standard
deviation and the RMSE are similar metrics for unbiased predictions, this indicates that
SPEC-SINFERS predicted BD was accurately predicted. Askari et al., (2015) were able to
predict BD directly from VisNIR spectra with an RMSE of 0.9 g cm3, although for this study
five subplots were established at each site and the same site may be present in the calibration
and validation sets. This shows the potential of using SPEC-SINFERS when the production
of a new calibration set is restricted. Such an example is given in the case of the Local
library. An extensive spectral library is available for many properties, yet bulk density was
not measured. To create a library including bulk density would require resampling all sites.

This is an example where the SPEC-SINFERS approach is useful.

Table 6.8 Local models and SPEC-SINFERS applied to Hillston sites

R?> LCCC MSE RMSE Bias MSEc; RMSE:; RPD RPIQ

BD Laboratory 083 073 000 007 001 000 007 236 0.79
InsituEPO 039 047 001 011 -0.04 0.01 010 122 122

In situ PP 033 042 001 011 -004 001 0211 117 118
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Figure 6.9 SPEC-SINFERS and observed values of pH (1:5 CaCl2) and bulk density for
a) Red Chromosol (Site 7), and b) Grey Vertosol (Site 8). Solid blue lines indicate mean
bagged estimates at 2.5 cm increments; black lines indicate horizon-based laboratory
values; filled black circles represent bulk density measurements at 10 cm depth
increments; broken blue lines indicate the prediction interval; the area inside the

prediction interval is shaded.

6.4.2.3 Enrichment of profile characterisation

The prediction of such a large number of properties facilitates an enriched analysis of a
profile. Combining the parameters estimated for the soil moisture characteristic enables
reconstruction of the curve for each sample (Fig. 6.10a). Combining information held in the
soil moisture characteristic with BD measures can give a greater understanding of pore space
relations in a sample or an entire profile (Fig 6.10b). For this profile SPEC-SINFERS is
indicating that the topsoil does not hold much plant available water. Meanwhile, the subsoil
does not contain 10% porosity at field capacity, indicating that root respiration may be

impaired.
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Figure 6.10 Fine-scale investigation of a) the soil moisture characteristic, and b) plant
available water, of a Red Chromosol (Site 7) derived from SPEC-SINFERS results.

6.4.2.4 Applying the Global models at Hillston

Supplementing the Local library with the four other available spectral libraries in the Global
library generally produced poorer results, than the Local library alone. Increases in RMSE
were seen for OC clay, CEC and pH (Table 6.9). In the case of CEC and pH the increases in
RMSE represented more than 100% of the Locally calibrated model. Improvements were

seen for sand and EC.

Table 6.9 Relative changed in RMSE using Global models compared to Hillston only

models.

oC Clay Sand CEC pH EC

Change in RMSE (%) 7.7 29.4 5.0 153.4 132.7 -38.1

152



Chapter 6: Estimating profile characteristics with proximal sensors and a spectral soil inference system

These findings reflect those of Wetterlind and Stenberg (2010), who found that a local
dataset, even with as few as 25 samples, produced better results than a larger regional dataset,
and that spiking the regional dataset with the 25 local samples only improved outcomes
sometimes. While spiking a Global library with local samples may improve outcomes
(Guerrero et al., 2010), it appears if a sufficiently large local library is available, it is better to

use it directly.

Sankey et al., (2008) also found mixed results when observing model improvements between
local and global calibration sets for three diverse study sites. A local + global model
produced the best results for OC at all sites. However, purely local calibration (n=210)
produced the best results at one site for the prediction of clay content. Global models alone
were never observed to achieve the best validation statistics. With an ever increasing number
and sharing of spectral libraries across the globe, more research is needed to determine when

it is useful to use external spectral libraries, and when they in fact result in poorer outcomes.

6.4.2.5 Applying the Hillston models to all sites

Applying the Hillston models to all fifteen pits produced poor results (Table 6.10). Observed
RMSE values were approximately double those of the Hillston pits. Reinforcing the notion
that models can be extremely unstable when applied outside of their calibration range, as has
also previously been observed with mid-infrared models (Minasny et al., 2009). There was

insufficient representation of soil diversity in the Hillston library to extrapolate it to all sites.
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Table 6.10 Hillston models applied to all sites.

R?> LCCC MSE RMSE Bias MSE; RMSE:; RPD RPIQ

ocC Laboratory 039 039 082 091 -014 080 090 121 0.26
InsiuEPO 018 028 097 098 0.00 097 098 112 0.24
In situ PP 034 036 08 092 -010 084 092 119 0.26
Clay Laboratory 0.70 0.66 231.62 15.22 -8.53 158.79 12.60 1.42 1.35
Insitu EPO 043 050 349.06 18.68 -9.37 261.23 16.16 1.16 1.10
In situ PP 046 057 276.53 16.63 -5.22 249.26 15.79 130 1.23
Sand Laboratory 0.69 0.78 19745 1405 493 173.15 13.16 1.70 1.19
Insittu EPO 032 047 476.06 21.82 9.72 381.65 1954 1.09 0.77
In situ PP 041 061 33829 1839 197 33443 1829 130 0.91
CEC Laboratory 065 076 2230 472 -0.73 2177 467 169 1.09
InsituEPO 043 058 3574 598 -063 3534 595 134 0.86
In situ PP 021 042 6407 800 288 5578 747 100 0.64
pPHw Laboratory 040 060 129 114 036 117 108 113 0.67
InsituEPO 050 067 088 094 026 081 09 137 081
In situ PP 0.08 018 332 182 124 179 134 070 042
EC Laboratory = 0.73 0.64 026 051 035 014 038 0.85 0.08
InsitEPO 048 061 017 041 023 012 034 106 0.10

In situ PP 031 033 073 08 059 038 062 051 0.05

6.4.2.6 Applying the Global models to all sites
Validation statistics were improved when using the Global library compared to the Hillston
library (Table 6.11). However, the models were not effective enough to describe the great

diversity of soils measured. The maximum value of clay seen in the fifteen soil profiles
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exceeded the maximum clay of the calibration set, while all properties except pH and EC had

some observations outside the range of the validation set (Table 6.2). This represents one of

the difficulties in applying calibrations outside of their geographical domain. Ongoing

maintentance and improvement of spectral libraries is required to reduce any negative

influences from this.

Table 6.11 Global models applied to all sites.

R? LCCC MSE RMSE Bias MSE:; RMSE:. RPD RPIQ

oC Laboratory 068 0.77 050 071 020 046 0.68 171 0.37
InsituEPO 060 070 0.70 084 037 057 075 144 031

In situ PP 055 061 072 08 011 071 084 143 031

Clay Laboratory 0.57 0.64 213.66 14.62 1.09 21247 1458 148 140
Insitu EPO 053 0.62 22555 15.02 -0.04 22555 15.02 1.44 137

In situ PP 0.09 0.25 428.28 20.69 2.53 42187 2054 104 0.99

Sand Laboratory 0.76 0.79 163.34 12.78 -2.59 156.62 1251 187 1.31
Insitu EPO 052 0.66 268.23 16.38 0.64 267.82 16.37 146 1.02

In situ PP 0.28 0.41 51447 22.68 -10.61 401.87 20.05 1.05 0.74

CEC Laboratory 081 0.76 4756 6.90 456 26.75 517 116 0.75
Insittu EPO 0.76 0.78 2955 544 373 1562 395 147 0.95

In situ PP 0.78 0.69 3541 595 495 1087 330 115 1.44

pHw  Laboratory 046 053 1.16 108 054 087 093 119 0.70
Insitu EPO 044 047 151 123 0.78 090 0.95 104 0.62

In situ PP 024 029 204 143 091 121 110 090 0.53

EC Laboratory 092 0.89 005 0.22 012 0.03 0.18 200 0.19
InsituEPO 0.70 075 007 026 007 006 025 170 0.16

In situ PP 045 055 021 045 029 013 035 096 0.09
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Geographic location is a good indicator of model performance. Visual examination of results
for individual sites indicated that some sites outside of the geographic domain of the libraries
also performed well. This raises the question of whether it is possible to predict the accuracy
of a prediction based on intrinsic information held within the spectra of the calibration set and

the unknown spectrum.

6.4.3 Predicting model performance from intrinsic spectral information

Attempts to discriminate spectra based on inherent spectral information, such as whether new
spectra lie within the convex hull of the library, proved ineffective with the restriction
increasing the RMSE just as often as it decreased it. Other attempts to discriminate, by
applying the convex hull analysis over four dimensions, reducing the size of the convex hull
until it contained 90% of the original library, or applying a Euclidean nearest neighbour
distance metric also proved ineffective. Based on direct analysis of a received unknown
spectrum, it could not be determined if the models would be effective. Differences in spectra

are too subtle to be discriminated using this approach.

A more promising result was observed when considering the size of the prediction interval
produced for a scan. Profiles that were not well-represented in the calibration library
generally had larger prediction intervals, such as the Ferrosol represented at Site 14 (Fig. 6.9).
Prediction intervals for Site 14 generally covered more than 50% of the prediction domain.
This is a result of the bagging approach, which gives many realisations of a model and this
produces instability in the prediction of spectra not well-represented in the calibration library,

resulting in larger prediction intervals.
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Figure 6.11 Comparison of organic carbon and bulk density estimates between: a) Red
Sodosol (Site 2), a relatively well represented profile in the calibration library; and b)

Red Ferrosol (Site 14), a profile not a well-represented in the calibration set.

By plotting the quantiles of prediction interval width, it was observed that the residual value
generally increases with the size of the prediction interval (Fig. 6.12). An important finding
was that prediction interval width was not determined by the magnitude of the bagging
prediction, otherwise its utility would be reduced. Observing the clay content prediction of
Site 7 (Fig. 6.6b), a wider prediction interval occurs in the topsoil, which has a smaller clay
content. The prediction interval remains wide for the Bt horizon before reducing in the Btkl
and Btk2 horizons. This demonstrates that the width of the prediction interval is affecting by

more than the magnitude of the prediction.
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Figure 6.12 Plot of quantiles of the prediction interval of the 50 cubist model estimates
and the organic carbon residual for in situ, EPO transformed spectra of the Global

library. A locally-weighted nonlinear trend line is plotted in blue.

6.5 Conclusion
e The functionality of SPEC-SINFERS in the field was demonstrated.
e Application of bagging improved the Cubist models and allowed the construction of
realistic prediction intervals.
e The EPO transformation improved field estimates, although RMSE values remained

larger than those analysed in air-dried, ground condition in the laboratory.
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SPEC-SINFERS BD was predicted with an RMSE of 0.11 g cm™ in situ, following
EPO transformation and using a local calibration library. This was very close to the
standard deviation between paired BD observations of 0.10 g cm™,

The Global library generally produced poorer results, compared to the Local library
for the Hillston sites. This suggests that a local calibration is preferable when a library
of sufficient size and representation of local soils is available.

Pre-screening spectra to determine if they are represented in the calibration dataset by
using convex hulls of the first two principal components of the calibration set
produced disappointing results. A better indication was obtained by observing the size
of the prediction interval. More research is needed to identify the accuracy of a
prediction based on intrinsic information held within the spectra of the calibration

library and an unknown spectrum.
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[/ CONCLUSIONS

This thesis investigated in situ characterisation of soil using proximal sensors. In the four
research chapters, methods to remove the negative effects of soil moisture were assessed, and
novel sampling techniques were proposed. In total, 37 soil properties were estimated with
visible near-infrared diffuse reflectance (VisNIR) spectra and portable X-ray fluorescence
(pXRF) reported elements. This included characterising soil mineral composition in terms of
eight minerals in Chapter 5, and estimation of 29 soil properties with SPEC-SINFERS in
Chapter 6. All results are available in the field. Limitations and further improvements to the

approaches, and potential future research directions are outlined below.

7.1 Research summary

Chapter 3 demonstrated the negative effects of soil moisture on VisNIR spectra. The
moisture effect was so great that spectra from air-dry subsoil samples were more similar to
field condition topsoil samples. This moisture effect could be reduced using external
parameter orthogonalisation (EPO). Clustering of EPO transformed spectra produced classes
that resembled observed soil horizons. Allocation of samples to classes was relatively stable
under variable moisture condition following EPO transformation. Although this investigation
was performed on a soil profile, the same methodology could be extended to mapping soil

units in two or three dimensions.
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Chapter 4 proposed the use of VisNIR spectra as a proxy for soil properties to characterise
the vertical and lateral components of soil profile variability. A sampling increment of 4.1 cm
in the vertical dimension was found to experience equivalent variation in soil properties as an
entire 1 m lateral cross-section. As a general case, sampling at this resolution, or some
multiple thereof, will provide efficient characterisation of profile variability.

Chapter 5 presented a data fusion approach to characterise soil mineral composition in situ.
This was the first comprehensive attempt to estimate soil mineralogy in situ. Results were
promising, with the dominant mineral of a horizon predicted with 72% accuracy. The fusion
model increased the ordinal prediction of phyllosilicates from 34% to 63% accuracy. Future
research is required to quantify smectite. Clark et al. (1990) describe the elements involved in
isomorphic substitution inducing changes in VisNIR spectra. This may provide a solution; if
the chemical structure of smectite can be estimated using VisNIR, then the elemental
requirements for the mass balance may be adjusted accordingly. Otherwise, local calibration
will be required. The significant correlations between mineral abundance and pXRF reported
values demonstrated the strength of combining VisNIR and pXRF, through their combined
capacity to provide both molecular and elemental characterisation. For comprehensive
mineral estimation, both are required. Whether this takes the form of a mass balance, is in the
case presented, or machine learning directly from the two data streams, or some derivative

thereof.

Chapter 6 demonstrated a field functional SPEC-SINFERS system. A single VisNIR
spectrum was used to predict 29 soil properties, and their associated uncertainties, in near
real-time. When locally calibrated models were used, effective characterisation was achieved,
as demonstrated by small RMSE values. More work is needed to reduce RMSE values of
field reported spectra, to those of air-dry and ground samples. An interesting point raised in
this chapter was the ability to assess model performance based on intrinsic information held
within an unknown spectrum, irrespective of whether the sample was derived from the
geographic domain of the calibration library. Investigations based on constructing a convex

hull around the first two principal components of the calibration library provided mixed
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results. The width of prediction intervals offered some indication of model performance.

However, further research is needed to resolve this issue entirely.

7.2 Further techniques

7.2.1 Removing the moisture effect entirely

Observation of transformed and untransformed spectra under field moist and air-dry
condition, demonstrated that EPO was effective at reducing the negative effects of sample
moisture. Prediction outcomes were also improved for SPEC-SINFERS predictions by
utilising EPO transformation over using calibrations based on air-dry, ground models in situ.
Although both were constructed from air-dry and ground samples. Future research should be
directed at removing it completely. Direct standardisation also improved results. More
research is required on both methods and other approaches to further reduce the negative
moisture effect.

7.2.2 Prediction of model performance

Good results were obtained when using local calibration models. Does this mean spectral
libraries must be constructed for each region? Prediction of model performance based on the
presence of an unknown spectrum within the spectral domain of the calibration library,
defined as the convex hull of the first two principal components, did not improve model
outcomes. Perhaps the convex hull could be extended into further principal component
dimensions. Presence within the geographical domain of the calibration library was the best
indicator of model performance, although width of the prediction interval also gave a good
indication. More work is required, to determine when and where models will work well and

limit the need for further calibration libraries.

7.2.3 Pre-screening input based on pXRF or VisNIR
Araudjo et al., (2014) found that clustering spectra and constructing class based models

improved validation statistics for clay and OM prediction, when using a large library of 7,172
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spectra from Brazil. RMSE values of 8.9% and 0.48% were observed, representing a decrease
in RMSE values of 21 and 15% respectively. The authors observed that the classes contained
spectra with more uniform mineralogy, regardless of geographical origin. Undoubtedly a
similar improvement would be achieved in Australia, where mineralogy is more diverse than
the oxide and kaolinite dominated tropical soils. Soils may be split into classes based on
oxide dominance, carbonate dominance, or phyllosilicate speciation. Elemental composition
from pXRF could also be used to cluster data. Other authors have suggested identifying the
most similar spectra from within a library, and constructing individual models for each
unknown spectrum (Cheng-Wen et al., 2001). This could be facilitated using global VisNIR
spectral libraries (e.g. Viscarra Rossel et al., 2016), or a global calibration repository of soil

data covering the entire electromagnetic spectrum (Hartemink and Minasny, 2014).

7.2.4 Spatial disaggregation

Historically, for efficiency purposes, soil samples have been grouped into horizons or depth
intervals, air-dried and ground before being analysed. This results in a homogenisation of
spatial variability. We can now analyse soils in situ and capture this vertical spatial
variability. Spatially disaggregating this variability can allow us to better understand soil
forming processes and evaluate a soil’s edaphic, environmental or geotechnical engineering

potential.

7.3 Missing devices

As defined in Chapter 1, the holy grail of soil sensing would be a non-invasive, non-
destructive sensor that could estimate all properties of interest from above the soil surface.
Some insights are provided from above the soil surface by electromagnetic induction, vy-
radiometrics, and other less commonly used devices such as ground-penetrating radar,
inelastic neutron scattering and acoustic sounding. However, due to the large number of
properties simultaneously affecting the reading, they cannot be diagnostic in themselves. For
example, electromagnetic induction readings are affected by salt content and type, soil
moisture, clay content and type, mineralogy, depth to bedrock, and temperature. Often these
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survey products are able to determine where soils vary at a farm or paddock scale, but not
how the soils vary. Until comprehensive, non-invasive sensors exist, invasive soil sampling

and soil sensors will be required. New field portable devices should be investigated.

7.3.1 Laser-induced breakdown spectroscopy

Laser-induced breakdown spectroscopy (LIBS) offers an alternative to pXRF for the
provision of elemental composition. A number of benefits are expressed. Laser-induced
breakdown spectroscopy is able to provide quantitative information of all elements, whereas
pXRF is restricted to elements heavy than Na, i.e. Z > 12. As LIBS operates in the near-
infrared region of the electromagnetic spectrum, two further benefits are provided: i) it has
the potential to be operated through a fibre optic cable, and may be incorporated into a push
probe system (e.g. Theriault, et al., 1998); and ii) it does not produce ionising radiation, thus
reducing safety concerns for operators. Limitations of LIBS include greater detection limits,
small support size (nanograms to picograms), requiring multiple scans for effective
characterisation. However, LIBS can also fire multiple shots, and thereby penetrate into a
target. It has become the method of choice for space exploration, as it has the capacity to
blast through layers of Martian dust (Sallé et al., 2005). Would it be possible to identify
exchangeable versus structural Na in minerals, and directly observe soil sodicity? Or
characterise clay and oxide coatings on sand particles?

7.3.2 Mid-infrared spectroscopy

Mid-infrared spectroscopy is a potential alternative to VisNIR, for molecular characterisation
of soil samples. The MIR section of the electromagnetic spectrum, 2500-25,000 nm, contains
fundamental peaks of many constituents of interest (e.g. Farmer and Russell, 1964; Janik et
al., 1995), in contrast to VisNIR which contains combination and overtones (McCarty et al.,
2002). Comparative laboratory-based studies have shown that MIR can outperform the Vis
and NIR sections of the electromagnetic spectrum for the prediction of OC, pH, lime
requirement, CEC, clay, silt and sand contents, P and EC (e.g. McCarty et al., 2002; Viscarra
Rossel et al., 2006). Field portable devices are available (Sorak et al., 2012); however, MIR

is more susceptible to variable moisture and surface preparation then VisNIR, limiting field
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applications. Given the potential for improved models using MIR, more research is needed to
determine if these limitations are applied for all soil types and moisture potentials, or if
methods to remove the moisture and sample preparation limitations of field portable MIR

could be overcome.

7.3.3 Raman spectroscopy

Raman spectroscopy is another technique that can offer insight into molecular
characterisation, especially for mineral constituents. Raman spectroscopy provides a number
of absorption peaks related to feldspars and Fe-oxides, as well as quartz and common igneous
minerals such as olivine and pyroxene (Freeman et al., 2008). Many of these minerals are
particularly difficult to characterise with VisNIR. Raman spectroscopy has also been used to
analyse organic components (Haumaier and Zech, 1995) and soil contamination (Frost and
Kloprogge, 2003). Combination of Raman spectroscopy and LIBS has also been suggested
for improved predictions (e.g. Marquardt et al., 1998).

7.4 Future directions

Proximal soil sensors have often been used to gather data in the field, but not process and use
this information in the field. This mentality needs to change. New tools must be developed
with a focus of converting these information streams in to something useable. Whether that
takes the form of directing further sampling sites (Horta et al., 2014), informing pedogenetic

theories, or agronomic decision-making processes.

7.4.1 Soil constraint management

Practical applications of proximal soil sensors need to be given greater relevance to promote
adoption. An example could be supporting remediation of hydrophobic soils. Hydrophobic
soils occupy more than 5 million hectares of western and southern Australia (Roper, 2004).
Soil hydrophobicity normally occurs in soils with a clay content of less than 5 g 100 g. To

remediate such soils, clay is sourced from on-site pits and incorporated by spreading. Yield
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increases of 40-50% have been observed (GRDC, 2016). Ideal clay sources for spreading are
yellow, kaolinitic type, with a clay content of ~30 g 100 g* and low EC, CO3z and B.
However, a recent analysis of 82 clay pits identified a ranges in: clay content of 10-75 g 100
gl; CEC of 3-28 cmol+ kgt; pH (1:5 CaCly) of 4.7-8.7; and EC of 0.0-2.3 dS m? (GRDC,
2016). Applying a standard rate of clay from such a wide range of sources can produce
negligible, or even negative effects. The use of proximal soil sensors could be beneficial here
to: i) identify soils with a clay content of less than 5 g 100 g*; and ii) analyse clay sources
and adjust application rates during spreading. A similar approach could also be imagined for
liming soils by measuring the purity of lime being applied, as well as the pH and buffering

capacity of soil continuously across a paddock.

7.4.2 Adaptive mapping techniques to support precision agriculture

All crop management decisions today are made based on incomplete knowledge of soil
properties and variability. Soil properties vary continuously across a paddock and this
variability may have large implications for crop selection, establishment, growth and
development. To facilitate true site-specific crop management this data gap must be filled. A
system must be developed that will collate survey data to identify locations to be further
investigated using ambulatory proximal soil sensors, such as VisNIR and pXRF. This
combined approach will allow fine-scale mapping of multiple soil properties, and sampling

methodologies could be adapted in real-time to minimise mapping uncertainties (Fig. 7.1).

Soil condition must be optimised for crop growth and to also secure soil for production into
the future (McBratney et al., 2014). Kravchenko and Bullock (2000) investigated the spatial
distribution of four soil properties and found that even this small number of properties could
explain an average of 30% of the yield variation in soybean and corn crops. Grain quality
measures are similarly influenced by soil properties (Adams et al., 2004; Stewart et al.,
2002). Undoubtedly, more soil data collected efficiently and in a cost-effective manner will

result in better decision-making and more profitable farming systems.
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Site selection and investigation

Covariate datais usedto directsite investigation.

Sampling sites are investigated using proximal soil sensors attached
to a push probe or cores are extracted and analysed on a core logging
system on-site.

Results are obtained on-site.

Samples thatare out of the range of existing libraries can be flagged
for accessiontothe library for continued modelimprovement.

Depth (cm)

0

20

Depth (cm)

100

Mapping of soil properties and attributes

Predicted properties and covariate data are usedto provide fine-scale
mapping of soil properties.

Yield maps may be intentionally excluded as covariates fromthe
mapping process to facilitate the identification of yield gaps.
Properties are mapped at multiple depths.

Figure 7.1 Adaptive sampling technique to map, and report on, soil attributes.
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We must also use these predicted soil properties in a more purposeful manner. If we assess
these soil properties concurrently and combine them with the vast amount of information
stored in pedotransfer functions and expert knowledge in the form of a soil inference system
(McBratney et al., 2002), we can greatly increase the agronomic relevance of the predictions,
such as mapping available water or pH buffering capacity. Connecting these pools of
information is vital to boost the benefit of these predicted properties by transforming them
into actionable soil attributes that can inform agronomic decision-making processes, and

identify potential soil constraints and inherent soil cropping potential.
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Appendix A

A1 Correction factor for new pXRF detector and calibrations.

A change in detector technology and calibrations was implemented halfway through the
sampling process for the pXRF. This upgrade used less power; however it also changed the
calibrations and estimates of standard elemental composition. This change was identified
through our continued monitoring of NIST and other standard materials, particularly
NIST2709, NIST2711a and a SiO. standard. Analysis of 134 samples using the initial
configuration and 126 samples between the updated detector exemplifies this change (Fig. 1).
Both devices showed a high degree of precision given the range of conditions the scans were
obtained in, e.g. lab v field, temperature (ambient and operating), altitude and pressure.
Although the results did not always match exactly with standard reported values, and there
was a change in accuracy with the new configuration. The differences between the two
detector configurations appeared to be linear and as the initial detector setting showed a
greater accuracy to the reported standard values it was decided that values given using the
new detector should be corrected back to the previous setting. This also brought the new
values into correction with our existing XRF library and allowed us to apply our established
models more readily. Linear correction factors were calculated from the median reported
concentration with the old and new detector configuration for each element. These correction
factors were applied to reported results from the new detector for all analyses (Fig. 2)
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Figure 1 Boxplots of pXRF standards before and after the detector change. The old

detector configuration is shown in red, the new detector configuration is shown in blue.

Horizontal black bars indicate reported standard concentrations.
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Figure 2 Comparison of pXRF reported values using the old detector (red) in dry
condition and the new detector in ground condition, before and after a linear correction
factor was applied. Samples scanned with the new detector only (blue) are included for

comparison.
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A2 Stability of geochemical ratios under variable soil moisture

The stability of geochemical ratios over direct use of pXRF reported elemental concentrations
was demonstrated by comparing the correlation between samples scanned under field moist
and air-dry condition. When pXRF values were used directly, moisture in the sample resulted
in a decrease in observed elements (Fig. 3). Geochemical ratios reduced this effect;

comparable results were obtained under variable soil moisture conditions (Fig. 4)
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Figure 3 Boxplots of pXRF reported values under field moist (blue) and air-dry (red)
scenarios. Samples were derived from the intensively sampled pit mentioned in Chapter
3).
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Appendix B

B1 XRD random powder scans of bulk samples and clay isolates
Notable peaks are indicated: Q — quartz; Ca —calcite; P — phyllosilicates; Gy — gypsum.
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Figure 5 Random powder XRD scan bulk sample and clay isolate from Site 1.
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Figure 6 Random powder XRD scan bulk sample and clay isolate from Site 2.
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Figure 7 Random powder XRD scan bulk sample and clay isolate from Site 3.
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Figure 8 Random powder XRD scan bulk sample and clay isolate from Site 4.
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Figure 9 Random powder XRD scan bulk sample and clay isolate from Site 5.
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Figure 10 Random powder XRD scan bulk sample and clay isolate from Site 6.
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Figure 11 Random powder XRD scan bulk sample and clay isolate from Site 7.
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Figure 12 Random powder XRD scan bulk sample and clay isolate from Site 8.
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Figure 13 Random powder XRD scan bulk sample and clay isolate from Site 9.
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Figure 14 Random powder XRD scan bulk sample and clay isolate from Site 10.
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Figure 15 Random powder XRD scan bulk sample and clay isolate from Site 11.
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Figure 16 Random powder XRD scan bulk sample and clay isolate from Site 12.
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Figure 17 Random powder XRD scan bulk sample and clay isolate from Site 13.
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Figure 18 Random powder XRD scan bulk sample and clay isolate from Site 14.
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Figure 19 Random powder XRD scan bulk sample and clay isolate from Site 15.
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B2 XRD oriented scans of clay isolates
XRD oriented scans of clay isolates following various pretreatments: Mg-saturated - black;

Mg-saturated and ethylene glycolated - red; K-saturated - green; and K-saturated and heated
to 550°C — blue.
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Figure 20 Oriented XRD scan following various pretreatments for Site 1.
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Figure 21 Oriented XRD scan following various pretreatments for Site 2.
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Figure 22 Oriented XRD scan following various pretreatments for Site 3.
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Figure 23 Oriented XRD scan following various pretreatments for Site 4.
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Figure 24 Oriented XRD scan following various pretreatments for Site 5.
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Figure 25 Oriented XRD scan following various pretreatments for Site 6.
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Figure 26 Oriented XRD scan following various pretreatments for Site 7.
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Figure 27 Oriented XRD scan following various pretreatments for 8.
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Figure 28 Oriented XRD scan following various pretreatments for Site 9.
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Figure 29 Oriented XRD scan following various pretreatments for Site 10.
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Figure 30 Oriented XRD scan following various pretreatments for Site 11.
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Figure 31 Oriented XRD scan following various pretreatments for 12.
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Figure 32 Oriented XRD scan following various pretreatments for Site 13.



Appendix

H1 H2
El El
8 8
= =
@ @
c c
(9] (9]
S S
— T T T T T — T T T T T
3 5 7 9 11 13 15 3 5 7 9 11 13 15
Degree-two theta (CuKa) Degree-two theta (CuKa)
H3 H4
El El
s s
2 2
@ @
c c
2 2
£ £
— T T T T T
3 5 7 9 11 13 15
Degree-two theta (CuKa) Degree-two theta (CuKa)
H5
e
s
=
@
o
i
£

Degree-two theta (CuKat)

Figure 33 Oriented XRD scan following various pretreatments for Site 14.
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Figure 34 Oriented XRD scan following various pretreatments for Site 15.
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B3 XRD semi-quantitative mineral composition
Table 1 XRD semi-quantitative mineral composition of all fifteen soil profiles. Auxiliary

minerals are also indicated

Site Hor Ka Sm 1 He Go Ca Gy Q Auxiliary minerals
Site 1 H1 tr XXX tr - - tr - XX vermiculite (tr)
H2 tr XXX - - - X - XX anorthite (tr), vermiculite (tr)
H3 tr XX - - - XX - XX anorthite (tr), vermiculite (tr)
H4 tr XX - - - XXXX - X vermiculite (tr)
Site 2 H1 X tr tr - - - - xxxx | albite (tr)
H2 XXX X tr tr - - - XX
H3 XXX X tr tr - - - XX
H4 XXX X tr - - - - XX albite (tr)
Site 3 HO XX - - - tr - - xxxx | Ti-oxide (tr), HILV (tr)
H1 XX - - tr tr - - xxxx | Ti-oxide (tr), HILV (tr)
H2 XXX - - tr tr - - XXX Ti-oxide (tr), HILV (tr)
H3 XXX - tr tr X - - XX Ti-oxide (tr), HILV (tr)
H4 | xxxx - tr tr X - - XX Ti-oxide (tr), HILV (tr)
Site 4 H1 tr tr tr - - - - XXXXX
H2 tr - tr - - - - XXXXX
H3 tr - tr - - - - xxxxx | K-feldspar (tr)
H4 tr - tr - - - - XXXXX
H5 XXXX - tr tr tr - - XX Ti-oxide (tr)
H6 XXXX - tr tr tr - - XX Ti-oxide (tr)
Site 5 H1 X - tr - tr - - xxXxx | Ti-oxide (tr)
H2 X - tr - tr - - XxxXx | Ti-oxide (tr)
H3 X - tr - tr - - Xxxx | Ti-oxide (tr), HILV (tr)
H4 X - tr - tr - - Xxxx | Ti-oxide (tr), HILV (tr)

- not present, tr, trace <5%, x 5-20%, xx 20-40%, xxx 40-60%, xxxx 60-80%, xxxxx 80-
100%. *Hydroxy-interlayered vermiculite (HILV).
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Site Hor Ka Sm | He Go Ca Gy Q Auxiliary minerals
Site 6 H1 XX - tr - tr - - xxxx | albite (tr), Ti-oxide (tr), HILV (tr)
H2 XX - tr - tr - - xxxx | Ti-oxide (tr), HILV (tr)
H3 XX - tr - tr - - xxxx | Ti-oxide (tr), HILV (tr)
H4 XX - tr - tr - - xxxx | Ti-oxide (tr), HILV (tr)
H5 XX - tr - tr - - xxxx | Ti-oxide (tr), HILV (tr)
Site 7 H1 X tr X - - - - xxxx | Ti-oxide (tr)
H2 XX X XX - - - - XX
H3 XX X XX - - XX - XX
H4 XX X XX - - XX - XX
Site 8 H1 X XXX X - - - - XX K-feldspar (tr), albite (tr)
H2 X XXX X - - - - XX albite (tr)
H3 X XXX X - - tr - XX albite (tr)
H4 X XXX X - - tr - XX albite (x)
Site 9 H1 X - X tr tr - - xxxx | Ti-oxide (tr), HILV (tr)
H2 XX - X tr tr - - XXX Ti-oxide (tr), HILV (x)
H3 XXX - X tr tr - - XXX HILV (x)
H4 XXX - X tr tr - - XX HILV (X)
Site 10 H1 X X tr tr - - - XXX Ti-oxide (tr)
H2 X X tr tr - - - XXX Ti-oxide (tr)
H3 X XX tr tr - tr - XX Ti-oxide (tr)
H4 X XXX - tr - XX - XX Ti-oxide (tr)
H5 X XXX - tr - tr - XX Ti-oxide (tr)
Site 11 H1 tr XXXX - tr tr tr - X Ti-oxide (tr)
H2 tr XXXX - tr - tr - X Ti-oxide (tr)
H3 tr XXXX - tr - tr - X Ti-oxide (tr)
H4 tr XXXX - tr - X - X albite (x), Ti-oxide (tr)

- not present, tr, trace <5%, x 5-20%, xx 20-40%, xxx 40-60%, xxxx 60-80%, xxxxx 80-
100%. *Hydroxy-interlayered vermiculite (HILV).
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Site Hor Ka Sm 1 He Go Ca Gy Q Auxiliary minerals
Site 12 H1 X XXXX - - - - - X
H2 X XXXX - - - tr - X
H3 X XXXX - - - tr - X
H4 X XXXX - - - tr X X
Site 13 H1 XX - X tr - - - Xxxx | Ti-oxide (tr), HILV (tr)
H2 XXX - X tr - - - XXX Ti-oxide (tr), HILV (tr)
H3 XXX - X tr - - - XXX Ti-oxide (tr), HILV (tr)
Site 14 H1 X - - XX XX - - X Ti-oxide (tr), gibbsite (x)
H2 XX - - XX XX - - X Ti-oxide (tr), gibbsite (x)
H3 XX - - XX XX - - X Ti-oxide (tr), gibbsite (tr)
H4 XX - - XX XX - - tr Ti-oxide (tr), gibbsite (tr)
H5 XX - - XX XX - - tr Ti-oxide (tr), gibbsite (tr)
Site 15 H1 X - tr - tr - - xxxx | Ti-oxide (tr)
H2 X - tr - tr - - XXXx | Ti-oxide (tr)
H3 X - tr - tr - - xxxx | Ti-oxide (tr), HILV (tr)
H4 XX - tr - X - - XX Ti-oxide (tr), HILV (tr)

- not present, tr, trace <5%, x 5-20%, xx 20-40%, xxx 40-60%,

100%. *Hydroxy-interlayered vermiculite (HILV).

XXXX 60-80%, xxxxx 80-
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B4 Fusion model predictions

Fusion model predictions for all fifteen sites are presented. A legend is provided indicating
the prediction of: Ka —kaolinite; Sm — smectite; Il — illite; He — haematite; Go — goethite; Ca -
CaCOs; Gy — gypsum; and Q - quartz. Horizontal black lines indicate field observed

horizons.

Predicted mineralogy proportions— hv_calc
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Figure 35 Fusion model predictions for Site 1.
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Predicted mineralogy proportions— hv_kuro
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Figure 36 Fusion model predictions for Site 2.

Predicted mineralogy proportions— wwood_jan
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Figure 37 Fusion model predictions for Site 3.
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Predicted mineralogy proportions— nowley_sodosol
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Figure 38 Fusion model predictions for Site 4.

Predicted mineralogy proportions— lansdowne_mn
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Figure 39 Fusion model predictions for Site 5.
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Predicted mineralogy proportions— lansdowne_river
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Figure 40 Fusion model predictions for Site 6.

Predicted mineralogy proportions- hillston_red
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Figure 41 Fusion model predictions for Site 7.
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Predicted mineralogy proportions— hillston_grey

T
e — =
— =
EE— 000 -
A -
— --
| —— 009000

T —_— e

—————— m"
= e S -
g . 0
g ————— = .. '. n
N} -
—— sss— -
I -
— -
[ n
— -
EE— 000 -

75 | ——— 00000 -
R — m
O 0000000 =
— -
B -
T u
— | -
S0 n

mKa msnmnolnl m SN G oca may oa
Legend
B Ka B Sm Ol B He O Go O Ca O Gy OQ

Figure 42 Fusion model predictions for 8.

Predicted mineralogy proportions— orange_rawson
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Figure 43 Fusion model predictions for Site 9.
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Predicted mineralogy proportions— nowley_chromosol
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Figure 44 Fusion model predictions for Site 10.

Predicted mineralogy proportions— nowley_vertosol
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Figure 45 Fusion model predictions for Site 11.
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Predicted mineralogy proportions— nowley_gypsum
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Figure 46 Fusion model predictions for 12.

Predicted mineralogy proportions— lansdowne_dermosol
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Figure 47 Fusion model predictions for Site 13.
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Predicted mineralogy proportions— robertson_red
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Figure 48 Fusion model predictions for Site 14.

Predicted mineralogy proportions— sheep_paddock
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Figure 49 Fusion model predictions for Site 15.
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Appendix C

C1 Unique property codes and units
awc — plant available water capacity (cm® cm)

bd — bulk density (g cm)

buffering_cap — pH buffering capacity (cmol H* kg™ pH unit?)
cec — cation exchange capacity (cmol) kg™?)

clay_2 — clay content (<2 pm) (g 100 g

cole — coefficient of linear extensibility
ec_1_5—electrical conductivity (1:5 H20) (dS m™?)

ece — electrical conductivity of saturated soil extract (dS m™)
k_sat — saturated hydraulic conductivity (mm hrt)
linear_shrinkage — linear shrinkage (mm 100 mm-)
lower_depth — sample lower depth (cm)

mid_depth — sample mid-depth (cm)

om — organic matter (g 100 g})

ph_h20 — pH (1:5 H20)

ph_cacl2 — pH (1:5 CaCly)

sand_20_2000 — sand content (20 — 2,000 pm) (g 100 g)
sand_50_2000 — sand content (50 — 2,000 pm) (g 100 g)
silt_2 20— sand content (2 - 20 um) (g 100 g™%)

silt_2 50 — sand content (2 — 50 um) (g 100 g)
smc_alpha — van Genuchten model parameter a

smc_m — van Genuchten model parameter m. (m =1-1/n)
smc_n — van Genuchten model parameter n

smc_theta_r — van Genuchten model parameter 0y

smc_theta_s — van Genuchten model parameter 0s
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theta_cll — moisture content at crop lower limit (cm®cm)

theta_dul — moisture content at drainage upper limit (cm®cm)

theta_fc10 — moisture content at field capacity, matric potential -10 kPa (cm?cm™)
theta_fc33— moisture content at field capacity, matric potential -33 kPa (cm?® cm®)
theta_pwp — moisture content at permanent wilting point (cm®cm)

theta_sp — moisture content at sticky point (cm®cm®)

tot_oc — organic carbon (g 100 g*})

upper_depth — sample upper depth (cm)
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C2 List of PTFs and other calculations used in SPEC-SINFERS

List of PTFs in R language. Provenace is a from internal PTF construction and the published
literature. Some of the equations are simple calculations and not PTFs sensu stricto, such as
the calculation of organic matter from organic carbon (PTF_35). The PTFs are listed in the
order in which they were created. The PTF number has no influence on the construction of
the SPEC-SINFERS network. An example of a function containing an if-then-else statement
is shown in PTF_39, separate PTFs are applied depending whether the mid-depth of the

sample is above or below 20 cm.

PTF_1

theta_dul = 0.2739 + 0.005033 * clay 2 + 3.158 * 107-5 * sand_20_2000 * cec - 1.96 * 10
5% sand_20_2000 A2 - 0.00256 * clay 2 * bd

Internal PTF constructed from APSRU database

PTF 2
theta_dul = 0.2358 + 0.002572 * cec + 0.001001 * clay 2 - 1.70 * 10"-7 * sand_20_2000 "3
Internal PTF constructed from APSRU database

PTF_3

theta_dul = 0.374 + 0.01182 * bd + 0.00365 * clay 2 + 6.09 * 1075 * sand_20 2000 *
clay 2 - 0.00339 * sand_20_2000 - 0.00192 * bd ~2 * clay 2

Internal PTF constructed from APSRU database

PTF 4

theta_dul = 0.2082 + 0.02757 * tot_oc + 0.002666 * clay 2 - 1.73 * 1077 * sand_20_2000
3

Internal PTF constructed from APSRU database

PTF 5
theta_dul = 0.364 + 4.828 * 10"-5 * sand_20_2000 * clay_2 - 0.00296 * sand_20_ 2000
Internal PTF constructed from APSRU database

PTF_6
theta_fc10 = 0.5255 - 2.76 * 10"-5 * sand_20_2000 ~2 - 0.05195 * bd "2
Internal PTF constructed from database of Australian hydraulic properties
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PTF_7

theta_fc10 = 0.4795 - 3.873 * 10"-5 * sand_20 2000 ~2 - 6.701 * 10"-7 * clay 2 "2 *
sand_20 2000

Internal PTF constructed from database of Australian hydraulic properties

PTF_8

theta_cll = 0.1476 + 9.002 * 10"-5 * clay_2 "2 - 0.00115 * sand_20_2000 - 9.752 * 10"-7 *
clay 23

Internal PTF constructed from APSRU database

PTF_9
theta_cll = 0.6151 * theta_dul - 0.02192
Internal PTF constructed from APSRU database

PTF_10
theta_pwp = 0.1766 + 0.00255 * clay 2 - 0.001487 * sand_20 2000
Internal PTF constructed from database of Australian hydraulic properties

PTF 11
theta_pwp = (0.814 * theta_fc10 - 0.07996)
Internal PTF constructed from database of Australian hydraulic properties

PTF 12

theta_fc10 = (32.35 + 43.64 * tanh(0.5 * (5.34 - 0.02178 * clay 2 + 2.12 * tot_oc - 0.4192 *
ph_h20)) + 81.23 * tanh(0.5 * (-4.581 + 0.02389 * clay 2 + 0.06029 * tot_oc +
0.30392 * ph_h20)))/100

Internal PTF constructed from database of Australian hydraulic properties

PTF 13

theta_fc33 = 0.003320110612731 - 0.3396 * tanh(0.5 * (-0.9705 - 0.8529 * bd - 0.00827 *
clay 2 + 0.01994 * sand_20_2000)) + 0.1629 * tanh(0.5 * (3.71 - 3.19 * bd +
0.01205 * clay 2 + 0.01617 * sand_20_2000)) - 0.1272 * tanh(0.5 * (-3.94 - 0.5067
* bd + 0.02158 * clay 2 +0.04978 * sand_20_2000))

Internal PTF constructed from database of Australian hydraulic properties
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PTF_14

theta_pwp = -0.1554 - 0.7221 * tanh(0.5 * (-0.9705 - 0.8529 * bd - 0.00827 * clay 2 +
0.01994 * sand_20_2000)) + 0.1325 * tanh(0.5 * (3.71 - 3.19 * bd + 0.01205 *
clay 2 + 0.01617 * sand_20_2000)) + 0.1720 * tanh(0.5 * (-3.94 - 0.5067 * bd +
0.02158 * clay_2 + 0.04978 * sand_20_2000))

Internal PTF constructed from database of Australian hydraulic properties

PTF 15

smc_theta_r = (0.3697 * tanh(-0.0167 * clay 2 - 0.0259 * sand_20 2000 + 0.5587 * bd +
1.86) - 0.2543 * tanh(-0.0074 * clay_2 - 0.0061 * sand_20_2000 + 0.9869 * bd -
1.47) - 0.2099 * tanh(-0.0653 * clay_2 - 0.0063 * sand_20_2000 - 5.30 * bd + 9.40)
- 0.2032)"2

Internal PTF constructed from database of Australian hydraulic properties

PTF_16

smc_theta_s = 0.1958 * tanh(-0.0167 * clay 2 - 0.0259 * sand_20_ 2000 + 0.5587 * bd +
1.86) - 0.4692 * tanh(-0.0074 * clay 2 - 0.0061 * sand_20 2000 + 0.9869 * bhd -
1.47) + 0.0063 * tanh(-0.0653 * clay 2 - 0.0063 * sand_20_ 2000 - 5.30 * bd + 9.40)
+ 0.0495

Internal PTF constructed from database of Australian hydraulic properties

PTF_17

smc_alpha = exp(-2.07 * tanh(-0.0167 * clay 2 - 0.0259 * sand_20 2000 + 0.5587 * bd +
1.86) - 1.123 * tanh(-0.0074 * clay_2 - 0.0061 * sand_20_2000 + 0.9869 * bd -
1.47) - 0.3819 *tanh(-0.0653 * clay_2 - 0.0063 * sand_20_2000 - 5.30 * bd + 9.40) -
2.57)

Internal PTF constructed from database of Australian hydraulic properties

PTF_18

smc_n = exp((-1.33 * tanh((-0.0167 * clay_2 - 0.0259 * sand_20_2000) + 0.5587 * bd +
1.86) + 1.58 * tanh(((-0.0074 * clay 2 - 0.0061 * sand_20_2000) + 0.9869 * bd) -
1.47) + 0.2151 * tanh((-0.0653 * clay_2 - 0.0063 * sand_20_2000 - 5.30 * bd) +
9.40)) - 0.016) + 1

Internal PTF constructed from database of Australian hydraulic properties

PTF_19

linear_shrinkage = 8.23 + 18.49 * tanh(0.5 * (-0.8995 + 0.03462 * clay_2 - 0.00191 *
sand_20_2000))

Internal PTF constructed from the National Soil Collection Database (TERN)
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PTF_20
cole = 0.06392 - 0.03560 * tanh(0.5 * (5.54 - 0.1381 * clay_2 + 0.01538 * sand_20_2000))
Internal PTF constructed from the National Soil Collection Database (TERN)

PTF 22

k_sat = exp(2.41 - 8.12 * tanh(0.5 * (-3.96 + 2.86 * theta_fc10 + 1.90 * bd)) - 3.67 * tanh(0.5
* (-14.40 + 20.90 * theta_fc10 + 3.68 * bd)))

Internal PTF constructed from database of Australian hydraulic properties

PTF_35
om=1.72 *tot_oc

Nelson, D.W. and Sommers, L.E. 1982. “Total carbon, organic carbon and organic matter”.
In Methods of Soil Analysis, Part 2. (ed. A.L. Page) pp. 539-79. American Society of
Agronomy, Madison, WI.

PTF_36

bd = 100 /(om/0.223 + (100 - om) / (1.35128606477631 + 0.00451974677070142 *
sand_20 2000 + (sand_20 2000 - 44.652494600432) * ((sand_20_2000 -
44.652494600432) * -0.0000613723924995459) + 0.0596420803366252 *
log(mid_depth)))

Tranter, G., Minasny, B., McBratney, A. B., Murphy, B., McKenzie, N. J., Grundy, M.,
Brough, D. (2007). Building and testing conceptual and empirical models for
predicting soil bulk density. Soil Use and Management 23(4), 437-443.

PTF_37
mid_depth = (upper_depth + lower_depth)/2
Simple calculation

PTF_38
silt_ 2 20 =100 - sand_20_2000 - clay_2
Simple calculation

PTF_39

buffering_cap = if( mid_depth[1]<20){(0.955 * tot_oc + 0.011 * clay_2) * 1.2}else{(12.79 -
0.19 *clay 2-0.7 *tot_oc - 0.03 *silt 2 20+ 0.74 *silt_ 2 20 * tot_oc) * 0.06}

Noble, A., Cannon, M., Muller, D. (1997). Evidence of accelerated soil acidification under
Stylosanthes-dominated pastures. Soil Research 35(6), 1309-1322.



Appendix

PTF_40
awc = theta_fc10 - theta_pwp
Simple calculation

PTF_41

theta_sp = -2.659%-01 + 6.362e-02 * clay_2 - 1.883e-03 * clay_2 "2 + 1.914e-05 * clay_2
"3

Slavich, P., Petterson, G. (1993). Estimating the electrical conductivity of saturated paste
extracts from 1: 5 soil, water suspensions and texture. Soil Research 31(1), 73-81.

PTF_42
ece=ec_1 5*(2.46 + 3.03/ theta_sp)

Slavich, P., Petterson, G. (1993). Estimating the electrical conductivity of saturated paste
extracts from 1: 5 soil, water suspensions and texture. Soil Research 31(1), 73-81.

PTF_43
ph_cacl2 =-0.05+ 0.9 * ph_h20 + 0.14 * log(ec_1 5)

Minasny, B., McBratney, A., Brough, D., Jacquier, D. (2011). Models relating soil pH
measurements in  water and calcium chloride that incorporate electrolyte
concentration. European Journal of Soil Science 62(5), 728-732.

PTF_44

silt_2 50 = 2.26 * silt_2_20 + (5.55 * silt_2_20 + 1.513 * (silt_2_20)*2)/(0.9966 - 1.236 *
silt_ 220 - 1.349 * sand_20_2000)

Padarian, J., Minasny, B., McBratney, A. (2012). Using genetic programming to transform
from Australian to USDA/FAO soil particle-size classification system. Soil Research
50(6), 443-446.

PTF_45
sand_50_2000 =sand_20 2000 - (silt_2 50 - silt_2_20)
Simple calculation

PTF_101
smc_m=1-(1/smc_n)
Simple calculation



