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Summary

Spectroscopy and spectral imaging in combination with multivariate data anal-
ysis and machine learning techniques have proven to be an outstanding tool for
rapid analysis of different products. This may be utilized in various industries,
but especially rapid assessment of food products in food research and industry is
of importance in this thesis. The non-invasive spectroscopic imaging techniques
are able to measure individual food components simultaneously in situ in the
food matrix while pattern recognition techniques effectively are able to extract
the quantitative information from the vast data amounts collected. Underlying
qualitative features (latent structures) are extracted from multivariate spectral
data in order to quantify desired quality parameters properly. Specifically mul-
tispectral imaging which has been explored to a lesser extent than ordinary
spectroscopy, having the possibility to exploit the inherent heterogeneity that
exists in foodstuffs have been investigated here.
An extra feature obtained by combining spectroscopy, imaging and chemomet-
rics is exploratory analysis. This is central in food research, since novel hypothe-
ses about the food systems under observation may be generated using this in-
ductive analytical approach. For the food industry it is an additional advantage
that the fast, non-invasive, remote sensing nature of the spectroscopic imaging
methods allows on-line measurements. In this way spectroscopic imaging in
combination with advanced data analysis meets the high throughput needs for
quality control, process control and monitoring. In this Ph.D. project the possi-
bilities provided by spectroscopic imaging and chemometrics have been utilized
to improve the analysis and understanding of different food products. The work
is presented in seven papers and two additional technical reports which make
up the core of the thesis. Furthermore an introduction together with a linking
of the contributions is presented in this thesis.
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The papers puts an emphasis on the use of multispectral imaging in the baking
industry where especially the non-enzymatic browning appearance and features
related to this are highlighted. These are features such as colour, water content
and internal structure of bread. A paper presenting enzymatic browning in pre
stir fried and thawn vegetables is also presented showing that imaging tech-
niques such as the one investigated in this thesis is able to detect even subtle
colour changes. The possibility for quantifying early as well as late spoilage in
raw pork meat is investigated where use of the heterogenetic structure is utilized
to obtain good results on predicting sensory evaluations as well on laboratory
analysis.
Colour in other settings such as in the fishery industry is equally important,
and a paper describing detection of cartenoid pigment in trouts using spectral
images shows promising results.
Finally, two technical papers present possible ways of mapping multispectral
images to a visible colour space, as well as how an alternative multispectral
imaging system, making use of filters, may be used to design new more broad
ranged filters. Fewer filters will increase the speed of such systems. Methods
for solving such problems is to the knowledge of the authors rarely covered in
the literature.



Resumé

Spektroskopi og spektral billede analyse i kombination med multivariat data
analyse teknikker har vist sig at være enest̊aende redskaber til hurtig kvalitets
analyse af forskellige typer produkter. Dette bliver allerede udnyttet til en
vis grad i industrien men især vurdering af fødevareprodukter i fødevare in-
dustrien er af interesse i denne afhandling. Den ikke-invasive spektroskopiske
billede optagelses teknik er i stand til at m̊ale individuelle fødevare partikler
og komponenter simultant ved et samleb̊and, ved at udnytte effektive mønster
genendelses metoder til at ekstrahere den egentlige og nyttige information fra de
store mængder af data som de spektrale billedeoptagelser udgør. Dette sker ved
at finde underliggende latente strukturer i data som beskriver den information,
vedrørende bestemte kvalitets parametre, man er ude efter.
Multispektral billedeanalyse af fødevarer er allerede blevet undersøgt meget i
litteraturen, dog ikke i et lige s̊a stort omfang som andre hurtige non-invasive
metoder s̊asom f.eks. nær-infrarød og midt-infrarød spektroskopi. En stor fordel
ved spektrale billeder i forhold til spektroskopiske m̊alinger er den iboende
spatielle information der kan bruges til at identificere præcis de omr̊ader p̊a
prøven der er vigtige for en given kvalitets parameter.
En anden central egenskab der opn̊aes ved spektraskopi og spekrale billeder
sammen med avancerede dataanalyse teknikker er muligheden for via eksplo-
rativ fremgang at opstille nye hypoteser vedrørende fødevarer. Den ikke-invasive
stikprøve tagning er ligeledes i sig selv meget værdifuld for fødevare industrien
da det kan nedsætte risikoen for konterminering af fødevaren og tillader meget
hurtig vurdering af kvaliteten. P̊a denne måde kan spektroskopiske billeder i
kombination med mønstergenkendelse møde de høje produktions krav der sættes
i industrien for kvalitets kontrol, process kontrol og overv̊agning.
I denne afhandling er spektrale billeder og mønster genkendelse blevet brugt til
at undersøge og p̊a nogle punkter give forslag til at forbedre analyse og forst̊aelse
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af forskellige fødevareprodukter. Det centrale arbejde præsenteres i 7 forskellige
artikler (hvoraf 5 beskriver fødevarer og 2 beskriver andre tanker vedrørende
spektrale billeder i fødevare industrien) og 2 tekniske rapport som er vedlagt.
Ligeledes er en introduktion til emnet samt en sammenbinding af de udarbejd-
ede artiker og konklusion præsenteret i afhandlingen.
Artiklerne sætter primært fokus p̊a brugen af spektrale billeder i bageri in-
dustrien og lignende industrier der gør brug af varmebehandlende metoder
s̊asom risting eller ovnbagning. Der sættes fokus p̊a hvoledes spektrale billeder
kan bruges til at øge forst̊aelsen af de ikke-enzymatiske brunings processer der
foreg̊ar under varmebehandlingen og hvorledes disse kan bruges til at forbedre
overv̊agningen af s̊adanne processor. Overflade farve samt vandindhold og in-
terne strukturer i fødevaren er meget vigtige egenskaber der forklarer brunings
processen og derfor er disse undersøgt i forskellige eksperimenter og artikler. En
artikel beskrivende en enzymatisk bruning af forarbejdede og frosne grøntsager
der har ligget i køleskabet i en periode viser ligeledes hvordan multispektrale
billedemetoder kan bruges til at detektere s̊adanne brunings processer til trods
for det er meget svag bruning der foreg̊ar.
Andre kvalitets parametre der er blevet undersøgt er muligheden for at bruge
spektrale billeder til at kvantificere fordærvelsen i r̊at hakket svinekød, i tidlig
s̊avel som sen fase. I denne artikel demonstreres bl.a. hvordan den hetero-
gene vurderings egenskab der naturligt ligger i billeder kan bruges til at opn̊a
gode prædiktionsestimater af hvor fordærvet et givent stykke kød er. Til dette
eksperiment gøres brug af sensoriske m̊alinger s̊avel som laboratorie m̊alinger til
at relatere de spektrale billeder af kødet til et eventuelt fordærv.
Overflade farve er foruden at være vigtig i bageri industrien ogs̊a meget vigtig i
andre fødevare industrier s̊asom fiskeindustrien. P̊a samme m̊ade som m̊ainger
af overflade farve kan bruges til kvalitetskontrol af bagværk kan det ogs̊a bruges
til kvalitetskontrol af fisk. En artikel beskriver hvorledes pigmentet astaxanthin
kan kvantificeres i fiske filleter vha. multispektrale billeder.
Til sidst præsenteres to tekniske artikler der dels beskriver en alternativ metode
til at transformere multispektrale billeder til synlige farve rum der kan visualis-
eres. Dels beskriver de ogs̊a hvordan et billedeoptagelses system der gør brug
af filtre istedet for dioder som det vanlige kamera ellers gør, kan simplificeres
fra at bruge mange filtre til at bruge ganske f̊a uden at forringe prædiktions
egenskaben af fedt i kobe kød væsentligt.



Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in engineering.

The thesis deals with statistical learning and vision technology in relation to var-
ious food products. The main focus is on highlighting various ways on estimat-
ing a given quality parameter of a food product, based on a set of multispectral
images and chemical or sensoric measurements.

The thesis consists of a summary report and a collection of research papers
written during the period 2008–2011, and elsewhere published.

Lyngby, May 2011

Bjørn Skovlund Dissing
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Chapter 1

Introduction

1.1 Motivation and aims

Industrial food production is today a very big industry. Demands on ready
made convenience food as well as raw foods increases rapidly and there is a
great challenge in keeping up with the demand. Moreover, besides increasing
demands on sheer amounts, the consumer is becoming increasingly focused and
specific when it comes to quality of foodstuffs. To keep up with these demands
it is necessary to aid the food industry with objective quantitative quality in-
spection methods.
Different foodstuffs consist of discrete particles which during manufacture are
heat treated in continuous, open processes. Examples of such foodstuffs are the
continuous contact frying of finely chopped meat pieces or vegetables or oven
drying of cereals such as corn flakes, nuts or the like. In all cases the heat
treatment leads to partly or complete desiccation of the products with a signif-
icant colour change as a consequence. During the processing the foodstuff may
sustain physical damage by e.g. agglutination of meat due to coagulation or
mechanical damages of fragile products such as cereals. Over burning in heat
treated products may give rise to occurrence of black particles in the products.
A commonality for the above mentioned processes is the visual integrity of the
foodstuffs. A correct uniform colour distribution on the surface, proper size
distributions and absence of agglutinated or damaged products is crucial for the
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quality of the food product. The mentioned quality parameters are all visual
and are often assessed during the process visually by well trained expert human
operators. If the operator notices visible exceptions or anomalies, that person
will normally intervene in the process to correct it and thereby recreate the
desired visual quality in the concerned foodstuff.
This creates a strong dependence on human operators which has some disadvan-
tages such as late process intervention. Furthermore, manual process control is
labour intensive which induces fatigue and affects the performance of the oper-
ator. Operators contain a lot of expert knowledge obtained by experience. Such
knowledge is very difficult to pass on to others, who will have to make their
own experiences.. This creates bottleneck dependencies which also may be a
problem. The disadvantages usually lead to quality reduction of the foodstuff
which may lead to rejection and in the end loss of profit and thereby a less
optimal production line.
The visual judgment of the operator may be supported by operational systems
based on experience [1] or different types of online measurement equipment,
which in combination with suitable computational algorithms may facilitate an
automation. The development of such systems has been slower in the food indus-
try than in other industries, however systems using advanced statistical control
algorithms such as fuzzy logic, neural networks or similar types of techniques
[2, 3] does exist. Literature study indicates that the introduction of automated
process control in many food processes is hindered mainly by the measurement
and following data processing and less by the actual control [3].
The introduction of near infra red spectroscopy (NIR) for process surveillance
meant a breakthrough in controlling e.g. water and fat content of foodstuffs
[4, 5] and speeded up implementation of intelligent systems in the food indus-
try. NIR has a large potential for advanced classification tasks such as sorting
fresh, frozen and thawed fish [6].
In spite of NIRs great success in the food industry, it has a drawback of lacking
spatial information. This is where camera technology becomes interesting since
this has the possibilities of combining spectral and spatial information. A few
application examples using camera technology being used for quality inspection
of foodstuffs are control of feces on poultry carcasses and detection of defects
on apples [7, 8, 9].
The purpose of this project is to investigate the possibility of imitating and pos-
sibly improving the manual visual quality assessment of food products in the
baking and meat industry, where the process indicates that there might be a de-
mand for online inspection with high reliability of the product. Such processes
might benefit from automated process control based on visual inspection.
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1.2 Multi/Hyperspectral images

The electromagnetic spectrum (EMS) (Figure 1.1) consists of all possible fre-
quencies of electromagnetic radiation. When electromagnetic radiation interacts
with an object some frequencies are absorbed and some are reflected. The re-
flection depends on the chemistry of the surface of the object it interacts with.
The human eye is capable of sensing EM radiation and translate the recorded

Figure 1.1: The electromagnetic spectrum illustrated from 1 Ångstrom to
107km. The UV, visible, NIR and IR area are enhanced. These areas are
used for various spectroscopic applications.

radiation into colours and images in the brain. However, even though the EMS
consists of indefinitely many frequencies, the human eye is only able to absorb
radiation in the visible area located from 400 to 700 nm (Figure 1.1). There
are four types of photosensitive cells in the human eye. Three of them, called
the cones, have absorption properties in different parts of the EMS. The three
types of cones are called S, M and L or β, γ and ρ cones, and their spectral
sensitivities are seen in Figure 1.2. Basically the cones’ absorption properties
work as filters, filtering everything but a narrowbanded area of the EM radi-
ation. By combining the information obtained in the three cones, the human
brain is able to create a colour sensation. The β-cones are sensible in the blue
are, the γ-cones are sensitive in the green area, and the ρ-cones are sensitive in
the red area.
By mimicking this filter system and having photosensitive material to absorb
the EM radiation a camera is able to record images. The first camera appeared
in 1817 and the technology has evolved rapidly ever since. In 1951, the first
video tape recorder captured live images from television cameras by converting
the information into electrical impulses and saving the information onto mag-
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Figure 1.2: Sensitivity for the three types on cones in the human eye.

netic tape - the first commercial digital camera was made available in 1981.
The heart of the digital camera is the Charged Coupled Device (CCD) which
was invented in 1969 at AT&T Bell Labs and has evolved tremendously since.
The CCD is capable of absorbing photons in the visible area of the EMS de-
picted in Figure 1.1 and convert it to electrical impulses to be interpreted as
numerical values. The common CCD basically integrates all the incoming light
in the visible area giving rise to monochromatic images. To create color images
a set of filters with characteristics similar to those seen in Figure 1.2 a placed
in front of the CCD chip. By doing this, three image channels are recorded,
one for each filter, which when combined gives a single colour image. Thus,
by splitting up the incoming light in three areas using filters and combine the
output, colours may be recreated.
Since integration is an irreversible operation, it is impossible to recreate the
light spectra when first converted to colour coordinates. Information about the
shape of the true spectrum is however exactly what is needed to avoid problems
such as metameric failure. Metameric failure can, in short, be described as the
case where two objects match colorimetrically under one illumination, but dif-
fer under another [10]. For the amateur photographer this might not be a big
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issue, but when it comes to cameras in industrial settings where reproducibility
is one of the most important factors, this might be a problem. By increasing the
number of filters and thereby sampling the EM radiation more densely, more
information is obtained about the object emitting the light. With increased
sampling resolution follows an increased ability to distinguish different types of
materials and surface chemistry. This makes dense sampling very usable for a
large array of applications. However, its strength is also its weakness, since large
amounts of information about the EM radiation also creates large amounts of
data which needs to be stored and processed.
Luckily innovation happens concurrently in different fields, so while the detector
technology and imaging technology improves and creates ever larger datasets,
so does the computing technology. By now, both processing and storing ca-
pabilities in computers has made it possible for a larger audience to make use
of spectral imaging. Industries and groups which use and develops spectral
imaging today include among others; industries using satellite imaging, medical
industry, food industry and astronomers.
Spectral cameras today either use 1D or 2D sensor arrays and are usually fo-
cused on the visible or near infra red (NIR) area lying between 400 and 2500
nm. However some systems focus on ultra violet (UV) or infrared IR) instead
(Figure 1.1). Depending on where in the EM area it is desired to sample fre-
quencies, different types of detectors are available. For 1D array cameras a line
scan method is used where a common approach is the push broom method. In
a push broom sensor, a line of sensors arranged perpendicular to the scanning
direction is used. Either the sensor or the object moves, which as a consequence
results in a scanning and thereby recording of a surface.
An alternative approach which only uses a single detector element is the whisk
broom approach. Here, a mirror scans across the scanning track, reflecting light
into the detector element which collects data one pixel at a time. Whisk broom
scanners have the ability to stop the scan and focus the detector on one part of
the object, typically capturing greater detail in that area. However the moving
parts make this type of sensor expensive and more prone to wearing out. 2D
arrays are capable of acquiring a simultaneous snapshot of the incoming photons
and is thus a very fast approach.
As described earlier incoming light may be split into a set of measurements using
filters. A large amount of different types of filters exists such as acousto-optical
tunable filter [11] or liquid crystal tunable filter [12]. More comprehensible filter
wheel designs also exists[13, 14]. Obviously for all sensors a light source is nec-
essary to record any type of images. An alternative to filters is by focusing light
through an optical dispersing element such as a prism or a grating, splitting
the light into several narrow adjacent wavelengths bands. The intensity of each
band is then measured by a separate detector.

Independent of the filtering technique used, a light source is necessary. Depend-
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Figure 1.3: A multispectral image of minced pork meat. The image consists of
18 wavelengths scattered over the visual end a small part of the near infra red
spectrum (405 - 970 nm). On the sides of the cube spectral values are plotted
for the edge pixels. Furthermore the image has been sampled in three different
locations where the spectral values are seen to differ. The gray shaded areas
represents one standard deviation. The figure illustrates how each pixel in the
x,y domain is in fact a spectrum as indicated by λ

ing on the type of system, broad banded light sources such as broad daylight
are commonly used. Other light sources are tungsten filament which emit light
between 300 and 2500 nm, deuterium arc lamps (190-400 nm) and Xenon arc
lamps (160-2000 nm). [15]
An alternative approach is to use light emitting diodes (LED) as light sources
which have become increasingly cheaper and better. LEDs are able to emit
narrowbanded light, which eliminates the need of using filters or gratings. Such
systems are presented in [16, 17]. VideometerLab [17] makes use of this ap-
proach together with an integrating sphere coated with a matte paint to obtain
diffuse light. This ensures reproducible images with good dynamic range, low
scatter- and shadow effect. Typically VideometerLab has around 20 different
LEDs mounted which emits light in the visible and the first part of the near
infra red (NIR) area. The spatial resolution of VideometerLab is 1280x960 and
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Figure 1.4: Visualization of a multispectral image of a piece of raw pork meat
in a petri dish. The image consists of 18 channels from 405 - 970 nm. The
wavelength of the channels is printed in the corner of the corresponding tile.

the acquisition time for 20 channels is approximately 8 seconds. The system is
geometrically and radiometrically calibrated [18].

Commonly, any contiguous sampling of the EMS in several narrow bands is
called multispectral or hyperspectral. The number of bands produced by avail-
able sensors range from very few to several hundreds. There is however no
universally agreed upon minimum number of bands or bandwidth dimension
required for a dataset to be considered either multi or hyperspectral, although
hyperspectral images does contain more spectral bands than multi spectral im-
ages. A suggestion is that spectral images with more than 20 wavebands is
called hyperspectral and multispectral when below 20 [19].
Multispectral images are difficult to visualize in low dimensions, since each pixel
in the image represents a large amount of samples. One common approach for
visualization is the three dimensional multispectral data cube seen in Figure 1.3.
Thinking of the hyperspectral data in this way may have some deficiencies as
it might indicate that we assume that the data has similar characteristics in
all directions of the data cube, i.e., that correlations are similar in the spatial
and spectral directions. This is however not the case and usually the correla-
tion is very high across spectral bands. Figure 1.3 shows a multispectral image
acquired by VideometerLab in 18 different channels by minced pork meat. The
figure illustrates how each pixel is in fact a spectrum. Samples from different
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spatial locations in the image may have very different spectral appearance as
illustrated. Even within a small region of interest containing similar tissue, the
data is seen to vary as indicated by the gray shaded areas. An alternative vi-
sualization of a multispectral image of minced pork meat is seen in Figure 1.4
Page 9. Each Tile in the image represents a single wavelength recording. Natu-
rally such types of visualization for all channels is only possible for multispectral
images with relatively low spectral resolution such as VideometerLab images.
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1.3 Food technology and Process Analytical Tech-
nology

Some of the earliest online univariate systems are found in the petrochemical
industry where sensors such as pH meters, oxygen sensors and flow meters has
been used. These systems are in fact the cradle of modern Process Analytical
Technology (PAT).To completely describe PAT is beyond the scope of this the-
sis, but this chapter will provide the reader with conceptual knowledge about
the ideas behind PAT as well as introducing a possible practical PAT applica-
tion from the baking industry.
In 2004, the United States Food and Drug Administration (USFDA) motivated
a full integration of Process Analytical Chemistry (PAC) [20] in the pharma-
ceutical industry and termed it Process Analytical technology (PAT)[21].
PAC deals with process monitoring and control of key manifest parameters
which are employed to predict and ensure a certain end product quality during
the process - mainly chemical or physical analysis of materials in the process.
PAC was termed in the beginning of the 20th century and is therefore commonly
known in the industry by now. In spite however of the long existence of PAC it
has first found its way into common usage in production within the last couple
of decades. This is mainly due to the development of very strong computers,
fast and very responsive sensors as well as complex multivariate datamining.
PAT encompasses all aspects of a process and is in short: ’Analysis of the pro-
cess’ [22, 20]). Thus, PAT considers a process as a consecutive row of unit
operations from raw materials to final products and wastes. The concept of
PAT may be boiled down to the definition given by USFDA as of 2004: ”A
system for designing, analyzing, and controlling manufacturing through timely
measurements (i.e., during processing) of critical quality and performance at-
tributes of raw and in-process materials and processes with the goal of ensuring
final product quality.” In a project such as this thesis, PAT is explored as an
investigation of in-process materials. This means certain unit operations in a
larger processing chain is investigated and optimized.
Investigating unit operations often requires sampling from a process line. Such
sampling when performed in real time requires advanced technology such as vi-
brational or scattering spectroscopy, chromatography, mass spectrometry, acous-
tics, chemical imaging or light-induced fluorescence light scattering. Conceptu-
ally four different ways of sampling the process line may be set up, as seen in
Figure 1.6 Page 13. Off-line sampling is the process of obtaining samples from
the process line of interest and transporting them to a central analytical labora-
tory. Often the results of these analyzes yield spurious information or does not
give all of the information about the process that they could have, as the sample
properties often changes during transportation and handling - in fact it might
even when removed from the actual process line. At-line sampling still requires
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Figure 1.5: Conceptual diagram showing various ways to sample the process
line

manual sampling, however instead of transporting samples to a central labora-
tory, samples may be analyzed in production area. Improving further, methods
for automatic sampling exists where a part of the process line may be diverted
for sampling and testing. Finally, the superior sampling strategy is performed
in-line, which makes it possible to sample major parts of the products on the
conveyor belt real time.
Even though offline and online/inline equipment in essence is the same equip-
ment, there are some differences. Equipment in a laboratory is in a temperature-
controlled safe environment operated by trained operators. Online/inline equip-
ment may be outdoors or in areas with a lot of uncontrollable factors such as
temperature, humidity, pressure etc. affecting the setup. The biggest difference
is that in the process-line, the instrument is often running without an operator.
There is no personal to check if the proper reagents are present, if the sample
is clean, and in the physical state the instrument is expecting etc. In order for
a monitoring system to run unsupervised a sufficient amount of system intel-
ligence is necessary. An unsupervised system in production should be able to
recalibrate itself, find wrong samples and identify process drifts among other
things.
Building such intelligence is often handled using pattern recognition and ma-
chine learning methods such as those described in Section 2 Page 17.
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1.3.1 PAT in the baking industry

In modern baking industry there is an increased interest in automation of pro-
cesses, while maximizing the yield at constant quality. [23] described an at-line
system for monitoring the leavening process in industrial bread making using
NIR spectroscopy. This proof of concept system shows how PAT may be used
in the baking industry in a batch based production.
Similarly, a proof of concept system will be described here for the heating pro-
cessing of butter cookies. Understanding and controlling the non-enzymatic
browning processes during heat treatment of baking products is critical to the
yield quality of the final baking product. Non-enzymatic browning (described
further in Section 3 Page 31) governs the surface colour of heat treated products
which is of great importance for consumer acceptance. A way to monitor the
browning process is by using digital imaging, either tri-colorimetric or multispec-
tral. A multispectral monitoring system may be set up as shown in Figure 1.6
Page 13.

Figure 1.6: Schematic of possible multispectral imaging system setup in a cookie
production

A conveyor belt is transporting butter cookies into an oven where they are being
heat treated. Upon exit, a multispectral camera such as VideometerLab records
images of the cookies and sends the data to a central CPU. The CPU extracts a
set of features from the images and stores them together with previous record-
ings. In this way a time line of features is created which is used to create a
set of control parameters for the oven. Furthermore the process state may be
displayed on a monitor as shown.
Studies have shown that the Maillard reactions together with caramelization,
types of non-enzymatic browning which mainly affect baking products, are very
dependent on temperature and water activity [24]. By being able to predict the
surface colour, a better control of the product quality is possible. Experimental
tests showed that browning kinetics due to Maillard is characterized by a lag
phase (detected at 150◦C), followed by an exponential phase and an asymptotic
phase (detected at 190◦C) as described in [24]. The same study described a
kinetic model for surface browning by modeling the change in surface colour
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(∆E =
√
L∗2 + a∗2 + b∗2) of bread crust as a function of time at 200◦C and

250◦C. They concluded that their model was usable at different temperatures
up to a ∆E around 30. A more recent study on kinetic browning in biscuits
[25] builds a model based on surface colour as well, however based on the RGB
colour space. Both kinetic systems estimate parameters from tri chromatic im-
ages, which are known to describe the browning process well.
A typical browning progression is shown in Figure 1.7 Page 14 based on tri-
chromatic measurements samples from Paper C Page 99. L∗ values from 3
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Figure 1.7: Tri-chromatic measurements on butter cookies heat treated at
180◦C. Each cookie was measured at three different locations. The L∗ compo-
nent which is best correlated with the browning is shown here.

surface samples on each of 30 butter cookies baked at 180◦C are shown as a
function of time. The maximum colour change in the experiment is ∆E = 41.2.
A clear decrease in lightness is seen as time in the oven increases, which could
be quantified directly. The processline in Figure 1.6 Page 13 shows a multi-
spectral camera which has some clear advantages over colorimetric imaging as
also outlined in Paper C Page 99. Therefore the focus on this application is on
multispectral imaging.
Multispectral recordings of the same cookies are shown in Figure C.1 Page 105,
coloured according to time spent in the oven. I similar clear trend is here seen
as a difference in scaling of the spectra. If these spectra are subjected to a
principal component analysis, the browning may be followed accurately in the
first principal component as seen in Figure 1.8 Page 15 and correlation between
L∗ values and PC scores is calculated to be 0.9903. To predict these browning
scores a second order model is fitted with an R2 = 0.9856. The papers presented
in this thesis elaborate approaches as the one described above which examplifies
them as PAT applications.
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Figure 1.8: (a) shows mean spectra for cookies used in Paper C Page 99. (b)
shows PC1 scores from a PCA fitted on the spectra shown in (a). A second
order model fits the scores with an R2 = 0.986.
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Chapter 2

Computational methods

This chapter gives an introduction to the mathematical background for this
thesis. The foundation of the type of data present in this thesis and different
methods to handle such data are described.

2.1 Symbols

row Rows in a multispectral image
col Columns in a multispectral image
q Number of recorded wavebands in a multispectral image
M A set of multispectral images
N Number of samples
p Number of dimensions in feature space
X Feature space,covariate matrix,data matrix
Xc Centered feature space
y Reference values
β Coefficients in model
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2.2 General experimental data source

In a typical larger study/application of multispectral images of foodstuff where
the goal is to be able to model a specific quality parameter of this foodstuff a
careful experiment needs to be planned. Briefly, the goal is to vary the parameter
of interest so that it covers as large a part of its variation space as possible
which in terms have an effect on the foodstuff of interest. At sensible points in
this variation space, multispectral images of the foodstuff should be acquired.
Designing such experiments properly is a large area [26] and quite central for a
topic such as multispectral imaging and PAT (Section 1.3 Page 11) in general.
Sampling a quality parameter and corresponding multispectral images of the
foodstuff at N points of the reference quality parameter leaves a dataset with
N reference values (y) and a set of N multispectral images (M), as seen in
Figure 2.1 Page 18. Since each multispectral image consists of (row × col) pixels,

Figure 2.1: A typical calibration set in analysis of foodstuff using spectral imag-
ing

where each pixel is a spectrum with q recorded wavelength bands (Section 1.2
Page 5), there is essentially row × col observations each of dimensionality q.
Thus, essentially for a given multispectral image experiment there is (row ×
col × N) image observations but only N reference observations. In order to use
conventional machine learning methods to relate the independent variable Y to
the set of acquired multispectral images M , a feature space X of dimensionality
p needs to be created from M by some transformation, or more formally stated
in Equation 2.1 Page 18.

X = T (M) (2.1)

T (·) is a transformation that transforms M to X. T (·) internally consists of a
chain of operations on each member of M which are specific for a given problem.
Some general approaches to how T (·) may be created is discussed in this section
together with ways of relating X to Y .

Having a multispectral image dataset requires a large toolbox of methods to
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analyze properly. The foundation of modeling such vast data amounts is laid
out by machine learning and statistics which seeks to describe methods for ana-
lyzing, testing, assessing and understanding all kinds of different types of data.
A good introduction and coverage of the field is found in [27].
As described, the initial step of analyzing multispectral images is to determine
T (·) (Equation 2.1 Page 18). This transformation may be undertaken in many
ways of varying complexity, described in Section 2.3 Page 19. The output of
T (·) is a featurespace of dimensionality p with N samples.
Depending on the type of reference values in y, being e.g. grouping or ranking
labels from sensory evaluation, measurements from a laboratory or some other
parameter such as time, a relevant method needs to be chosen for analysis. The
most relevant methods used in this paper to map the featurespace to refer-
ence values or similar are described in the following with pointers to alternative
methods.

2.3 Region of interest

A part of the operation chain T (·) which is often necessary to perform is creating
a region of interest (ROI). A ROI is basically a mask indicating the area or areas
in the multispectral image which contain only spectra of interest regarding the
reference value.
The amount of ways to create a ROI is tremendous. Some sort of segmentation
algorithm is necessary to create a ROI and several different scientific communi-
ties exists specializing in different types of segmentation algorithms. Usually a
set of operations are required before an image is segmented satisfactory. Nat-
urally the steps involved depends on the type of foodstuff recorded, however a
very abstract list of approaches to segment an image is given here.

1. Classification

2. Region-based / Morphological

3. Edge based

4. Partial Differential Equation

Classification based methods is basically anything from the machine learning
community, which regards pixels as observations from a larger probability dis-
tribution and classifies them solely based on their spectral shapes and not on
their spatial location in the image. Examples of such methods are support vec-
tor machines [27], neural networks [27], clustering methods [27] and thresholding
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(adapative) [28].
Edge based methods are those which are usually based on an edge map of the
image. Edge maps may be created by calculating finite differences between pix-
els, or by filtering the images with edge-enhanced filters such laplacian filters
[28]. Examples of methods using such edge maps are border tracing [28], edge
relaxation [28], Dynamic Programming [29] or the Hough transform [28].
Region based methods aim to distinguish and label different pixels in concor-
dance with their surrounding pixels (their regions). Examples of segmentation
methods of this type includes besides the watershed [28] also markov random
fields [30] and morphological methods such as tophat and h-domes [31].
Partial differential equation (PDE) based methods or levelset based methods
[32] are advanced methods which creates an initial contour which it evolves
based on a set of defined guidance forces which e.g. pulls the contour in di-
rections low image gradients and stops it from going towards directions with
high image gradients. PDE methods are implicit and the explicit active contour
models (snakes) [32] and the Grenander template model [33].
Basically the distinction of segmentation methods into groups is quite hard since
a segmentation is usually a collection of operations where methods from differ-
ent of the above defined groups are used. An example of this might be the
watershedding method [28] which would be grouped under the region growing
methods even though it uses edge information in the image.
The majority of the above mentioned techniques are rarely found in literature
concerning multispectral images in the food industry. The reason for this is
tradition as well as the fact that these methods may be difficult to implement
for people without a background in applied mathematics or computer science.
Often encountered ways of creating ROIs in multispectral images is by use of
orthogonal methods followed by a labeling step using an adaptive threshold-
ing technique such as otsu’s method [34]. Some orthogonal methods includes
principal component analysis (PCA Section 2.4 Page 23), canonical discrimi-
nant analysis (CDA Section 2.5 Page 24) [27], maximum autocorrelation factors
(MAF Section 2.6 Page 24) and minimum noise fraction (MNF) [35]. The the-
ory of PCA, CDA and MAF will be presented briefly later in this section.
An example of creating a ROI for the meat lump seen in Figure 1.4 using MAF
and PCA to decompose the multispectral image followed by an adaptive thresh-
old (Otsu’s method) follows. Decomposition components found using MAF and
PCA are seen in Figure 2.2(b) Page 21. The components for the two transfor-
mations are ordered in a descending order according to directions of maximum
variance (for PCA) and directions of maximum spatial autocorrelation structure
(for MFA). For the present example the MAF is able to project the data in a
fashion with creates a large contrast between meet/fat and background, being
petri dish etc. The PCA in comparison found a similar component however
with lower contrast. By using the first MAF component and subdue it to otsu’s
algorithm the mask seen in Figure 2.3 Page 22. The presented example needed
a transformation of 2 steps in order to segment the background of the multi-
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Figure 2.2: Examples of PCA (a) and MAF (b) decompositions on the multi-
spectral image seen in Figure 1.4 Page 9. The tiles in each image represents
latent components extracted from the multispectral image. Only the first nine
components are shown, the remaining show no signal.
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Figure 2.3: The result of using otsu’s method on the first MAF component
(Figure 2.2(b) Page 21). The graytones show the component intensities and the
red contour indicates the found mask.

spectral image containing minced pork meat. More complex examples might
need chains or pipelines of several steps to create masks of arbitrary complexity.



2.4 Principal Component Analysis 23

2.4 Principal Component Analysis

In high-dimensional data problems such as multispectral images it may be diffi-
cult to immediately understand and visualize how the data behaves. Essentially
PCA models the original multivariate data using a limited number of latent
variables (principal components). First the original data matrix X is centered
by subtracting the mean spectrum x from each sample spectrum, where after
the centered data matrix, Xc, is decomposed to a score matrix T and a load-
ing matrix P by consecutive orthogonal subtraction of the largest variation in
data until the variation left is unsystematic. The residuals are collected in ε
(Equation 2.2 Page 23).

Xc = TPT + ε (2.2)

To compute the principal components an eigendecomposition of the R-mode
scatter matrix (XT

c Xc) is performed and sorted according to magnitude of the
eigenvalues. The eigenvectors are the orthogonal loadings P and the score ma-
trix is calculated by projecting the centered data matrix using the loading matrix
T = XcP, thus creating an space where the variables are uncorrelated. Another
way of finding the principal modes of variation is by using a Singular Value De-
composition (SVD) [27]. The SVD is very general in the sense that it can be
applied to any m×n matrix as opposed to the eigenvalue decomposition stated
above. The SVD factorizes the covariate-matrix X, as shown in Equation 2.3
Page 23,

UDVT = Xc (2.3)

into U and V, two orthonormal matrices of size n× n and p× p containing the
principal components of Xc, and D which is a diagonal matrix, with singular
values on the diagonal d1 ≥ d2 ≥ . . . ≥ dp ≥ 0. The principal components

contained in V are equal to those found in the eigenvalue-decomposition of Σ̂
as seen in Equation 2.4 Page 23.
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(2.4)

where the relationship between the empirical, centered covariance matrix and
the factorized matrices are shown. Furthermore the singular values of 1

nD corre-

sponds to the square-roots of the first min(n, p) eigenvalues of Σ̂. Usually when
working with spectroscopic data of high spectral resolution it is advantageous
to find scores and loadings using SVD.
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2.5 Canonical discriminant analysis

The canonical discriminant analysis (CDA)[27], also known as fishers discrim-
inant analysis (FDA) is a orthogonal projection technique used in statistical
analysis used for group separation. Given N observations, p variables and k
groups, CDA calculates a set of k−1 linear functions from the p given variables,
known as canonical discriminant function (CDF) or corresponding to loadings.
Quadratic discriminant functions may also be used. A projection of the original
observations onto the calculated CDF, yields a new set of observations, equiva-
lent to score values. The discriminating functions are calculated by maximizing
the separation of the between group scatter (ΣB , Equation 2.5 Page 24), while
minimizing the within group scatter (Σw, Equation 2.5 Page 24).

ΣB =

k∑

j=1

(µj − µ)(µj − µ)T

ΣW =

k∑

j=1

nj∑

i=1

(Xij − µj)(Xij − µj)T
(2.5)

where µj is the mean of the j’th group. The optimal seperation is found by
maximizing Equation 2.6 Page 24

R(p) =
pTΣBp

pTΣWp
(2.6)

The CDA is the underlying calculation used to check for separation in a Mul-
tivariate Analysis of Variance (MANOVA) where Wilk’s Λ is used to check the
significance of the group separation. CDA was used in Paper A Page 59 and
Paper C Page 99 to create a score for the degree of browning in baking products.

2.6 Maximum autocorrelation factors

Proposed originally by [36] as an alternative decomposition technique to PCA,
the maximum autocorrelation factors (MAF) creates a set of orthogonal vec-
tors similar to PCA but instead of maximizing the variance, the MAF seeks to
minimize the autocorrelation defined by the relationship between neighboring
pixels. By incorporating this spatial structure into the transformation, it is op-
timized to highlight spatially connected areas of with similar spectral shapes.
This is often very handy in multispectral imaging. A more general and similar
transformation is the maximum noise fractions [35, 37] which searches for la-
tent components by maximizing the signal-to-noise ratio. The MNF is a quite
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general procedure and the transform is equivalent to a transformation of the
data to a coordinate system in which the noise covariance matrix is the identity
matrix, followed by a principal components transformation. The criterion being
maximized in the MNF is

R(p) =
pTΣ∆p

pTΣp
(2.7)

where Σ is the covariance structure of the signal also used in PCA and Σ∆ is
the covariance structure of the estimated noise and p is the loading vector.
Thus, in order to maximize Equation 2.6 Page 24 the noise covariance needs
to be estimated, which in MAF is done by calculating the covariance structure
of the differences of neighboring pixels. Practically this is done by shifting the
image in two directions and substract the result from the original image: x∆ =
x(r)− [x(r+∆h)+x(r+∆v)]/2. The covariance structure of the autocorrelation
may now be calculated from the difference values. Further details are found in
[38] where kernel versions of MAF and MNF also are explained for non-linear
cases.

2.7 Partial least square regression

The partial least square method (PLS) [27] is a common chemometric tool com-
monly used in e.g. quantitative spectroscopy which uses principles similar to
PCA (Section 2.4 Page 23) to find latent structures in X. PLS has some simi-
larities to the regression version of PCA, principal component regression (PCR)
[27]. PLS is like MLR searching for an optimal mapping vector that transforms
X to Y

y = Xβpls + ε (2.8)

PLS decomposes X and v into score and loading matrices similar to PCA (Sec-
tion 2.4 Page 23).

X = TW + ε

Y = UQ + ε
(2.9)

T and U contain the score values of X to Y while W and Q contain the
loadings. Using an algorithm such as the SIMPLS or NIPALS algorithm [39]
the decomposed variables are used to find βpls.
In PLS the decomposition of X during regression is guided by the variation
in Y. This means the co-variation between X and Y is maximized, so that
the variation in X directly correlating with Y is extracted. In the above Y is
written as a matrix in the general sense, however it often only consist of a vector
y.
The PLS model is dependent on how many latent components it should retain



26 Computational methods

which should be selected by the user according to the guidelines specified in
Section 2.9 Page 28.
The reason for PCR and PLS’s popularity in chemometrics is their ability to
intuitively handle datasets having high collinearity between the independent
variables as well as having much more variables than observations. When the
reference variable is binary or nominal such as those from sensory panels, the
Partial least squares Discriminant Analysis (PLS-DA) is an often preferred tool
[40], however this method has not been used in this thesis.

2.8 Least squares and penalization

The multiple least squares regression (MLR) is a classic tool for relating X to y.
The basic idea is to best possible fit a hyperplane in X such that the distances
between the fitted hyperplane and the real values in y is as small as possible in
a euclidean sense.
Formally the MLR is a hyperplane and may be written as in Equation 2.10
Page 26, assuming that y is centered around 0.

y = Xβ + ε (2.10)

The hyperplane may be found directly by setting up the residual sum of squares
(RSS) and setting the gradient to zero. This is possible since RSS is a convex
function with a single minimum Equation 2.11 Page 26.

RSS(β) =
∑

(Xβ − y)
2

(2.11)

The result of setting the gradient of RSS to zero and solving is the well known
normal equations which yields estimation values (Equation 2.12 Page 26).

β̂ = (XTX)−1XTy (2.12)

The MLR is a simple and powerful approach and often yields good results.
However, due to the inversion of XTX MLR has problems with highly correlated
and underdetermined systems such as spectral systems which usually have more
variables than samples. When this is the case X will be singular and XTX
thereby difficult to invert.
Singularity problems in MLR may be overcome be altering RSS. This is exactly
what Ridge Regression (RR) [27] does. By imposing a constraint on RSS to
decrease its solution space numerical instability is enforced and a solution may
be found even though XTX is singular.

RSS(β) =
∑

(Xβ − y)
2
, s.t. ||β||22 ≤ s (2.13)
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The quadratic constraint controlled by the complexity parameter s will have the
effect that parameters are shrunk towards 0 and each other. Since the problem
is a constrained quadratic optimization problem it may be recast into lagrangian
form.

β = (XTX + λI)−1XTy (2.14)

This problem is solved by fixing λ at different values and selecting the one which
performs best (see Section 2.9 Page 28).
An alternative way of regularizing MLR is seen in Equation 2.15 Page 27 which
is also known as the lasso [41] which imposes a piecewise linear constraint.

RSS(β) =
∑

(Xβ − y)
2
, s.t. |β| ≤ s (2.15)

The shape of the constraint ensures that “questionable” variables are forced
to 0, which thereby gives a sparse solution set or parsimonious model. This
means that only the variables significant for the model are left in the model.
Due to the non differentiable constraint this regularization has been a large
research area for some years. Different solutions for efficient implementations
on this optimization problem have been formulated and one popular methods
of solving this problem is by using the Least Angle Regression algorithm [42].
Similar to RR Lasso is optimized by calculating the solution for a series of values
for s and choose the value which performs best (Section 2.9 Page 28)
A similar regularized method which offers sparse solutions is the elastic net (EN)
[43] method Equation 2.16 Page 27. EN is a combination of Lasso and RR which
besides offering sparse solutions also groups highly correlated variables.

RSS(β) =
∑

(Xβ − y)
2
, s.t. |β| ≤ s1 ||β||22 ≤ s2 (2.16)

Optimizing EN is slightly more tricky than RR and Lasso since two parameters
are involved, however by fixing the ridge constraint s2 and solving for the en-
tire regularization path of s1 (That is until the least squares estimate has been
reached or a defined maximum of s1) a value may for s1 may be selected. This
is repeated for a series of s2 values, thus the parameters needs to be selected on
a 2-dimensional surface.
The sparse property of Lasso and EN is a consequence of the piecewise lin-
ear constraint. Sparse models is a source for variable selection which may be
very strong in some scenarios. In settings such as spectroscopy where there
are hundreds of variables it may improve the model if “noise” variables are re-
move from the set, leaving only the important variables. A common exercise
for people doing chemometrics is to assess loadings of their model fit to under-
stand which areas are important for the experiment. By using sparse methods
it might become very clear which variables hold the necessary information, as
well as ordering the importance of variables. This might be important since not
only performance but also model interpretation is important.
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Some alternative ways of creating parsimonious models includes forward step-
wise selection [27], significance testing by jack-knife estimation of parameter
uncertainty [44], interval PLS (iPLS) [45] and genetic algorithms [46]. The
elastic net procedure was used in Paper G Page 171.

2.9 Parameter tuning and model assessment

When regression methods such as PLR, PLS, RR, Lasso or EN are used it is
necessary to select one or more complexity parameters. Selecting complexity
parameters is a challenging task and there are no clear rules for getting the pa-
rameter “correct”. The problem evolves around the bias/variance trade-off [27].
The bias variance tradeoff describes how the variance of the error will increase
when the model complexity increases while for very simple models the variance
will by low. On the other hand when the model gets complex the bias will
decrease while being larger for more simple models. The concept is depicted in
Figure 2.4 Page 28. As an example the RR has a complexity parameter s which

Figure 2.4: Theoretical bias/variance trade-off and effect on training and test
error.

increase the solution space for larger values and decreases the solution space for
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smaller values. This means for larger values of s, the bias decreases while the
error variance increases according to Figure 2.4 Page 28. The same is the case
for the Lasso.
Figure 2.4 Page 28 furthermore shows how the training error decreases for larger
complexity while the test error requires a balanced selection for the optimal
model - overfitting the training set. This is a problem when working with small
datasets, which often is the case when working with foodstuffs. Creating ref-
erence values for models is expensive and difficult. This means data often is
scarce and model evaluation is a challenge. To select complexity parameters
properly to also maintain a correct generalization ability different methods ex-
ists. Two popular methods are the cross validation [27] and the bootstrapping
[47] methods. These are both techniques which creates smaller samples from a
larger dataset which is used for training and testing. The largest difference is
that the cross validation is sampling without resubstitution while bootstrapping
is with resubstitution.
The idea behind cross validation is very intuitive. The full set of data is split
up into K folds. All folds are looped and each fold is in turn held out while the
model is fitted to the remaining folds of data. A test error is then calculated
for each left out fold and collected in the end, representing the test or general-
ization error. The entire procedure is necessary to repeat for each complexity
parameter value in order to create a curve similar to the test error curve in
Figure 2.4 Page 28. Needless to say the entire procedure grows for larger values
of K, where the extreme case is the leave one out cross validation which may
be very computationally expensive. The collective error term is calculated as
Equation 2.17 Page 29. When doing cross validation there is a trade-off between
the number of samples left out and the variance and bias of the estimated per-
formance. Increasing the number of folds decreases the variance in the predicted
performance, but at the same time more repetitions of any model fit used in the
cross-validation implicitly means higher computational load. Ten-fold cross-
validation is usually recommended as a reasonable compromise between both
computational cost and the bias/variance trade-off.

RMSECV =

√
||Ŷ − Y ||22

N
(2.17)

Many authors in the literature report RMSECV directly as the result which
may be a bit misguiding. Even in starved data settings the cross validation
should only be used to select the complexity parameter. Optimally an indepen-
dent test set should be used to assess the model, but if there really is not enough
data to create a test set alternatives such as the two deep cross validation [48]
or bootstrapping should be used to assess the model and reported, although it
will never be able to substitute having proper amounts of data.
The bootstrapping method suggested by Bradley Efron [49] also poses a very
simple and intuitive approach. The dataset is sampled K times with resubsti-
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tution to create K new datasets. The model is then trained on each of the K
datasets and tested on the original dataset. The bootstrap mimics the cross
validation a since when testing on the original dataset, only samples not con-
tained in the sample set should be predicted. Finally, all predictions should be
collected. In this thesis bootstrapping have been used in some cases to estimate
the accuracy on statistical values.



Chapter 3

Experimental work

Three areas related to food science has been investigated. Browning of food-
stuff, mainly non-enzymatic browning of bakery products and meat but also
enzymatic browning of vegetables. Cartenoid pigment in salmonids as well as
spoilage detection in raw pork meat. All datasets consists of multispectral
images recorded with VideometerLab together with one or more independent
variables consisting of either sensory labels, chemical measurements or similar.
Quality parameters depends on the product, however quality parameters recurs
in different contexts/products e.g. it is important to able to predict the water
content in both cookies baking in the oven as well as meat being fried in order
to infer conclusions on the browning . An overall list of parameters which have
been investigated and quantified in this thesis enumerates general surface color,
water content, bacterial assessment and fat content. For a better insight in
the types of data, a pseudo RGB representation of a random sample from each
dataset analyzed in this thesis is seen in Figure 3.1 Page 32.
For each image a region has been extracted and the mean spectrum of this region
has been plotted together with one standard deviation of the pixel values in the
region, shown as a shaded area. The eight datasets from which the images have
been extracted, are also listed in Table 3.1 Page 33 together with information
about the reference data and sample sizes.
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Figure 3.1: Pseudo RGB images of all types of foodstuffs analyzed in this thesis.
From upper left; oat flakes, Bread, butter cookie, minced fried beef, minced raw
pork, trout, carrots, celariac. In the right side plots shows the mean spectrum
of the area indicated with red circles in the rgb images. The shaded area shows
one standard deviation for the same area. Note that these spectra cannot be di-
rectly compared since different camera setup was used for the different datasets.
However, a rough comparison gives an indication of the difference between the
spectral shapes.

3.1 (Non-) Enzymatic Browning

3.1.1 Bakery products

The baking industry is facing the challenge of producing products with uniform
appearance, physical texture, taste and aroma. These are all quality parame-
ters the consumer evaluates either consciously or unconsciously before or under
consumption. Quite naturally the first parameters the consumers evaluate is
the appearance and the aroma. The appearance of a food product consists of
the colour and the texture product. Consumers automatically associates a lot
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# Foodstuff # samples Reference data App.
1 Oat flakes 90x3 & 11 Water content, time A Page 59

temperature, sensor panel
2 Bread 31x2 Time B Page 81
3 Butter cookies 35x3 Water content, time C Page 99

temperature, sensor panel
4 Fried minced 12x3 Water content D Page 119

beef meat
5 Raw minced 167 Microbial count E Page 127

pork meat time, temperature
storage atmosphere
sensor panel

6 Trout Fillet 59 Astaxanthin content F Page 151
Fat content

7 Carrot pieces 6x2+5x2 Time G Page 171
8 Celariac pieces 6x2+5x2 Time G Page 171

Table 3.1: Foodstuffs analyzed using VideometerLab in this thesis.

of quality parameters with the appearance such as flavour, nutrition, health
and general level of satisfaction. This means the impact of appearance of the
baking product on the turnover is significant, and thus a factor that should be
optimized.
It turns out that the production parameters related to color change in bak-
ing products often are related to the shape and texture as well. Basically the
appearance of a baking product may be controlled by “dough” and “baking”
parameters. The dough parameters controlling the appearance parameters such
as ingredients, amounts of ingredients, mixing time, fermentation time, stor-
age time and environment before baking. External parameters affecting the
appearance are such parameters as baking time, baking temperature and oven
ventilation.
Visual appearance of baking products is very dependent on the so called brown-
ing process. The browning process of baking products describes the transfor-
mation from dough to finished product and occurs during heat treatment of the
product such as baking in the oven. The browning process undergoing during
heat treatment is called non-enzymatic browning and consists of basically three
(depending on the “dough” and “baking” parameters) different processes; The
Maillard reaction [50], the caramalization [50] and pyrolysis [50]. The reactions
are highly dependent on the pH value of the environment, but generally for bak-
ing products the pH value is ≤ 7 which is also the scenario that will be assumed
for the remainder of the text.
Pyrolysis of a food product is caused by heat alone and is a total scorching
which happens at very high temperatures and involves the total loss of water
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from sugar molecules and the breaking of carbon-carbon bonds [50]. Popularly,
pyrolysis is used to remove water from coffee beans without baking them and
create unwanted aroma and flavor compounds created by Maillard or carameliza-
tion reactions. Pyrolysis leaves the food product as a charred remnant which
may lead to a contamination problems in industrial ovens. Pyrolised food rem-
nants may form little particles and contaminate “good” products which lowers
the quality of the visual appearance on those products. Paper A Page 59 shows
briefly how pyrolized particles attached to the surface of oat flakes may be de-
tected.
The process of caramalization is a complex process which is still not fully un-
derstood. The process occurs when reducing sugars such as sucrose, glucose
or fructose are heated to and beyond a certain (depending on the sugar type)
temperature. The reaction produces flavour and pigment molecules in reaction
steps depending on the amount of time the reducing sugar is heated. These
molecules are in order isosacchrosan, caramelan, caramelen and caramelin or
humin [51]. If carmelization is allowed to proceed to far the taste of the mix-
ture will become less sweet as the original sugar is destroyed. Eventually the
flavor will turn bitter. Caramelization often affects the surface colour of baking
products to some extent.
The Maillard reaction is like caramelization a complex reaction which only is
understood to a certain degree. Since Maillard typically is the browning process
which is first triggered, typically when the water activity decreases to 0.4-0.7
and temperature surpasses 105 − 120◦C [54], this reaction is responsible for a
major part of the browning in baking products and have therefore been given a
lot of attention regarding baking products. For the Maillard reaction to trigger
basic components such as amino acids, reduced sugars, heat and low water ac-
tivity is necessary. These are all abundant in baking products which means the
Maillard reaction as mentioned before governs a large part of the browning of
baking products. The reaction is responsible for both highly appreciated as well
as unwanted effects. The reaction is progressing in three steps being the initial,
intermediate and final step. In each step very complex reactions are happening
which is beyond the scope of this thesis to describe and the reader is referred to
works such as [50, 52, 53] for further details. The actual coloration is starting
in the second and third stage and is mainly affected by the melanoidin which
is responsible for both flavors and color and is the actual end product of the
Maillard reaction. Bi products include antioxidants, loss of C-vitamin activity,
hydroxymethylfurfural (HMF) and acrylamide where the two latter are toxic
compounds which should be kept as low as possible. A quantification of the
browning has as described in Paper C Page 99 been studied using light reflec-
tion techniques such as cameras and Minolta colorimeters with good results.
Besides understanding the browning of baking products it is equally important
to account for subjective consumer demands. Quality is a subjective consumer
demand which makes it difficult to quantify. Sensory panels is a common way
to quantify subjective measures such as visual appearance and is often used in
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the food industry for product evaluation. In this project it is proposed how
expert knowledge may be incorporated in the quantification of the surface color
on cereals and butter cookies as opposed to only quantifying the surface color.
Furthermore it is also proposed how the water content of the surface in oat flakes
and butter cookies may be quantified. The water content has a clear correlation
with the browning process, which makes it interesting to be able to quantify.
Finally, as an alternative baking dataset the internal structure of breadcrumbs
is investigated as well. The formation of the bread crumb has large impact on
the appearance as described in the papers.
Paper A and Paper C revolves around datasets containing oat flakes and but-
ter cookies. In these datasets, the impact of baking time and temperature on
the surface colour acceptability based on a sensory panel was investigated. By
building a model based on sensory evaluations, an acceptance score is created.
The acceptance score is used to predict cookie and oat flake acceptance stages
at various times and temperatures. These predictions are then again used to
create a quadratic response surfaces to describe the relationship between the
involved variables. The acceptance score is essentially a CDA transformation
which maps new spectral images into a subspace where three classes chosen by
a sensory panel are linearly optimally separated. The three classes represents
three states of burn-degree; Under, Adequate and Over burned. The oat flake
dataset consisted of 90 samples in three replicates while the buttercookie dataset
consisted of 35 samples in three replicates.
Beside time and temperature in the oven, the browning of the product also
depends on the water activity [54] The water content for both the oat flakes
and butter cookies were measured using the oven method where the weight of a
sample was measured before and after insertion in a drying oven at 105◦C. For
the oat flakes a separate dataset consisting of 11 samples was created while the
water content for the butter cookies were measured on the same 35 samples as
were used to calculate the response surface for acceptance scores. Both models
showed good predictability response, however the dataset from the oat flakes is
very small and further investigations should be undertaken to ensure the models
validity further.
When the baking product is bread, as in Paper B, the surface color of the crust
is also dependent on the water activity. The location of water in the internals
of a loaf of bread baking is however very dependent on the structure of the
breadcrumb, which means quality assessment of the crumb structure is likewise
important. A disadvantage of using a normal 2D camera to assess the crumb
structure is that it is necessary to destroy the bread to look at the crumb. A
number of publications have described CT scanning of bread to assess the crumb
in a non destructive manner. In the work presented in Paper B a set of breads
were created to study the development of air bubbles in bread in relation to
baking time. A total of 31 breads have been baked with varying baking times
ranging between 2 and 26 minutes. The air bubbles were studied as a function
of time by extracting spatial features from the images. To observe the air bub-
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bles developed over time, development of extracted features were plotted as a
function of time.

Acceptance scores for the oat flakes and butter cookie dataset based on ex-
pert knowledge and training samples enabled the creation of acceptance surfaces
which indicates areas for acceptable browning. For the oat flake response sur-
face, the temperature showed a larger impact on the acceptance score than the
time. This was not the case for the butter cookie response surface. However,
temperature and time scaling in the two experiments was set different. The
temperature range for the oat flake response surface was from 120◦C to 220◦C
and Butter cookie was from 150◦C to 200◦C. The time range for the oat flake
set was from 0.5 to 9 minutes while the butter cookie was from 4 to 16 min-
utes. Furthermore the structure of the two products is quite different. While
the oat flakes is a hollow oat product, the butter cookies is a solid structure
with primarily wheat flour. The loadings used to create the acceptance score
showed the most important wavelengths to be 525 and 660 nm corresponding
to the green and orange area while for the butter cookie the most significant
wavelengths was 395 and 525. The latter corresponds better with the absorption
properties of melanoidins formed during the non-enzymatic browning which has
absorption in the area around 395 nm [55]. One possible explanation for the
significant wavelengths for the oat flakes may be that due to the fact that the oat
flakes has already undergone heat treatment in the factory, Maillard reactions
have already transformed major parts of the amino acids and reduced sugars on
the surface to melanoidins. Another explanation for the difference in wavelength
might be the difference in product ingredients. The loadings for water prediction
showed larger correspondence as the near infrared region was mainly responsible
for predicting water content in both the oat flakes as well as the butter cook-
ies. The dataset for the butter cookies was larger and represented the actual
population somewhat better than the oat flake water calibration dataset. Both
models were assessed with a bootstrap method and it was found that the SEP
for the oat flake water model was approximately 3.8% while the corresponding
SEP for the butter cookies was around 13.6%. The butter cookie dataset is a
larger dataset and therefore the butter cookie water prediction model will most
likely also be more robust. The visualization techniques presented in Paper C
presents a good way to assess single cookies on a processline independently from
other cookies both for acceptance score but also water content. the two predic-
tion models may be combined to get a better impression of the overall baking
state of a given cookie in the processline.
The studied breadcrumbs in Paper B showed that a segmentation of the air
bubbles in bread was possible using simple segmentation techniques and that
features describing the crumb structure indicated that after 6 minutes baking
time at 180◦ they had reached a steady state. Literature shows that the re-
lationship between the breadcrumb structure and the crust appearance is very
significant. The ability for a multispectral imaging system to asses spatial fea-
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tures such as this makes it very powerful tool for creating an overall quality
score for baking products based on spectral as well as spatial features.

3.1.2 Minced Meat

The Maillard reaction described in the previous section regarding baking prod-
ucts is also governing the browning of meat products. Meat consists primarily
of proteins and thereby amino acids and also has large amounts of glucose and
nitrogen-containing compounds. Thus, when exposed to heat at temperatures
around 110◦C or above the Maillard reactions starts the non-enzymatic brown-
ing of the meat while water evaporates. When stir frying meat in the industry
e.g. woks such as [56] knowledge about the water content is necessary in order
to control the non-enzymatic browning. This is very similar to the problems in
the baking industry as described in previous section. A dataset based on work
done in [57] were used together with dry matter measurements to create a pre-
diction model for water in meat in Paper D Page 119. A large set of features is
created from the multispectral images in order to find band interactions which
might describe the water signal better than the pure spectral bands. Instead of
using the mean spectrum of the different band interactions, a set of percentiles
is calculated based on the histogram of each band interaction. This amounts to
a total of 324 variables from which the best variables needs to get selected. A
leave one out cross validation was used to select the best possible model which
turned out to be 970 nm, exactly at the water absorption peak. The second
most significant variable was found to be 850 nm while the final was a ratio
between 920 and 910 nm. If a system such as this would be employed at-line,
interference from the browning process should in theory not interfere with the
water model due to its ability to only focus on specific bands in the near infrared
area, where products of the Maillard process do not have any influence on the
spectrum [55].

3.1.3 Vegetables

Browning in non heated environments also known as enzymatic browning is a
chemical process which occurs in fruits and vegetables by the enzyme polyphe-
noloxidase, which results in brown pigments [50]. Enzymatic browning may
occur in low temperature settings such as in the refrigerator and is a problem
for the shelflife of semi-prepared convenience foods such as stir-fried vegetables.
In this experiment car- rots and celeriac were investigated over a period of 14
days. Prior to the experiment the vegetables were prefried and frozen at −30◦C
for four months. During the 14 days the experiment lasted, the vegetables were
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kept at 5◦C in refrigeration. Every second day the carrots and celariac were
imaged with a multispectral device. The spectral images were analyzed and re-
vealed a change in the reflection over the 14 day period. This very slight change
in reflection over time is most likely due to an enzymatic browning in the plastic
bags which were not completely air proof. To determine the reflection change a
large featureset was created based on histogram shapes of interactions of wave-
bands. The shape of the histograms was expressed using percentiles, where
the idea is that if certain percentiles in certain waveband interaction changes
in accordance with the time, this correlation will be detected by the regression
method employed. Due to the very large feature space created, an elastic net
method was used to create a sparse solution with the most significant variables.
. A watershedding segmentation algorithm was used to separate the particles
and treat each of these particles as independent objects. In this way a large set
of observations was created. The results were shown as a group plot where each
group represented the time spent in the refrigerator. A set of pairwise Bonfer-
roni adjusted t-tests showed a significant reflection change most likely caused
by enzymatic browning.

3.2 Microbial Growth

In USA alone the retail market of the beef industry amounted to $76 billion in
2008 1, yielding efficient storage and distribution of the meat extremely impor-
tant factors. The heterogeneous nature of the raw meat makes quality assur-
ance difficult during meat production and processing. The chemical composi-
tion, technological and sensory attributes are highly influenced by pre-slaughter
(e.g., breed, age, environment) intrinsic (e.g., pH, available nutrients) and ex-
trinsic (e.g., storage method, period and temperature of storage) factors [58].
Consequently, in order to keep the quality standards as close as possible to the
preference of the consumer, control procedures must be undertaken including
sensory, microbiological and physico-chemical analysis.
An EU-project 2 is mapping more than 50 such methods which have been em-
ployed for the characterization of microbiologically spoiled or contaminated
meat [58, 59]. These methods suffer certain disadvantages as they are time-
consuming, destructive, require highly trained personnel, provide retrospective
information, and are therefore unsuitable for online monitoring [60, 61]. The
same EU-project is investigating methods for rapid, non-invasive probing based
on analytical instrumental techniques, such as Fourier transform infrared spec-

1 United States Department of Agriculture (USDA), 2008. U.S. Beef and Cattle Industry:
Background Statistics and Information. http://www.ers.usda.gov/ news/BSECoverage.htm
assessed 16.02.2010.

2http://www.symbiosis-eu.net/
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troscopy, Raman spectroscopy and near infrared spectroscopy for their poten-
tial as reliable meat quality assessment tools. The investigations are largely
carried out as academic research papers such as [61]. Besides techniques such
as the above mentioned which are based on point measurements, spectral image
analysis has a potential due to its ability to utilize information about the het-
erogeneous nature of the meat. The common underlying concept behind using
spectral techniques for assessment of meat spoilage is based on the assumption
that the metabolic activity of microorganisms on meat results in biochemi-
cal changes with the concurrent formation of metabolic by-products, indicates
spoilage. The quantification of these metabolites constitutes a characteristic
fingerprint providing information about the type and rate of spoilage [59].
In Paper E Page 127, VideometerLab was used on a set of raw minced pork
meat to investigate the ability to track spoilage in different samples of meat.
Bacterial counts of a total of 167 meat samples stored for up to 580 hours were
quantified using traditional laboratory methods. Meat samples were contained
under 2 different storage conditions - aerobic and modified air packages as well
as under different temperatures. A large set of bacterial counts including total
viable counts, pseudomonads, yeasts and moulds, enterobacteria counts, bro-
chothrix thermosphacta and lactic acid bacteria was performed on each meat
sample. Beside the bacterial counts, a sensory panel has judged the spoilage
degree of all meat samples into one of three classes on a hedonic scale. The
work carried out here primarily focuses on modeling total viable count as well
as modeling the sensory evaluation labels.
Previous studies on similar data (beef) used FTIR spectroscopy to predict the
spoilage degree [61]. In this work a standard error of prediction of 12% was
obtained as the overall regression result. In our work based on pork we were
able to obtain a standard error of prediction of 7.5%. To obtain this result
the heterogeneity of the meat surface was exploited using preprocessing with a
clustering algorithm. Masks indicating areas of meat spoilage for samples were
calculated as seen in Figure 3.2 Page 40. Clusters highly correlated with the
spoilage degree were used in the further analysis. The cluster center appears to
differ in the near infrared area where it has a slightly larger gradient then the
remaining clusters. This spatial inference shows the real power of using image
analysis instead of averaging methods such as FTIR where sample preparation
is necessary. Sensory labels were classified with an overall correctness of 75%
which seems quite satisfactory given the fact that laboratory measurement only
assessed 80% correct. The largest problem with separation was with the inter-
mediate class. When visually inspecting images of this class it there was large
variation in the appearance. The boundaries for this class seems a bit vague
and should be given further attention in future studies. An overall conclusion
is however that spectral imaging is capable of quantifying spoilage of meat in a
setting as the one presented.
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Figure 3.2: (a) shows a binary mask indicated the area of meat in the image.
This piece of meat a total viable count of 9.83 log cfu - indicating heavy spoilage
g−1. A grayscale image of the 590 nm waveband for the same piece of meat is
seen in (b). (c) shows the spatial distribution of how pixels have been mapped
to identified clusters. There are a total of 5 clusters. Dark areas indicate spoiled
meat, while lighter areas represent more fresh meat. (d) shows a comparable
spatial distribution of clusters in a fresh portion of pork meat. The clusters are
colour coded in same order in (b) and (c). The difference in cluster colours in
the two images is very clear.
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3.3 Cartenoid pigmentation

In the industry of aquaculture homogenization of fish is important for optimal
quality. For obvious reasons, homogeneous fish is an impossibility due to natural
differences and genes. However by keeping a stable production environment and
ensuring as uniform distribution a distribution of fish feed and pigmentation as
possible is of great importance for the aquaculture industry.
As is the case for bakery products, color is a high importance when it comes to
quality assessment of fish in relation to the commercial production of salmonid
fishes. The consumers associate increased intensity of red in salmonid fishes
with superior quality, being fresher and having a better flavor [62, 63]. As the
change in surface color is the first quality parameter evaluated by the consumer,
it is of great economic importance that the color of the salmonid fishes meets
consumer preferences. The color of salmonid fishes is caused by deposition of
cartenoid pigments in the muscular tissue. Besides being essential for reproduc-
tion, proper growth and survival of the fish, carotenoids, primarily astaxanthin
and castaxanthin, are also important for the red color in salmonids. Astaxanthin
being the single most expensive constituent in the fish feed is sought minimized
as much as possible while still maintaining a proper colour.
Rapid assessment of astaxanthin concentration in fish fillets are of great interest
for various purposes. One is to ensure the colour of the salmonid at the pro-
cessing line. Another is to help inspecting the colour of the fish population in
the farm.
In Paper F Page 151 a dataset consisting of trout fish has been evaluated for
characterization of the concentration of astaxanthin using VideometerLab. 59
fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using
VideometerLab for quantitative analysis. The multispectral images were cap-
tured prior to determination of the true concentration of astaxanthin. The
dataset was split into to parts for training and testing. A predictive model us-
ing the partial least squares was developed from the training set and assessed
on the independent test set. Previous studies in the literature shows increasing
use of multispectral systems for inspection of various parameters of fish [64, 65].
Figure 3.3 Page 42 shows two spectral measurements of astaxanthin. In Fig-
ure 3.3(a) Page 42 a NIRSystems 6500 was used to measure the absorbance
properties of astaxanthin (See Paper F Page 151 for further details) while Fig-
ure 3.3(b) Page 42 shows the reflection of the trout fillet. It should be noted
how the largest variation in the trout fillet measurement is situated in the area
where astaxanthin has largest absorption properties. This fact is utilized to do
the actual quantification of astaxanthin using PLS as described in the paper.
Studies using colorimeters to estimate caretenoids showed that the intensity of
redness (a*) increases with the carotenoid content in the raw flesh of Atlantic
salmon, while lightness (L*) decreases and yellowness (b*) remains unaffected.
In our studies we directly estimate the astaxanthin content and find that the
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(a) (b)

Figure 3.3: (a) shows reflection properties of pure astaxanthin as recorded by a
NIRSystems 6500 absorbance spectrometer and transformed to reflection prop-
erties. (b) shows the mean spectrum of all fillets with error bars indicating
variation in each wavelength.

most important spectral area is situated from 450 to 570 nm. Measurements
from a NIR spectroscopy of pure astaxanthin, also presented in the paper shows
that exactly this area represents absorption peaks for astaxanthin. The mul-
tispectral images were transformed to color images and a pls model was also
trained on these images to compare the performance of the two modalities.
This showed that the multispectral images had better prediction power, clear
due to the extra information contained in the multispectral images..

3.4 Other considerations regarding spectral imag-
ing

This section contains information not related specifically to food, however indi-
rectly these are techniques that apply to food imaging.

3.4.1 Colormapping

Colour is very important in the food industry as described multiple times in
the above. Therefore it is of importance to understand the relationship between
spectral images and colour images. Furthermore visualization of true colour
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images of spectral recordings is important for scientests, engineers and operators
working with such image to get a better understanding of the product.
In order to appreciate the strength of multispectral imaging in the visible area
of the electromagnetic spectrum a short introduction to color science follows.
As outlined in Section 1.2 Page 5, light is an important aspect of colour. But
equally important is the notion of the colour of objects such as green grass, red
roses, yellow submarines, etc. The colour of an object is strongly dependent on
its spectral reflectance, that is, the amount of the incident light that is reflected
from the surface for different wavelengths. A term spectral radiance can be
defined as the emitted spectrum of light from a light source or illuminant l(λ)
for λ being the wavelength. The spectral reflectance in a given surface point
of an object is the absorption or reflection properties r(λ) at this point. For
a given illuminant and object a very simplified definition for the light reflected
from this surface point f(λ) is given by

f(λ) = l(λ)r(λ) (3.1)

Thus, reflected colours are products of illumination and surface properties. To
quantify this light in the best possible way is to know the shape of the spectrum
as close to the truth as possible. A way to sample this spectrum is by imposing
filters with certain characteristics o(λ) on the spectrum and integrating over the
area of the filters as suggested in Equation 3.2 Page 43.

Pi =

∫

λ

l(λ)r(λ)o(λ)dλ, , i = 1, 2, ..., p (3.2)

Here a system for recording the reflected spectrum in p different intervals are
shown. The larger p is, the better is the sampling of the spectrum (given that
the filter characteristics are so that the total filter span, spans the entire visible
area while each filter is as narrowbanded as possible). The relationship between
spectra and color spaces is well defined in the literature [10]. The relationship
is basically linear and used in standard colour cameras when the light is filtered
in three channels representing red, green and blue (The primary colours in an
additive colour space). An example of a mapping from spectral space to a colour
space is seen in Equation 3.3.

Pi =

∫

λ

lD65(λ)r(λ)oXY Zi
(λ)dλ, , i = 1, 2, 3 (3.3)

Pi contains the i’th camera response, while the lightsource is set to be a standard
light source lD65 (standard CIE daylight [10]). r is the reflected light while the
filters are set to be a standard observer called CIEXY Z representing a human
observer [10].
VideometerLab does not make use of filters. Instead the lightsource is controlled,
and the bandwidth of the illumination is relatively narrow. Thus it is assumed
that the recording in a spectral band corresponds to the spectral reflection value
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at the center point of the filter. Therefore r may be replaced with recordings
from VideometerLab and thus a colour sensation may be calculated by inte-
grating from 400 to 700 nm for each observer filter. Naturally there has to be a
correspondence between the wavelength recordings of lD65(λ), R(λ) and OXY Zi

.
This may be achieved using numerical interpolation. From P which is the spec-
tral recording mapped to the XYZ colour space, CIE L∗a∗b∗ colourspace can
be directly obtained using the standard nonlinear transformation (Equation 3.4
Page 44)

L = 116fy − 16

a = 500(fx − fy)

b = 200(fy − fz)

X =

{
3
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An alternative direct method were created using a special regularized regression
method similar to that of (and inspired by) fused lasso [66]. A standard target
(Macbeth colorchecker) containing an array of standard colours is used as re-
gression data. By using this method the system can rapidly transform images
when the regression has been calibrated since only the only operation which
needs to be performed is a simple projection using the obtained weights. A
downside with this approach is that a new calibration needs to be carried out if
the lightsettings in VideometerLab changes. The weights obtained in the regres-
sion shows an intuitive pattern resembling the CIE XYZ color filters compared
to a direct linear regression.

3.4.2 Filterdesign

The dataset described in this paper is the only dataset in this thesis which was
not recorded by VideometerLab. The camera used here is a narrowbanded NIR
camera with 250 filters. As an alternative to selecting single variables using e.g.
any cariable selection method described in the introduction chapter, this paper
investigates the possibility of creating a subset of filters able to predict the fat
content in kobe beef. The filters are designed as ideal bandpass filters with
minimum and maximum width constraints which are allowed to overlap. For
each filter there are two parameters to be selected, filter width and center point.
By testing different amounts of filters and compare the overall predictability by
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first integrating spectra over filter areas and creating n new response variables,
which are used as covariates in an MR regression to predict the fat content. The
amount of possible filters in a problem of this is in the order of 104n, where n is
the number of desired filters. Due to the size of the solution space an exhaustive
search for the best filter combination is not possible. There is a big dependency
problem built into this kind of problem since each filter is only optimal if all
other filters are selected optimally. Overall this is an optimization problem with
many local minimum. Two search methods are presented to search this very
large solution space. One is based on averaging a large set of random guesses
while the other is a deterministic greedy search algorithm. There is a huge
difference in computational speed between the two methods, while the forward
method also seems to obtain lower prediction error. The full spectral sample
system investigated in [67] only shows slightly better results indicating that it
is indeed possible to come up a set of filters which are able to predict the fat
content. The authors have not been able to find similar problems being solved in
the literature. An alternative method which would be interesting to test on this
problem is genetic algorithms since these algorithms uses a guided stochastic
approach.
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Chapter 4

Conclusions

The scope of this thesis has been to investigate the potentials of VideometerLab
and develop a basis for use in process control of continous baking, roasting and
frying processes.
The introduction part of this thesis has described the complexity of quality
control in various settings, mainly in the baking industry together with some
methods to quantify food quality. Appended papers have clarified even further
how different multispectral imaging datasets originating mainly from the baking
industry has been used to develop new assment methods. Together with experi-
ments of spoilage detection in raw pork meat and cartenoid pigment detection in
trout fish, spectral images seem to be very well suited for quantifying foodstuff.

Foodsuffs are generally heterogeneous at the macroscopic as well as the mi-
croscopic level. This variation in the chemical composition cannot be assessed
using classical wet chemical analysis. Imaging shows very big potential in uti-
lizing this heterogeneity. Depending on the resolution of the sensing chip in the
camera together with the lens, devices such as VideometerLab may be used to
detect this heterogeneity and is therefore highly relevant for rapid assessment
in such systems. The use of spectroscopic imaging in general is likely to in-
crease in the future as improved imaging techniques emerges and the handling
of the large amounts of d 1

2ata contained in images is no longer limited by lack
of computer power. The ability to quantify subjective metrics such as quality
with direct quantitative measurements such as the browning of the surface on
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baking products or the redness of fish fillets furthermore creates use for such
devices in the industry as an alternative to or supplement to process operators.
Measurement devices such as VideometerLab compared to other multispectral
devices is interesting due to the LED technology which is rapidly developing
and ever more narrowbanded LED diodes are being are created. The technique
is very fast and with upcoming sensor technologies such as black silicon 1 which
improves the CCD chips tremendously regarding both light sensitivity as well as
detection area, devices such as VideometerLab could be improved to record even
more narrobanded reflection areas in a much larger parts of the electromagnetic
spectrum which could improve the quantification ability even further.
A look at the literature reveals that the potential of using rapid methods in the
baking industry to control the browning process only has been investigated to a
certain degree. It has been shown in the literature that in the CIE L∗a∗b∗ colour
system, the overall change in colour (∆E) and the L∗ component are correlated
with melanoidins; the product of the Maillard reactions. Comparing this with
VideometerLab images has revealed a correlation which together with expert
knowledge has been incorporated into an acceptance sccre which may be used
to monitor browning and the acceptance stage of baking products. Response
surfaces similarly have a potential of being used as charts for automated con-
trol of butter cookie or oat flake heating. Visualization techniques has revealed
how single elements/particles such as vegetable pieces or butter cookies may
be assessed and investigated. The techniques were used to assess humidity and
browning development on different types of foodstuff surfaces, which gave an
insight in the development of these factors. Furthermore the ability to quantify
spoilage detection in raw meat and cartenoid pigment detection in raw fish fillets
underlines the versatility of multispectral imaging in the food industry. Further
investigations of spoilage detection using VideometerLab could be undertaken
to examine the ability to quantify more specific bacterial growth such as e.g.
lactic acid or yeasts and mold. The investigations carried out were focused on
predicting total viable counts as well as classifying meat according to sensory
quality classes. Both experiments turned out successful and demonstrates how
the heterogeneity captured by multispectral images may be utilized.
All models were assessed using generalization techniques such as cross valida-
tion and bootstrapping to ensure as fair and generalizable as possible. Of course
more studies for further assessment is always good, but since reference values
are difficult to obtain, techniques such as these are necessary to ensure model
validity.
Two studies not involving food products but rather method development were
carried out suggesting a novel method to map spectral images into a colorspace
as well as a design algorithm for creating more broadbanded filters to predict
fat content in kobe beef.

1http://www.sionyx.com/
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To summarize, the two areas of spectroscopic analysis of foods which will pre-
sumably expand the most in the near future are on-line analysis and imaging
taking both the visual area and thereby colours but also the NIR area and
the abundance of information residing here, into account. Focus should be on
improving the spectroscopic instrumentation as well as the chemometric tools
for these areas of application. In this connection, important chemometric ar-
eas will presumably be process analytical chemometrics and multivariate image
analysis where various techniques from the machine learning communities will
be incorporated to an even greater extent. Already now the field has advanced
to incorporating complex methods such as neural networks and support vector
machines in various settings, meaning more and more people from the comput-
ing communities will be integrated in food technology. This will automatically
happen as data amounts increase even further and the need for more precise
techniques similarly increases. Computer intensive methods such as bayesian
techniques which is of yet relatively uncharted territory in regards to spectral
imaging may be seen more in the fields of chemometrics in the future due to
its more varied approaches to data analysis. Furthermore as dimensionality in
imaging datasets will increase so will the need for using efficient variable selec-
tion methods such as those described in the introduction in this paper. In short,
multispectral imaging in the food industry has great potential and will certainly
be more integrated in the future.
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Abstract

We consider the possibility of using fast online multispectral imaging in a
continuous baking process of oat cereal. Fast multispectral imaging is used
as an alternative to pointwise spectroscopy, which is sometimes used in the
industry; sacrificing spectral information for increased spatial information.
A set of quality parameters which could help automate a manufacturing
process is investigated for a specific cereal product. The image analysis is
used to quantify the following three quality parameters for oat cereal: color
(degree of burn) as a function of time and temperature, detection of coal
particles on the surface of the cereals, and water content in the oat flakes. The
experiments and data analysis indicate that multispectral imaging may be
able to automate the visual inspection previously done by human operators
with regard to the parameters under investigation.

Keywords: Multispectral, Quality Control, Chemometrics, Oat, Imaging

1. Introduction

Breakfast cereals are consumed every day, all around the world. The large
majority of these breakfast cereals are sold as ready-made batches, which
have been prepared in different ways in factories. The preparation very often
includes treatment under high temperatures in ovens, which gives the cereals
a desired color, flavor, texture and crispness. These factors all play a central
role in the consumers’ experience of the product, and are therefore vital for
the product. However, controlling such factors in large batches of cereals is
a difficult task which requires continuous surveillance by experts in the field.

Preprint submitted to Food Control May 18, 2011
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This is often done using visual inspection and manual sampling. Human ex-
perts are an expensive as well as subjective resource, which means a cheaper
and less error-prone automation of the surveillance and process control will
improve the overall quality and reduce costs.
Automation of surveillance processes in the food industry has been slow,
due to inadequate technology. However, in recent years, technology for data
acquisition and further reduction of the massive amount of data into mean-
ingful information has evolved rapidly, making research in automation of
surveillance processes more feasible. Traditional spectroscopy has been used
at-line or in-line and is today the state of the art method for fast non-invasive
analysis in the food industry [1]. Its one dimensional nature is a problem
however with regard to repeatability and accuracy. This is where imaging
becomes interesting, since it adds two-dimensional information to the spec-
trum and thereby improves the uncertainty issues compared to traditional
spectroscopy [2, 3].
New vision technologies such as VideometerLab [4] are emerging, where a
spatial as well as spectral measurement is performed rapidly in form of spec-
tral images. This has the potential of a much closer match to the visual
judgment made by the trained process operators, than a 1D measurement.
For full automation of a food preparation facility, it has been shown that it
is possible to support the visual inspection of the operator by using learning
systems [5] or by replacing different on-line measuring equipment, in combi-
nation with appropriate process-control algorithms. Examples are: propor-
tional integral derivative controller(PID) and fuzzy logic or neural networks,
and these are beginning to be used more frequently in the food industry [6, 7].
In this work, however, we are only concerned with quality factors of a specific
cereal product. To the knowledge of the authors, not much similar work has
been performed on cereal products. [8] used texture information from RGB
images to classify bulks of different types of cereal. We are presenting ways
to quantify surface color, detection of coal particles and moisture in a specific
oat cereal product.

1.1. VideometerLab Vision Technology

VideometerLab [4], acquires multi-spectral images at 19 different wave-
lengths ranging from 385 to 970nm, fully shown in Table 1. The spectral
radiation of the 19 bands is seen in a collective plot in Figure 1(b). The ac-
quisition system records surface reflections with a standard camera equipped
with a charged coupled device chip with no bandpass filters. The object of in-

2
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terest is placed inside an integrating or so-called Ulbricht sphere, which has
its interior coated with a matt-white coating. The coating, together with
the curvature of the sphere, ensures a uniform reflection of the cast light,
and thereby a uniform light in the entire sphere. At the rim of the sphere,
Light Emitting Diodes (LED) are positioned side by side in a pattern which
distributes the LEDs belonging to each wavelength uniformly around the en-
tire rim. The LEDs, having the spectral radiant power distributions seen in
Figure 1(b), are strobed successively, each resulting in a monochrome image
with 32-bit floating point precision. The resulting hyperspectral cube has
dimensionality 1280x960x19. The system is first calibrated radiometrically
with a diffuse white and dark target, followed by a light setup based on
the type of object to be recorded. Furthermore, the system is geometrically
calibrated with a geometric target to ensure pixel correspondence across all
spectral bands [9]. The homogeneous diffuse light, together with the calibra-
tion steps, ensures an optimal dynamic range and minimizes shadows and
shading effects as well as specular reflection and gloss-related effects. The
system has been developed to guarantee the reproducibility of the images
collected. This means it can be used in comparative studies of time series or
across a large variety of different samples [10, 11, 12, 13].

(a)

400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength/nm

R
ad

ia
l F

lu
x

(b) (c)

Figure 1: a) Principle of imaging with integrating (Ulbricht) sphere illumination. The
LEDs located in the rim of the sphere ensures narrowband illumination. b) Normalized
spectral power distributions of the LEDs located in the VideometerLab. c) Spectral sensi-
tivity of the camera mounted in VideometerLab. It is seen in a) that the camera is placed
above the object of interest.
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♯ Wavelength Color ♯ Wavelength Color ♯ Wavelength Color
1 395 nm UV 7 570 nm Green 13 850 nm NIR
2 435 nm UB 8 590 nm Green 14 870 nm NIR
3 450 nm Blue 9 630 nm Yellow 15 890 nm NIR
4 470 nm Blue 10 645 nm Red 16 910 nm NIR
5 505 nm Blue-Green 11 660 nm Red 17 940 nm NIR
6 525 nm Green 12 700 nm Red 18 950 nm NIR

Table 1: VideometerLab Wavelengths

2. Materials and Methods

2.1. Havrefras

Havrefras, henceforth referred to as oat flakes, is an oat cereal product
for human consumption produced by the company Nakskov Mill Food A/S
1. The exact recipe is not known, but among other things the oat flakes con-
tain oat flour, wheat bran,sugar, salt and malt. The materials are mixed to
a dough, which is extruded [14, 15] into flat squares of about 1 cm2. The
shaped dough is baked in continuous ovens, using hot air. During baking
the dough squares inflate into cushions and obtain the desired crispness and
color. After baking the oat flakes are cooled, before packing in boxes for
storing.
In this work we are interested in a set of quality parameters which are used
to identify the state of a given oat flake. The VideometerLab mentioned
above is used to make three dimensional measurements, i.e. two spatial and
one spectral, and from these measurements a set of quality parameters are
quantified and extracted.
The surface color of the oat flakes changes significantly from dough to end
product and will give a very clear indication of how burned the cereals are.
Coal particles originating from very burned cereals are at a risk of getting
stuck on the surface of the newly produced oat flakes, which will lower the
quality index of the product. Such coal particles are visually unappealing for
consumers and in large amounts potentially harmful. If large amounts are
detected in a batch, it should be discarded and the oven should be cleaned.
These two quality parameters can be quantified by inspecting the surface

1http://www.nmfoods.dk
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color in the visible wavelengths.
The water content of the oat flakes also indicates the burn-state. The water
content must be sufficiently low to obtain the right crisp texture. Therefore,
detection of the amount of water in an oat flake is important as another
quality parameter.
The oat flakes used for the experiments in this article were bought in a
conventional supermarket, thus they have already undergone a preparation
treatment in the factory. This treatment, which affects color and waterbind-
ing capabilities, does not matter though, since here we are only interested
in basic detection of change in color and water content which are relative
measures. Therefore the initial state of the oat flake is irrelevant as long as
it is not completely burned.

2.2. Surface burn

We are interested in identifying the severity of surface burn on a oat flake
when baked in the oven. The heat from the oven will trigger Maillard reac-
tions, which have an impact on the surface color. To investigate how time
and temperature influence this, a 2-factorial experiment was set up with 6
and 15 levels for temperature and time factors respectively. Single oat flakes
were baked in the oven at each of the temperatures 120, 140, 160, 180, 200
and 220◦C, for each of the periods 30, 60, 90, 120, 150, 180, 210, 240, 270,
300, 330, 360, 390, 420 and 450 seconds in a randomized order. For each fac-
tor combination three repetitions were done, giving a total of 270 samples.
To give all cereals equal initial conditions, and thereby not introducing bias,
no oat flakes were recycled.
The actual surface color measurement may be done in different ways. Two
common approaches are to use either a chroma-meter for very precise color
measurements, or a standard digital color camera. The chroma-meter has
the disadvantage that it only measures the surface color at a specific point.
Both approaches are very dependent on the lighting conditions. Another
approach is to use a spectrophotometer, which again is only able to measure
the sample at a specific point. A combination of these three approaches is a
multispectral camera device which is able to sample the electromagnetic spec-
trum in narrow intervals, while still obtaining information about the entire
surface. Multispectral images of the oat flakes were acquired and saved on
the harddisk for further analysis. In order to transform multispectral images
to a surface color quantification, a specific transformation needs to be cre-
ated; the canonical discriminant analysis (CDA)[16], also known as Fisher’s
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discriminant analysis (FDA) or reduced rank discriminant analysis (RRDA),
is a well known and thoroughly tested technique in statistical analysis, used
for group separation. Given N observations, p variables and k classes, CDA
calculates a set of k-1 linear functions from the p given variables, known
as canonical discriminant function(CDF) or loadings. A projection of the
original observations onto the calculated CDF yields a new set of observa-
tions, often called scores, which optimally maximize the separation of the
between-class covariance, while minimizing the within-class label covariance,
in the training data. If N is smaller than G-1, where G is the number of
groups, the rank of the covariance matrix only supports N loadings. Once
the observations are projected, a simple classification technique such as a
Baye’s classifier or a support vector machine, or even a simple threshold, in
the subspace will easily seperate the classes.
Three oat flakes with different surface color were manually picked by experts
to represent three classes; A, B and C, i.e. three degrees of surface burn.
Multispectral images were acquired of the selected oat flakes. Three regions
of interest (ROI) were defined, one for each oat flake.

2.3. Water Content

The water content of oat flakes has a significant influence on crispness,
which makes it important to be able to quantify this parameter. As specified
in Table 1, VideometerLab contains seven bands in the NIR region, from 850
to 970 nm. Water’s absorption properties in the visible and near-infrared
region are well known, and shown in Figure 4 for wavelengths between 300
and 1000 nm [17]. A large overtone peak is observed in Figure 2(a) around
970nm. Zooming in around a smaller area of the spectrum, three additional
sets of water absorption lines near 820, 730 and 615 nm also appear, as seen
in Figures 2(b) and 2(c). In theory these are detectable with a multispectral
camera. In order to be able to calibrate a multispectral imaging model for
measuring water content in oat flakes, a set of oat flakes with varying water
content has been created. To do this we have used five different set-ups with
different relative humidity levels: 23, 75, 86, 93 and 97%. The humidity
levels were created using different supersaturated salt solutions in closed
containers: KC2H3O2, Nacl, KCl, KNO3 and K2SO4 soluted in water.
For each solution a set of six oat flakes was used. Water content has been
calculated as the difference in weight between a set of moist oat flakes and
the same oat flakes after drying in a drying cabinet. The water content is
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Figure 2: Water absorption properties at wavelengths between 200-1000nm [17]

given in percent, and calculated as in Equation 1.

WC(%) =

(
Wwet − Wdry

Wdry

)
· 100 (1)

WC denotes Water Content, Wwet is the weight of the moist oat flakes and
Wdry is the weight of the dry oat flakes . The weight of the oat flakes was
measured using a scale (Mettler Toledo AT261 Delta Range Balance (max.
205g/62g d=0.1mg/0.01mg)). Depending on the salt solution, the oat flakes
remained in the container a certain amount of hours until no more water was
absorbed in the oat flakes. After being taken out from the container, mul-
tispectral images of the oat flakes were acquired using the VideometerLab,
weighed and subsequently placed in a drying cabinet at 105◦C until all the
water had evaporated, leaving oat flakes with no residual water. A total of
11 samples were created using the above method, containing from approxi-
mately 14 to 37% water, distributed as seen in Figure 3. The multispectral
images were segmented to include only spectra from the surface of the oat
flakes (Figure 4(a)). A mean spectrum was calculated for all the oat flakes
contained in each image, yielding a total of 11 spectra shown in Figure 4(b),
which were all centered and standardized before analysis. A logarithmic
transformation of the response variable decreased the dependency between
the spread and the mean of the water content to obtain a better calibration.
In order to relate the multispectral images to the measured water content,
a Ridge Regression (RR) [16] has been calibrated. The RR is an alternative
to Partial Least Squares (PLS) [16] and Principal Component Regression
(PCR)[16] which both make use of latent variables in the data. Due to the
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Figure 4: (a) Contours indicating the area of the oat flakes. (b) Mean spectra of the 11
samples. Each spectrum is calculated as a mean value of all spectra contained within 6
oat flakes

ill-posed problem in the dataset containing 11 observations and 19 variables,
which has infinitely many solutions, it is necessary to use a modified regres-
sion scheme like one of the above. Furthermore, due to the very small dataset
of only 11 observations, single observations have a very large influence on the
estimated model. RR uses a penalization parameter λ which reduces vari-
ance in the model at the cost of introducing bias, the bias-variance tradeoff
[16]. Due to the small number of observations, λ was chosen with a cross
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validation method [18]. The regression model was validated using a 10000-
run bootstrapping [19] method to estimate various summation statistics to
assess the model. The bootstrap is a Monte Carlo method, which is related
to techniques such as the jack-knife and cross-validation.
For model evaluation a set of statistical key values is presented. Ross [20]
originally introduced the Bias factor and the Accuracy factor for predictive
microbiology. The metrics were originally intended for interpreting models
for generation times of bacteria, but it is basically a model assessment tool
which is usable for any predictive model. A perfect agreement between the
predicted and observed values will lead to a bias factor of 1 while values
above 1 indicate that the predictions exceed the observations; a value of 1.1
has a tendency to overpredict by 10% on average. Thus, the further away
from 1, the poorer the model. This means a bias factor of 0.5 indicates a
poor model.
For the accuracy factor, the larger the value, the less accurate the average
estimate. For an accuracy factor of two, the prediction is on average a factor
of two different from the observed value - half as large or twice as large.
The mean relative percentage error (MRPE) gives an idea of the overall rel-
ative accuracy of the system. The smaller the relative error, the better the
predictability. Negative values mean there is a tendency to underpredict
while th opposite applies for positive values. A perfect fit gives an MRPE of
0, i.e. there is no bias in the prediction.
The Mean Absolute Percentage Error (MAPE) is similar to MRPE, except
the errors do not cancel out. This means the MAPE explains the percentage
by which the predicted values deviate from observed values.
The Root Mean Square Error of Prediction (RMSE) is very similar to MRPE,
however here the error is expressed in the same values as the fitted data.
Thus, the RMSE shows the uncertainty of the prediction.
The standard error of prediction (SEP) index is a relatively typical devia-
tion of the mean prediction values and expresses the expected average error
associated with future predictions. The lower the value of this index is, the
better the capability of the model to predict water content in new oat flakes.

3. Results

3.1. Surface burn

The three classes manually picked by experts are seen in Figure 5(a)
which shows the mean spectral value of all pixel values across the oat flakes
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indicated by the ROIs. At the top of the plot the standard deviation of the
pixel values is shown as a bar plot. The mean spectra for the three classes are
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Figure 5: (a) shows spectral differences between the three classes A, B and C which were
manually selected to represent the three degrees of surface color. One oat flake is used
for each class, and the mean spectrum is plotted here. In the lower part of the plot,
standard deviations are shown as stacked bars for each wavelength. (b) shows a scoreplot
for the training data in the two primal directions. The first two CDA loadings have
been used to create the scores. The scores are clustered in three seperate groups, where
a Gaussian distribution is fitted to each. The contour lines of the estimated Gaussians
show the boundaries for 80% (dashed) and 99% (solid) chance of a new observation to
fall within this line. The boundaries are calculated by assuming Gaussianity for each
class and thereby utilize the relationsship between the χ2-distribution and Mahalanobis
distances. The two vertical lines show the chosen seperation between the classes, based
only on information in the first projection vector.

significantly different and are well suited to create a transformation which
may convert multispectral images to a surface-burn score. Using all spectra
from the defined ROIs, this is verified by a Multivariate Analysis Of Variance
(MANOVA), where the value of Wilk’s Lambda was found to be 0.04, as
shown in Equation 2.

Λ =
|W |

|W | + |B| = 0.04 (2)

W denotes the pooled within-scatter matrix and B denotes the between-
scattering matrix. A value of 0.04 for Wilk’s Lambda is very close to 0, which
indicates a clear separation between the three groups. A corresponding set
of CDFs were trained in order to find the transformation which optimally
separates the three groups of spectra. The two vectors of this transformation
are called loadings and are shown in in Figure 6. The figure shows that the
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wavelengths 525, 660, 850 and 950 nm. seem to be most important in sep-
arating the burn-degree classes. Especially noticeable is a contrast between
the two NIR bands at 850 and 950 nm. and a similar contrast between the
green band at 525 nm and the red band at 660 nm. The latter, however,
has a lower influence, which indicates that, even though we are interested in
a color classification, NIR plays an important role when differentiating be-
tween the defined classes. Figure 5(b) shows a scoreplot for the k−1 vectors
calculated for the CDA. The clusters are seen to be fairly well separated at
the 80% line, assuming each cluster follows a Gaussian distribution. The
intensity in the plot shows the observation density.
If the images of the manually selected oat flakes are projected down on
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Figure 6: Loadings of canonical discriminant analysis. Especially 525, 660, 850 and 950
nm contains large burn-score information.

the principal CDF, as seen in Figure 5(b), the vertical lines shown are able
to separate the clusters with up to approximately 80% certainty for each
class. By only separating in a single dimension, it is possible to create a sin-
gle score value for an oat flake. The overlap of the clusters comes from the
continuous nature of the surface color. The positions of the two boundaries
in Figure 5(b) are calculated as the mean of adjacent cluster centers.The
boundaries were calculated to 0.40 and 0.81, and the scale goes between 0
and 1, where 0 is an extreme value of class C, a burned oat flake and 1 is a
value in class A, a light oat flake. A score for an oat flake is now calculated
as the mean of the projection values of all pixels within the oat flake. This

11

70 Appendix A



is shown in Equation 3, where X denotes the collection of pixels in the oat
flake. X has N rows of pixels and p = 18 columns of wavelengths. c denotes
the weights of the most discriminating CDF which is a single column with p
rows.

Score =
1

N

N∑

i=1

p∑

j=1

Xijcj (3)

All spectral images were converted to burn scores in order to investigate how
oven time and temperature affect the surface color. A second order response
surface of the form seen in Equation 4, containing first and second order as
well as interaction terms, was fitted to the burn scores.

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑∑

i<j

βijxixj + ǫ (4)

Before fitting the model, the independent parameters were coded such that
x1 = (temperature − 170)/20 and x2 = (time − 240)/30 to ease the calcula-
tion. All terms in the model were significant, and the final model was found
to be as in Equation 5.

y = 0.79 − 0.11x1 − 0.02x2 − 0.01x1x2 − 0.04x2
1 + 0.01x2

2 (5)

The adjusted R2 of the model was 0.87, thus accounting for a good amount of
variability in the burn-degree. The model found suggests that, at this scale,
temperature has more influence on the change in surface color than time. In
fact, a change in temperature affects the surface color 5 times as much as an
equal change in time. In the experiments conducted, no cereal ever reached
state B before the oven was set at 160◦C. The interpretation of the model is
complicated by the interaction and second order terms, but it is quite clear
from the estimated model that these also have a large influence on the surface
color. Figure 7 shows the contours of the fitted quadratic surface. From the
gray level coded class areas, which have been superimposed on the figure, it
can be seen how class B, corresponding to an intermediate burn-degree, is
represented as a wide belt in the upper middle part of the surface. Class A,
spanning from 0.81 to 1 is seen as a large area in the bottom, while class
C is seen in the upper right corner for very dark surfaces. In a production
environment an at-line measurement device should continuously verify that
oat flakes are kept within the area corresponding to class B, although these
boundaries may be altered for a changed output, if so desired.
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Figure 7: Contour plot of the fitted quadratic function shown in Equation 5. The shaded
areas represent the three burn classes A, B and C, where C is seen in the upper right
corner as the most dark area. The contour lines represent levels in the continuous burn-
state function going from 1 to 0. The boundaries between the classes are at 0.4 and 0.81. It
is clearly seen how temperature has a much larger effect on the burn-score, as the gradient
is much higher in this direction.

3.2. Localization of Coal Particles

Industrial ovens run continuously over long periods. By chance it happens
that some oat flake residue can get stuck in the oven and gets very burned.
Particles originating from such oat flakes may contaminate other oat flakes,
which is both a health hazard and lowers overall product quality. When
inspecting spectral values of such coal particles as seen in Figure 8, a very
clear difference is seen compared to the spectrum of over-burned oat flakes
represented by class C in the previous subsection. The spectrum generally
has much lower reflection properties, which makes it very easy to separate
from normal oat flake spectra. To investigate this further, an oat flake with
residue particles has been annotated in three areas; coal particle, hole and
surface. Holes in the surface generally appear dark, and have spectral ap-
pearance closer to coal than normal oat flake surface as seen in Figure 9(a).
If Mahalanobis distances are calculated between these three clusters, Table 2,
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Figure 8: The solid line indicates class C, also shown in Figure 5(a). The dashed line
shows the spectral value coal or severely burned particles. The large difference in spectral
value indicates that differentiating between coal and even overburned oat flake (class C)
is straight forward.

Surface Coal Hole
Surface 0 417.83 58.97
Coal 0 268.55
Hole 0

Table 2: Mahalanobis distances between hole, surface and coal areas in a multispectral
image. Coal particles are seen to be located far away from surface and hole spectra.

in spectral space, it is quite clear that coal particles are easily separable. A
Multivariate Analysis of Variance (MANOVA) furthermore shows a signifi-
cant difference between the groups, meaning that it is possible to separate
coal from holes with high accuracy. By utilizing the transformation created
in the previous subsection to quantify surface color as a score value, it is like-
wise possible to calculate a score value for coal particles. By transforming
the oat flake in Figure 9(a) and visualizing the first component, it is seen
how coal particles are clearly highlighted in Figure 9(b).

3.3. Determination of Water Content

The distribution of RMSE of the water prediction model, calculated in
the bootstrapping procedure based on the complexity parameter λ = 0.0014,
is seen in Figure 10. An overview of statistics calculated is seen in Table 3.
From Table 3 it is seen that the ridge model on average is able to predict
the water content with a standard deviation of around 1% in terms of water
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(a) (b)

Figure 9: (a) shows a visualization of a spectral band in the blue area in a multispectral
image of an oat flake. On the surface, small pieces of coal which look similar to surface
holes are seen. The size of the oat flake is approximately 1.5cm. (b) shows the same oat
flake projected using the CDF found for the burn-score quantification. A clear highlighting
of coal particles appears.
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Figure 10: Distribution of RMSE bootstrap residuals. The mean value is indicated with
a dashed line

percentage. This however varies as is also seen in Figure 10, where the worst
case scenarios with an RMSE value of up to 10 are seen, although very rarely.

15

74 Appendix A



Metric Expression µBS σBS

Bias Factor (Bf ) 10
∑ log(ŷ/y)

n 1.0016 0.0210

Accuracy Factor (Af) 10
∑ | log(ŷ/y)|

n 1.0261 0.0202

Mean Relative Percentage Error 1
n

∑ 100·(y−ŷ)
y

-0.2901 2.3194

Mean Absolute Percentage Error 1
n

∑ 100·|y−ŷ|
y

2.6144 2.1681

Root Mean Square Error of Prediction
√

1
n

∑
(y − ŷ)2 1.0152 0.7121

Standard Error of Prediction 100
ȳ

√
1
n

∑
(y − ŷ)2 3.8278 2.6849

Table 3: Summation statistics for the water content prediction. All values were estimated
using bootstrapping. µBS is the mean value of the bootstrap residuals and σBS is the
standard deviation value of the bootstrap residuals.

The standard deviation of the RMSE is 0.71. These cases are due to the very
small data amount and “unlucky” sampling in the bootstrap routine. In these
cases the training set has very low rank because of many sample replications.
As seen in Table 3, Bf is very close to 1, and has a standard deviation

of 0.021, showing an overall low bias in the fitted models. The Bf shows a
slight overprediction tendency, which is also seen in the MRPE showing an
overprediction of 0.29%. In addition, the accuracy factor indicates that the
predicted water content is 2.61% different from the measured values, with
a deviation of approximately 2%. The values in the MAPE of 2.61 verify
the accuracy factor. The value of SEP was less than 4% and in total the
bootstrapped model statistics indicate a good general performance. Figure 11
shows the loadings of the ridge regression, which clearly shows the 970 nm
wavelength to be of most importance in the discrimination between oat flakes
with different water content. Since this is an absorption peak and the camera
device has captured reflectance images, this means more wet oat flakes will
have lower numerical values than more dry oat flakes at the 970 nm. band.
This also causes the 970 nm loading to be negative.
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Figure 11: Loadings of the ridge regression with penalization parameter λ selected as
0.0014 by cross validation. The most discriminating wavelengths are found to be in 970
nm. and in the areas around 890 and 450 nm.
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4. Conclusion

In this paper, we have shown that multispectral imaging is a non-invasive
and rapid alternative for quantification of certain quality parameters for oat
flake. Quality parameters highlighted were the degree of burn, ability to
detect coal particles on the surface, and water content of the oat flakes. To
quantify the degree of burn when the oat flakes are baked in the oven, a burn
score was created as a numerical index. A CDA was used to transform mul-
tispectral images to surface color quantification, using three oat flakes with
different surface color, manually picked by experts. A MANOVA confirmed a
significant difference in the surface color of these three oat flakes with a Wilks
Lambda of 0.04. Loadings of the CDA showed that the wavelengths 525, 660,
850 and 950 nm seemed to be responsible for the best seperation. To under-
stand the dependency between baking time, baking temperature and surface
color, a quadratic surface was fitted to experimental data with an adjusted
R2 of 0.87. This model suggested that temperature has more influence on
the change in surface color than time. A response surface demonstrated the
area of adequate baking conditions and an at-line measurement device con-
tinuously ensured that new samples were processed within this area.
Detection of severely burned residual oat flake particles was shown to be an
extension of the burn-degree transformation by considering these particles as
extreme observations. A MANOVA furthermore showed a significant differ-
ence between holes in the surface and black particles.
The ability for the multispectral camera to differentiate between oat flakes
with different water content was tested with a dataset of 11 samples of vary-
ing water content, ranging from approximately 14 to 37% water. A Ridge
regression was tuned using cross validation and based on a logarithmic trans-
formation of the response variable and mean spectra of the multispectral
images. The performance of the model was validated using a bootstrapping
method. Summation statistics showed a good fit, with Bf very close to 1 and
RMSE of 1.0152. Loadings of the regression model indicated that 970 nm
had a large influence on the model corresponding well with known properties
of water absorption.
In total, satisfactory results could be achieved for all measurements for iden-
tifying surface burn degree, detecting coal particles as well as water content,
thus pointing to the fact that multispectral imaging is feasible for objective
quantification of certain parameters in an oat flake production environment.
Since the techniques used are in essence general techniques, they are also
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likely to be applicable to other food matrices.
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Abstract

Spatial inference of multispectral images are studied in this technical report with
a focus extracting features from images of bread crumbs. The features extracted
describe the distribution of air bubbles in the crumb as well as information about
the solid material in the crumb. An experiment where 31 loaves of bread were
prepared has been carried out, with a total of 63 multispectral images. From
each image air bubbles were segmented and four different features were extracted
based on the segmentation. The features are considered in collective plots as a
function of baking time in the oven. It is found that after six minutes in the oven
the features agree to reach a steady state. However, there are some fluctuations
seen in the timeline. Furthermore, a small review of previous work is presented.

Introduction

A very important quality parameter for solid foods such as bread is the crispness
and the physical texture. These factors are typical consumer purchasing deci-
sion factors [1]. Bread crust crispness is lost when water migrates from crumb
(Figure B.1) to crust during storage or when the bread is kept in humid envi-
ronments. Thus the crispness of bread is known to be very dependent on the
bread crumb and its water transportation capabilities. Furthermore the crumb
structure contributes to the texture mechanical strength and perceived product
freshness of the bread as well as to its visual appearance. When scoring the
bread crumb, the visual texture accounts for approximately 20% of the weight-
ing used in judging bread quality [2].
Beside the crumbs relationship to the mechanical and visual properties, the
bread crumb is furthermore important due to its inherent relation to a set of
parameters. These are the volume of the bread, the symmetry of the bread and
the texture and taste during eating [3].
By knowing which parameters defines the crumb properties and combining this
knowledge with the knowledge of how raw materials affect the breadcrumb it
is possible to predict many of the quality attributes of the above mentioned.
which is why study of the breadcrumb is very important.

The formation of the breadcrumb is dependent on the air bubbles in the crumb
and the steps in which these air bubbles or cells are formed is seen in Fig-
ure B.2 (inspired by a similar figure in [4]). The bread making process is divided
into three main stages: mixing, fermentation/proving and baking. It has been
showed that the air entrained during the early stage of mixing is the source
of the cells. There are discussions about how much cells are expanding in this
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Figure B.1: Pseudo RGB image of bread crumb from a piece of bread

phase, but since there is a continuous production of CO2 from the yeast, with
a net transport of gas from the surrounding dough into the cells, the hypoth-
esis is that there is cell expansion from very early stages of the bread making.
Fermentation and baking does not form new cells, this only expands existing
cells [5]. From left side in Figure B.2, when the dough is mixed, kneaded and
is proving, small air bubbles are trapped inside the dough. When put in the
oven (step 2) H2O vaporizes and together with yeast which is producing CO2

under heat, makes the existing cells expand. This creates a fragile foam. Cells
keep expanding until the foam reaches a temperature of around 60◦C. At this
point, the gluten-starch contained within the thin walls between the expanded
cells will gelatinize. This means the cells will loose their elasticity and maintain
their size and structure. This prevents further cell growth. The CO2 contained
in the bubbles needs to escape and will cause the cells to rupture since they can
no longer expand. The ruptured cells has thus transformed to large networks as
seen in step 3, with a sponge like appearance. The remaining crumb cell walls
consist of partly gelatinized starch.

Figure B.2: Formation of air bubbles/cells in the bread crumb.
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By controlling the numbers, sizes and uniformity of distribution of the crumb
cells it is possible to largely control the above mentioned bread quality param-
eters. This may be done as early as in the mixing stage [6]. In general, the gas
bubbles have a relatively small size; for example, at the end of mixing their mean
diameter is about 75 µm, but they expand to reach a mean diameter as large
as a few millimeters [7]. A smaller pore size is expected to slow down moisture
migration [8], which will increase the shelflife of the bread. Furthermore, for
fine-celled white bread, it is generally accepted by consumers that small holes
that are uniformly distributed throughout the crumb are required and that large
holes or irregular cell distributions are undesirable [6]. For a good product, the
crumb cell wall, or matrix, is required to be as thin as possible [2]. However it
must be resilient enough to recover from modest deformation, such as squeezing
and pressing which is the two most common ways by which consumers assess
product freshness [9]. Thus, the examined parameters are crumb fineness (open
versus closed cells), uniformity, cell shape, and cell wall thickness (CWT).
The traditional method for texture scoring or inspection is qualitative and sub-
jective in nature since it relies on human vision. This is known to be inconsistent
among different experts [10] and can vary over a period of time even for the same
expert. This problem necessitates the use of more objective quantification meth-
ods that are fast, precise, consistent and reliable such as digital image analysis
or similar. Litterature shows various attempts to study the cellular structure of
bread crumb using different methods such as [11, 12] who used Haar transform
[28] and textual features to describe the surface of the breadcrumb. [14] com-
pared k-means clustering and a set of adaptive thresholding methods to assess
their differences. [15] used 2D (flatbed scanner) and 3D (X-ray tomography) im-
ages of breadcrumbs together with granulometric methods of six bread crumbs
from three different recipes and three baking procedures. The conclusion in this
paper was that 2D images could be used to quantify the cellular structure for
the calculation of mechanical properties. The use X-ray tomography to assess
3D models of breadcrumbs have also been investigated in [16, 17, 18] which
all shows that this is also a promising technique for investigation of the bread-
crumb, however more for scientific purposes while the use of digital images also
may more easily be implemented in a plant.
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Materials and Methods

Data collection

31 loaves of bread were prepared using the same recipe. The recipe consisted of
the following ingredients

1. 1000 grams of wheat flour

2. 10 grams of sugar

3. 15 grams of salt

4. 30 grams of dry yeast

5. 570 grams of water

The ingredients were mixed together in a mixer for three minutes. After mixing
the dough is allowed to prove and ferment for 1 hour. After fermentation, bread
of 100 g. are formed and are again allowed to prove for further 35 minutes at
approximately 35◦C at high humidity. As the only variable parameter the loaves
are then kept in the oven for different amounts of time. The oven temperature
is maintained at 175◦C. Before slicing and image acquisition the the bread is
cooled for 2 hours.
The baking times of the loaves ranges between 2 and 26 minutes. Other param-
eters regarding dough composition, weight, pan dimensions, rising time, oven
temperature, ventilation degree and cooling time before slicing, have been kept
equal for all loaves. The baking was done in three batches, named A (10 loaves),
B (10 loaves) and C (11 loaves). Slicing and image acquisition procedure were
as follows. After cooling, the bread was divided at half length. One half was
used and sliced again 1.5 cm from the “center” end of the half bread to form a
1.5 cm wide slice. After slicing multispectral images were acquired of both sides
of all slices using the VideometerLab.

Computational techniques

Bread as a solid is “soft” and like many other foodstuffs is comprised at a macro-
scopic level, of two phases- a fluid (air) and a solid (cell wall material).
Quantification of such two phase systems generalises to a generic area in digital
image analysis. This area focuses on quantification and assessment of particles,
and depending on the type of particles there are various ways of dealing with
such problems. Well studied examples of such systems are those of assessing
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cells in various biological systems [19, 20, 31].
Mainly there are three ways of quanitifying such phase systems in digital images.
These are; morphological/granulometric methods [28], textural methods [28] or
by using segmentation [28]. Regarding image analysis on the breadcrumb thor-
ough investigation has been carried out since the early 1990’s. Different image
analysis techniques and statistical methods has been tested for crumb quan-
tification [3]. granulometric methods for crumb analysis was carried out by
[15], while textural methods has been in vestigated in [11, 12]. Actual spatial
segmentation of cells, meaning splitting the breadcrumb into each of the two
phases; air and cell-wall was demonstrated in [18, 22]. The advantage of utiliz-
ing spatial segmentation for feature extraction is that, in addition to it being
able to provide an estimation of crumb fineness, it can also accurately measure
various structural parameters of the bread crumb such as cell size, number of
cells per unit area, CWT, cell shape etc. and provide distributions of these for
each crumb. Basically, using segmentation techniques gives the possiblity to
assess each cell, while the granulometric and textural approaches only measures
a macroscopic score. The downside however is that by using segmentation tech-
niques there is a possibility of over or under segmenting either of the two bread
phases.
Spatial segmentation may become better if guided by multiple variabels which
provide the segmentation algorithm with more information e.g. several variables
of wavelengths. However, after thorough investigation it has been concluded
here that combination of multiple spectral measurements with VideometerLab
does not increase conrast and highlight neither the air nor the cell wall phase
more than single channels. This was tested by visual inspection and by use of
Principal Component Analysis [27], Minimum Noise Fraction [35], Canonical
Discriminant Analysis [27] and non-linear versions of these. It was found that
the best segmentation results were based on a single channel, blue (395 nm.),
from the multispectral image (Figure B.4(a)).
A single channel may be considered as a two-dimensional discrete functions
f(x, y). Mathematical Operations on two-dimensional discrete functions repre-
senting images are in abundance [28]. Often relatively simple procedures are able
to provide good results in a robust manner. To enhance the contrast of the blue
channel an adaptive histogram matching technique was used [25]. Histogram
matching is a technique which enhances contrast in an image by remapping the
brightness values such that the histogram of the gray level values in the image
are mapped to a model histogram of choice. If such an equalization is performed
on subsets of the image i.e. sub tiles of the image, the transformation works lo-
cally which in many cases enhances the contrast further than a global histogram
matching. However there is a tradeoff, since to small image subtiles will yield
no contrast enhancement. Thus a proper tile size needs to be selected. In this
study a tilesize of 8 was used.
Finding the outline of the crust is simply done using a threshold, while the
crust is removed using erotion with disk shaped structuring element, removing
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30 pixels from the edge.
For the actual cell marking an H-dome [31] technique was used. H-domes is a
morphological operation which makes heavy use of a technique called grayscale
reconstruction [31] to find regional maxima. Regional maxima in its strict sense,
not to be confused with local maxima is defined as a set of connected pixels M
(either 4 or 8 connection [31]) which has a certain value k and no pixels in its
neighborhood with higher gray level values than k. However, in practical appli-
cations (digital images) where it is desirable to find patches of similar gray level
values, a more loose definition is required. Thus, the H-dome technique allows
a regional maximum with up to k+H gray levels to be a regional maximum
instead. The principle of the H-domes algorithm allowing H values difference in
the regional maxima is shown in Figure B.3.

Figure B.3: 1 dimensional conceptual drawing of the H-domes technique. The
mask signal (blue), which represents the image function f(x, y) is used to create
a marker signal (red) by substracting a value H. Using morphological recon-
struction, which is a series of successive morphological dilations, on the mask
and marker image, regional maxima are found.

The idea is that two images are used, a mask and a marker image. The mask
image, which is the original gray level image is used to create the marker image
by substracting H. A series of gray level dilations are performed on the marker
image until new dilations does not change the marker level. The result is an
image where similar connected pixels now has the exact same value i.e. regional
maxima. By substracting this reconstructed image from the original image, the
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H-domes are kept. If the entire procedure is flipped to find regional minima, we
are able to find H-basins instead. An example of H-basins found on the contrast
enhanced blue channel image using the inverted H-domes technique is seen in
Figure B.4(d).
Using simple boolean arithmetics, the binary H-dome mask can be inverted to a
mask representing the cell-walls. To quantify CWT, [22] propsed to locate cell
centroids and draw vectors between neighboring centroids. The width of the
corresponding wall was then calculated as the euclidean distance between the
two intersection points of the vector and the wall. In this work an alternative
method, making use of an euclidean distance map (EDM) [28] and a medial
axis transformation (MAT) [28]. The MAT is used to calculate a skeleton rep-
resentation of the cell-wall structure which locates the median of all cell-walls
in the image (Figure B.4(e)). The actual CWT is looked up in the EDM (Fig-
ure B.4(f)) using the skeleton indexes, which means that the CWT is actually
calculated as the distance from the middle of the wall to the nearest cell and
multiplied with 2.
From the extracted masks of cell-walls and cells a set of features are extracted:

1. Total number of cells per area

2. Mean gray level value of cells (indicating the depth)

3. Mean Area

4. Mean Wall Thickness

Results and Discussion

Cell segmentation of a piece of bread which has been in the oven for 21 minutes
(Figure B.5(a)) is shown in Figure B.5(b). The actual decision of whether this
segmentation is good is very subjective. However, it seems that when assessed
visually by comparing with Figure B.5(a) that the segmentation process has
segmented the cells very well. According to the segmented results the piece of
bread consist of a large number of very small cells; 88% of the detected cells
have an area smaller than 1.5 mm2. However this still makes up a total of 16.8
cm2 out of an entire piece of bread of approximately 26 cm2. The largest cell is
found to be about 20 mm2 while the mean cell size is found to be 0.65 mm2. For
CWT the values appear to be more gaussian like distributed with a mean value
of 0.84 mm. The distribution of cell area and CWT are shown in Figure B.5(c)
and Figure B.5(d), and the cell area distribution is as expected skewed.
Features has been extracted from all images and are shown in Figure B.6. The
samples were as explained in the materials section prepared in three batches and
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Figure B.4: The steps of how the cells in the breadcrumb are localized and
segmented. All 6 images are from the same piece of bread (time in oven: 11
minutes). (a) shows the blue channel from the multispectral image (395 nm.),
here the cells are fairly visible. (b) shows the the result of (b) after processing
with an Adaptive Histogram Equalization algorithm. Transitions from cell to
wall is now better highlighted. (c) A simple threshold is enough to locate the
outline of the crust. An erosion ensures the crust to be removed. (d) shows
the result of treatment of the contrast enhanced crumb image. To segment the
cells an H-dome algorithm was applied together with an adaptive threshold.
(e) outlines the “skeleton” of the walls. This is used together with the eucldian
distance map shown in (f) to calculate the mean CWT. The skeleton was created
using the Medial Axis Transformation.
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Figure B.5: Assessment of a single piece of bread is shown here for a bread
which has been in the oven for 21 minutes. The total size of the bread is 58x45
mm. (a) shows a raw image at 395 nm. of the bread. (b) shows the segmented
cells where holes are represented with black. (c) and (d) shows the distribution
of the area of all cells and the distribution of CWT.
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Figure B.6: Results of extracted features across all images. Observations are
plotted as a boxplot where for odd numbered minutes there are 2 observations
and for even numbered minutes there are 4 observation (See batch A, B and C
in the materials section). All plots are plotted as feature as a function of time.
(a) shows the mean area size for a breadcrumb. (b) shows the mean CWT. (c)
shows the mean grayvalue of the blue channel i.e. an approximation to mean
depth of a cell in the crumb. (d) shows the total cellcount in a crumb.
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the bread were sampled every second minute. Two batches were sampled at even
numbers while one batch was sampled at odd numbers. This means that on the
plots shown in Figure B.6 there are two samples (on for each side of the bread
slice) for odd numbers and four for even numbers. The extracted features are
shown as boxplots which shows the mean value of the repetitions as a red bar.
As expected the tendency is that the mean CWT decreases as the number of
holes increases. There is a tendency for the area of the holes to increase during
the first 5 or 6 minutes while it then starts to decrease. The GL values decreases
rapidly within the first minutes and then goes to a steady state. Intuitively one
would expect the mean GL value feature to have the same behaviour as the mean
area feature since these both describe area although in different dimensions (GL
value represent the depth of the cells). The mean area feature should however
be regarded as more correct since there are more certainty of this area estimate
than the GL value area estimate. A common trend for all calculated features
is that they seem to reach some steady state after approximately 6 minutes in
the oven. This is of course dependent on the ingredients used in the dough etc.
however for the given samples the main change in air bubbles appear to happen
in the beginning of the baking time where the dough is still spongy and the cell
walls still have not gelatinized.

Conclusion

The ability of a multispectral imaging system such as VideometerLab to quantify
the cell distribution in bread baked over different time spans was investigated.
Similar studies have been performed before, however to the knowledge of the
author no published work presents the use of digital images for assessing the
development of cells in the breadcrumb over time. Most studies focuses on look-
ing at bread prepared with different mixing times, recipes etc. but baking time
and digital image analysis has not been combined in published work. Computed
parameters describing the crumb development include total number of cells per
area,cells depth, mean Area and mean wall thickness. Morphological methods
together with edge enhancing methods were used to extract the cells, which is
able to scale very well, meaning it will be able to assess the cell population in
different breads. Basically the methodology should in theory apply equally well
to virtually any type of baked good product where internal appearance charac-
teristics such as “holes” help to define product quality.
A system such as this could be used in a laboratory to assess the effects of new
or existing ingredients or processes on the crumb. Another is direct quality
control at the process line (obviously destructive sampling). The studies car-
ried out in this work has mainly been proof of concept and explorative work.
However it shows that after approximately 6 minutes in the oven, the structures
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in the breadcrumb starts to stabilize. The ability for the multispectral device
to assess spatial structures such as cells in the breadcrumb furthermore shows
the ability for spatial inference while other experiments shows the ability for
spectral inference.
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Abstract

Methods for studying and visualizing the browning process of butter cookies
using mutispectral images is presented. A sensory panel consisting of six people
visually evaluates a set of butter cookies and divides them into three groups.
An acceptance score is developed based on the panel evaluations as well as
multispectral images, which is used to visualize how the browning develops over
time and temperature in a quadratic response surface while also indicating in
which areas the surface colour is acceptable. Furthermore the acceptance score is
used to visualize spatially of the browning progresses within a cookie. A water
prediction model is similarly created to track changes in water activity. The
water prediction model is found to correctly estimate the actual water content
with an error margin of 13.6%. The propagation was visualized similar to the
acceptance score with intuitive results.

Introduction

In an industrial setting, when preparing baking products such as cookies in the
oven, surface colour is a critical index for the baking state. Together with tex-
ture and aroma, the surface colour is the first impression a consumer gets of a
baking product [2]. This puts a considerable importance on the surface colour of
cookies as a quality parameter. The surface colour of cookies depends both on
the physicochemical characteristics of the raw dough such as water content, pH,
reducing sugars and amino acid content and the operating conditions applied
during baking; temperature, time, air speed and relative humidity. Thus there
are many parameters which may be tuned to obtain a desired surface colour.
In the baking production line it is of high importance to keep a constant control
of the surface colour to ensure a homogeneous appearance of the baking product
within an acceptable region. Naturally this is done by continuously inspecting
the product for the surface colour and texture and adjusting the above men-
tioned parameters to in order for the suface colour not to get outside this accept
region. Traditionally such control and quality checking has been done by hu-
man expert operators. In spite of having experts inspecting the production line,
which has many qualities, there are also heavy disadvanteges. Besides difference
in the vision of the experts, they are in nature subjective and inconsistent and
can vary over periods of time even for the same expert [3].

Maillard reactions [53] is one type of non-enzymatic browning corresponding
to a set of reactions occurring between amines and carbonyl compounds, es-
pecially reducing sugars such as glucose. The Maillard reactions are known to
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occur in heated, dried, or stored foods and thus play an important role in the
browning of cookies. Even though the browning of the surface colour is mainly
controlled by Maillard reactions, the extent of Maillard reactions are controlled
by the physicochemical characteristics and operating conditions mentioned ear-
lier. However, the chemistry underlying the Maillard reaction is very complex
and is notoriously difficult to control [53]. Beside adding pleasant aroma, good
taste and good looking brown appearance, a product of Maillard reactions is
the formation of toxic mutagenic compounds also known as acrylamide. The
ability to keep a stable cookie production with homogeneus acceptable surface
colour and texture as well as a minimum of acrylamide requires precise and
objective control of the baking production line. Such objective measurement
can be achieved through rapid assessment tools such as spectroscopy or digital
images together with intelligent algorithms which are able to cope with some of
the disadvanteges of using human experts.
In the work [5], the authors use spectral imaging to quantify enzymatic brown-
ing in apple slices.
In this work focus is put on the possibility of using a multispectral imaging sys-
tem to quantify the browning of cookies by building an acceptance score based
on expert selected cookies in different browning stages. The ability to combine
browning progress together was expert panel knowledge in a single score is to
the knowledge of the authors not investigated in previous studies. Furthermore,
the ability to quantify water content from the same images as the acceptance
score is estimated is investigated. The intention is to show that it is possible
to extract different quality parameters from the same multispectral image. Fur-
thermore the images are used to investigate how time and temperature affect
the browning and moisture content. Control of initial moisture content and
moisture migration is critical to the quality and safety of foods. Ideally, food
manufacturers develop products with defined moisture contents to produce a
safe product with optimum shelf-life.

Materials and Methods

A total of two datasets were created. The first set (set 1) was created as a
training set to be used partly in a sensory evaluation of cookie appearance and
partly to be imaged using a multispectral device. These images were then used
to create an acceptance score which indicates the stage of browning a specific
cookie is in.
The second set was used to build a response surface describing how time and
temperature affects the acceptance score. All cookies were made in independent
triplicates.
The color of all cookies were also measured in three points around the center of
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the cookie using a Minolta Colorimeter.

Baking procedure

Cookies with a thickness of approximately 6 mm were created in the laboratory.
The cookies were created according to a recipe from Haas Meincke1. A table
top “Teddy” mixer 2 was used to mix the following ingredients into a smooth
and even dough.

Icing sugar

Margarine or butter

Vanilla extract

Whole egg

Skimmed milk powder

Salt

Sodium bicarbonate

Water

Wheat starch

Cake flour - wheat

Set 1 was baked in the oven at 180◦C for different of time periods which ensured
a good sampling of the entire browning process. Specifically the times in the
oven was 4, 6, 7, 8, 9, 10, 12, 14, 16 and 20 minutes.
Set 2 were baked in the oven at the temperatures: 150, 160, 170, 180 and 200◦C,
for each of the periods: 4, 6, 8, 10, 12, 14 and 16 minutes.
For both other parameters regarding dough composition, weight, pan dimen-
sions, rising time, oven temperature, ventilation degree and cooling time before
slicing, have been kept constant.

1http://dfemeincke.com/
2http://www.varimixer.com
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Sensory cookie evaluation

Sensory evaluations were performed by the staff at the laboratory. A total of six
persons participated. The cookies from set 1 were presented to the sensory panel.
Each individual was asked to divide the cookies into three classes independently
from the other members in the panel, based only on appearance. The classes
are described as underbaked, adequately baked and overbaked. The sensory
individuals were blinded to the bakingtime, so that the only factor playing a
role in the decision was the appearance. The evaluation was done in a daylight
setting.
Naturally a sensory panel varies significantly depending on the people it consists
of. The variance depends on peoples preference to the degree of burning/baking
a product has which is very individual. However the preferences depends largely
on the culture of the people in the panel as well as their geographical origin. All
persons in the present panel were people in mid twenties to thirties of danish
origin.

Color conversion

In order to transform VideometerLab images to CIE L∗a∗b∗ images a numerical
integration was done to calculate a response for each of the three types of color
sensitive cones in the human eye [10]. The general relation between spectral
reflectance and color is shown in Equation C.1.

Pi =

∫

λ

lD65(λ)R(λ)OXY Zi(λ)dλ, , i = 1, 2, 3 (C.1)

Pi contain the ith cone response, lD65 is the lightsource, R is the surface re-
flection as recorded by VideometerLab and OXY Zi

is a human observer. It is
necessary to transform the spectra to the XYZ colorspace [10] first since there
is a linear relation between this colorspace and reflection spectra. A series of
standard illumination sources exist and here the D65 corresponding to outdoor
daylight illumination was used [10]. Since VideometerLab records relatively
sparsely over the visual area, the spectra were interpolated using cubic splines.
From the XYZ colorspace a non-linear standard transformation to the CIE
L∗a∗b∗ colorspace was carried out [10].

Calculation of acceptance score

The acceptance score based on multispectral images and sensory evaluations is
created using fishers discriminant analysis [27]. The images in data set 1 are
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classified into groups by the sensory panel and in turn transformed to multivari-
able data matrices containing only pixel values from the surface of the cookies.
The within group and between group scattering matrices used in the fishers
analysis were estimated based on all pixel values across all cookie surfaces in set
one. Using the two scattering matrices an optimal projection vector is found
such that each group when projected onto the vector will contract will the three
groups will be scattered as much as possible. This means in the acceptance score
space, which we call the space in which the cookies are projected into, the group
separation is maximized in order to put a weight on the group membership.

Results and Discussion

Multispectral images from set 1 were treated to first remove the background,
leaving only pixels with cookie surface. This was done using simple adaptive
thresholding techniques. Calculating mean spectra for all cookies in set 1, re-
vealed a clear correlation between time spend in the oven and spectral shape
as seen in Figure C.1. Each spectrum is plotted as spectral reflectance value as
a function of wavelength and colured according to the time spent in the oven;
light colours are short time in the oven and dark colours are long time spent
in the oven. Mainly there is a scaling difference between the spectra meaning
the lightness. The brightness difference is largest between 400 and 700 nm (the
visible wavelengths) while in the near infra-red area the scaling difference is
smaller. Furthermore it is seen how there is a non-linear difference in the short
wave end of the spectrum in the area between 400 and around 500 nm, which
is the purple/blue area of the visible spectrum. It is well known that melanoids
has absorption properties in this area, specifically at 420 nm [55]. As melanoids
are formed during baking of the cookies it is natural that a spectral difference
will occur in this area. The cookies were measured using a Minolata colorimeter
in order to establish a correlation between the Minolta measurements and the
VideometerLab measurements. Previous work has shown a correlation between
Minolta measurements and the browning of cookies [7] and a correlation will
serve as an establishing factor for using VideometerLab as an instrument for
measuring the browning of cookies. Figure C.2 shows plots of Minolta mea-
surements as well as those of VideometerLab. The CIE L∗a∗b∗ values show
a clear decreasing trend as the baking time increases. Especially the L∗ com-
ponent, representing the lightness shows this trend clearly. In spectral terms
the L∗ component may be interpreted as the scaling mentioned earlier, which
also showed a significant decreasing trend in Figure C.1. The a∗ component
representing position between red/magenta and green ( negative values indicate
green while positive values indicate magenta), shows an ascend from negative
values to positive values showing the change from green values in the spectrum
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Figure C.1: Spectra of training data. Each spectrum represents the mean mean
spectral shape of all cookie pixels in a multispectral image. The shapes show a
clear correlation with baking time.

to more magenta values. This shift corresponds to a change around 510 nm as
well as in the red and violet areas, corresponding to 400 and 700 nm. The a∗

component seems to settle after approximately 10 minutes balking time. Finally
the b∗ component representing the position between yellow and blue (b*, nega-
tive values indicate blue and positive values indicate yellow) shows an increase
in yellow until 10 minutes, where after the cookies get to brown and the yellow
decreases again. Clearly the standard deviation of the transformed Videome-
terLab CIE L∗a∗b∗ values, which is averaged over a large quanitity of pixels
has large standard deviation than the measured CIE L∗a∗b∗ values. This is
expected as the multispectral images capture all reflection information on the
surface and thus a large amount of variance while the CIE L∗a∗b∗ measurement
only captures three distinct points. Sensory evaluations of set 1 is shown in
Figure C.3(a). Each baking time was evaluated by each individual in the panel
which shows that the adequate baking state is reached after six minutes. There
is slight disagreement in the panel, however 80% agrees that 6 minutes baking
time is enough for adequate baking. There is more disagreement on the transi-
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Figure C.2: (a), (b), (c) shows the CIE L∗a∗b∗ from a Minolata colorimeter
while (d), (e), (f) shows calculated CIE L∗a∗b∗ values for the corresponding
VideometerLab images. All values are plotted against baking time. The er-
rorbars indicate 1 standard deviation calculated from the repetitions. Minolta
measurements has 3 samples measured on 3 distinct places on the cookie surface.
The VideometerLab plots somewhat large deviations, however each timesamples
is represented with approximately 400000 measurements corresponding to the
amount of pixels on the surface of each cookie. Beside the color variation in
each cookie there is of course also some noise. The mean value is plotted as a
line, and there is good correspondence between VideometerLab measurements
and Minolta measurements. The scale on the Y-axis differ due to the scaling
in the calculation of CIE L∗a∗b∗ values from VideometerLab. Videometer im-
ages shows larger standard deviations since there for each cookie measurement
is around 4x105 observations and much larger probability for extreme values.
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Figure C.3: (a) shows the evaluation of a sensory panel of six persons. Each
person classified a set of cookies into each of the stages under baked, adequately
baked and over baked. The histogram shows a normalized frequency for each
group as a function of time in the oven. (b) shows a boxplot of mean values
of acceptance score. Each box contains three samples. The background is
shaded according to the classes defined by the sensory panel. The limits between
the groups has been calculated as the mean euclidean distance between border
boxes.
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tion from adequate to the overbaked stage. 80% agrees that 10 minutes baking
times produces adequate cookies while 40% agrees that also 12 minutes produce
adequate cookies. There is no incident of all three classes occurring at the same
baking time, which indicates very clear separation between the extreme classes.
This clear separation is obvious in Figure C.3(b) where the browning stage has
been quantified.

Here the large gap between the extreme classes is seen as euclidean distances
based on an acceptance score. The browning score is calculated based on data
from one of the three repetitions of set 1. A CDA was trained and a projec-
tion vector ensuring maximum separation between the three class was found.
Figure C.4 shows the two most significant projection vectors or loadings from
the CDA training. The most significant wavelengths in the first loading are 395
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Figure C.4: The loadings from the canonical discriminant analysis used to create
the acceptance score. It is clearly seen how the area from 400 to 550 plays a
significant role in the transformation vectors.

and 525, which both are seen to attribute largely to the variance in Figure C.1.
The peaks in at these wavelengths might be influence by the acrylamide formed
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during baking which influences the area around 420 and 550 nm.
Each box in Figure C.3(b) contains mean score values of the cookies used to
train the CDA model together with mean score values of the remaining two repli-
cates. The spread of the values is relatively low, while the development over
time shows a significant decrease. The limit between the classes were calculated
as the mean euclidean distance between 4 and 6 minute acceptance score and
the 10 and 12 minute acceptance score. The acceptance score can be applied to
multispectral recordings of new cookies to predict which stage of browning they
are in. This was done in Figure C.5. By applying the CDA transformation
to the cookie images, it is possible to assess pixelwise acceptance scores. This
enables a spatial investigation of each cookie to see if the browning is uniformly
distributed across the cookie. Such assessment showed in Figure C.5 reveals how
the browning propagates from the exterior toward the center. Underbaked areas
were only detected in the cookie with 4 minutes baking time which corresponds
well to the sensory evaluations. An overall acceptance score for each cookie is
obtained by calculating the mean acceptance score of all pixels.
Mean acceptance score was calculated for all cookies in set 2 to assess the brown-
ing over a set of different times and temperatures. A quadratic surface (Equa-
tion C.2) was fitted to the acceptance scores in Figure C.2.

y = 0.32− 0.12x1 − 0.13x2 + 0.008x1x2 + 0.02x2
1 + 0.02x2

2 (C.2)

When looking at the response surface the gradient is more or less equal in
both axes. This is further verified by looking at the model parameters for x1

and x2 which are almost equal. This means that with a cookie made from the
ingredients listed in the materials section, the surface color changes equally fast
in both directions. It is however still seen how the over baked state naturally
dominates the upper right corner. Furthermore it is seen that the transition
from under baked to adequately baked is just below 180◦C which corresponds
quite well with the sensory data.
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(a) 4 min - RGB (b) 4 min - Labels

(c) 10 min - RGB (d) 10 min - Labels

(e) 12 min - RGB (f) 12 min - Labels

Figure C.5: pseudo RGB representations of the multispectral images of cookies
taken at different baking times. For each RGB image a classified image is
shown where Pixels has been classified to one of the three browning stages. The
predicted images were smoothed with a gaussian filter before thresholding in
order to remove noise. When observing images from top and down it is seen
how the browning of the cookies starts from the edge and works towards the
center. Only the first cookie with a baking time of 4 minutes contain areas of
underbaked surface.
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Figure C.6: The surface colour score as a function of time of temperature for
cookies. Zones indicates areas created by the sensory evaluations, corresponding
to under, adequate and over baked surface colour.

Determining water content

Literature shows that browning mainly happens as a consequence of tempera-
ture and water activity [53]. The non-enzymatic browning which is responsible
for creation of among other things the brown nitrogenous polymers melanoidins
is dependent on low water activity in the surface of the baking product. Due
to an initial dehydration step in the Maillard reaction a certain temperature
is needed to get the proper amount of activation energy to start the process.
As the surface temperature increases and the water evaporates the rate of the
Maillard reactions increase. Therefore a knowledge of the water content will
give additional information on the browning process in the product. Generally
when water activity decreases to 0.4-0.7 and temperature surpasses 105−120◦C
[54].
NIR Multispectral imaging is capable of detecting water shifts in the NIR area
of the electromagnetic spectrum, disregarding the surface color. The brown
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colour on the surface products is known to have high absorbance properties in
the UV and VIS area [55], quite far away from the water peaks at 970, 1440
and 1930 nm. The author was not able to find information in the litterature
about NIR absorption on melanoids and other Maillard products, however when
observing the spectra in the first part of the near infra red region it seems there
is only slight variance here(700-970 nm.). This variance might be attributed
to different molecules, however since water has an absorption peak in this area
(970 nm) the surface water most certainly will contribute to this variation.
To investigate the relation between water content and the recorded spectra, a
prediction model was created based on meanspectra of cookies and measured
water (kgW kg

−1
DW ).

A ridge regression method was used to relate the spectral information directly
to the measured water in the cookies. The spectral images used for this were the
same as those used to create the browning surface in precious section. To select
the complexity parameter of the ridge regression a ten fold cross validation was
used, while the assessment of the model was based on a bootstrap method with
1000 resamplings. Figure C.7(a) shows the loadings of the best regression model.
Basically the model seems to put importance to the near infra red area as well
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Figure C.7: (a) shows the loadings of the water prediction model. The near
infra red area shows significant peaks together with the area around 470 nm. (b)
shows values of standard error of prediction calculated in a bootstrap procedure.
The average of the SEP values is calculated to 13.6, meaning on average the
prediction method has an errorrate of 13.6%.

as the area around 470 nm. The large loading around 470 nm might be because
of a correlation between an increasing browning (shift in the area around 470
nm) and a decreasing water content in the surface (shift in the near infra red
area). The dimensionless parameter, standard error of prediction (SEP) which
is basically a rescaling of the well-known Root Mean Square Error (RMSE) is
used as to evaluate the model. The distribution of SEP based on the bootstrap
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is seen in Figure C.7(b), and the mean value is calculated to be 13.6%. Thus
on average the predictions may vary with up to 13.6% from the real value.
The spatial distribution of water in each cookie may similarly be assessed by
projecting each recorded spectrum in the cookie surface (one per pixel) with
the calculated loading (Figure C.7(a)). Figure C.8 shows spatial predictions on
cookies baked in the oven at 150◦C in different time periods. Table C.1 shows
the corresponding predictions for the same cookies. The visual impression is

(a) (b) (c)

(d) (e)

Figure C.8: Water content for five cookies have been predicted for each pixel
on the cookie surface and smoothed to remove noise. The average water predic-
tion for the five cookies has been calculated and presented in Table C.1. The
colormap used in the visualization of the five surface is the same where blue
values correspond to low water content and red values correspond to high water
content.

very appealing. Due to noise the predicted images were averaged with a mean
filter with a size of 30 pixels. A clear negative gradient is seen going from im-
age C.8(a) to image C.8(e), corresponding to 4 and 12 minutes baking time.
This is also confirmed by the actual water content as measured with the oven
method in Table C.1. Furthermore it is seen how the water is relatively uni-
formly distributed with a slight tendency to cluster in the center. By averaging
all predicted pixels an overall estimate of the water content in the cookie can
be calculated, which shows errors with limits within the calculated SEP. The
largest errors is the most moist cookie at 0.0107 kgW kg

−1
DW corresponding to

approximately 10% deviation within the range of the dataset.
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Table C.1: Real and predicted water content for the cookie surfaces shown in
Figure C.8. The real values have been measured using a drying cabinet while the
predicted values were calculated as average values of all pixels on the surface.

Time Temperature Real ( kgW
kgDW

) Predicted ( kgW
kgDW

) Error Figure

4 150 0.1037 0.093 0.0107 C.8(a)
6 150 0.0684 0.0596 0.0088 C.8(b)
8 150 0.0475 0.0399 0.0076 C.8(c)
10 150 0.0370 0.0316 0.0054 C.8(d)
12 150 0.0244 0.0255 -0.0011 C.8(e)

Conclusion

Studying browning in cookies using advanced equipment is of importance for the
baking industry to improve the quality inspection at the processline. The devel-
opment of non-enzymatic browning, Maillard reactions and caramelization has
been a topic for academic investigation for many years. However only recently
people have started using first colorimeters and now digital cameras. In this
work assessment of the browning process using multispectral imaging was pro-
posed. The multispectral system proposed records multispectral images in the
visible and first part of the near infra red area of the electromagnetic spectrum.
An acceptance score based on the evaluation of a set of cookies by a sensory
panel were developed using canonical discriminant analysis. The sensory panel
consisting of 6 persons decided to vote cookies with a baking time of 4 minutes
as under backed while cookies with a backing time from (and including) six min-
utes to (and including) 10 minutes as adequately baked, while all times above as
over baked. The evaluations were purely based on the visual appearance of the
cookies, thus by colour and visual texture. The discriminant analysis revealed
that in order to map a spectrum to an acceptance score was 395 and 525 nm,
corresponding very well with the absorption properties of melanoids. From the
acceptance score a response surface was created to build a model which relates
the influence time and temperature has on the browning. It was found that on
the scale of the eternal parameters, time and temperature, that the change in
surface color happened at the same rate per unit step. Furthermore a broad
acceptance band was seen, also corresponding very well with the sensory eval-
uations. A demonstration of the browning distribution on the surface of the
cookies was presented which revealed how the browning started from the edges
of the cookie and worked its way to the interior. Such information may be used
to control the uniformity of the browning of each cookie.
Besides assessing the browning on the surface of the cookies, the surface water
content was similarly evaluated. An approach similar to the acceptance score
approach was used, however to estimate the water content a ridge regression
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technique was used. The ridge regression needs to select a complexity parame-
ter to control the regularization. This complexity parameter was chosen using
ten fold cross validation. Similar to the CDA, the ridge regression also projects
new observations using a loading vector. The loading vector revealed that in or-
der to map spectra to water content the NIR infrared area as well as 470 nm was
of significance. Having the NIR area in a water prediction model was expected
due to the water peak around 970 nm, however the importance of the 470 nm
may be due to the correlation of the browning and the evaporating water which
are negatively correlated.
A bootstrapping method was used to assess the standard error of prediction -
a dimensionless error parameter expressed in percent, of the water prediction
model. The Standard error of prediction showed an error of approximately
13.6% on average. The water prediction model was demonstrated to predict the
distribution of the water activity on 5 cookies. An intuitive visualization result
was obtained where the model showed how water evaporated from the surface
over a period of up to 12 minutes baking time. Similar to the browning of the
cookies, the evaporation propagated from the edges towards the interior as the
time elapsed. Since the Maillard reactions will be stronger with less water up til
a certain point, the visualization of the acceptance score and the water content
both propagating from the edge towards the interior seems to be a good result
which also is in accordance with the literature.
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Luis Ruiz-Garcia. A multispectral vision system to evaluate enzymatic
browning in fresh-cut apple slices. Postharvest Biology and Technology,
60(3):225 – 234, 2011.

[6] Gunter Wyszecki and W.S. Stiles. Color science: Concepts and Methods,
Quantitative Data and Formulae, second edition. Wiley & sons Inc, 2000.

[7] Ella Pagliarini, Monica Vernille, and Claudio Peri. Kinetic study on color
changes in milk due to heat. Journal of Food Science, 55(6):1766–1767,
1990.

[8] Ji-Sang Kim and Young-Soon Lee. Enolization and racemization reactions
of glucose and fructose on heating with amino-acid enantiomers and the
formation of melanoidins as a result of the maillard reaction. Amino Acids,
36:465–474, 2009. 10.1007/s00726-008-0104-z.



118 REFERENCES



Appendix D

Monitoring water content
using multispectral imaging

and NIR in minced meat

Published in Proceedings for Near Infrared Spectroscopy International Conference, NIR
2009, November 2009



Proceedings of the 14th International Conference on NIR Spectroscopy 497

Monitoring water content using 
multispectral imaging and NIR in a 
minced meat preparation process

Bjørn S. Dissing,a Bjarne K. Ersbølla and Jens Adler-Nissenb

aDepartment of Informatics and Mathematical Modeling
bNational Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, 
Denmark. bdi@imm.dtu.dk

Introduction

Online quality inspection of food process control is today often done by human expert  
operators who have many years of experience. However, the trend seems to point towards fast 
non-invasive inspection methods, such as near infrared (NIR) technology for quality inspection 
in different food process control tasks, as either replacement for, or supplement to the human 
operators. 

We are investigating the potential of using multispectral imaging in the visible as well as  
the NIR area of the electromagnetic spectrum instead of human operators and as an alternative 
to standard NIR measurement methods. A drawback of spectroscopic methods is its one dimen-
sional nature. A spectroscope measures everything within its field of view as an average measure-
ment over the area registered by the measuring device. By employing imaging instead of point 
measurements it is possible to record much larger spatial areas, and thereby gain spatial as well  
as spectral information. This makes it possible to assess chemical as well as spatial quality 
features at-line, such as water content, surface color, fat content, particle sizes, texture etc.

In this study, we are specifically investigating the ability of a multispectral camera to predict 
the water content in minced meat after it has been processed in a continuous frying process at 
different times and temperatures. Other similar investigations have been done.1 The camera used 
is called a VideometerLab,1 and records multispectral images in a set of predefined wavelengths. 

Some absorption bands of water lies in the vis and NIR area around 640 nm, 752–756 nm,  
960 nm and 1152–1160 nm. VideometerLab overlaps a large part of this region, which is what we 
want to utilise to quantify the amount of water in the surface of fried minced meat, by correlation 
to dry-matter measurements of the same sample. 

1 http://www.videometer.com
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Experimental setup and data
The study subject of this paper is minced beef with 15–18% fat. The meat was purchased through  
a wholesale supplier, Inco Danmark a.m.b.a, Copenhagen in a frozen state. The meat blocks 
of approximately 2 kg. were stored at –30oC. For the experiment the meat blocks were crushed 
with a hammer in coarse pieces below 200 g. A portion of about 1 kg was chopped in an indus-
trial meat chopper (Kilia 0.57 m diameter) at the lowest speed step, to prevent heating. The 
chopping was continued (about 2–3 min.) until the frozen meat was disintegrated with no large  
lumps left. 

Of the disintegrated, still frozen meat, 800 g was fed in consecutive portions of 100 g each to a 
continuous frying machine at pre-selected temperatures and frying times. Samples were prepared 
at the temperatures 200oC, 225oC and 250oC; the frying time varied from 120 s to 240 s in 40 s 
intervals. 

The actual water content was determined using a standard dry-matter method (oven drying at 
105oC for 24 h) where the mass of evaporated water of the samples (about 2 g each) was measured 
by weighing. All measurements were done in triplicate to get more stable measurements, where 
the mean of the three replications is seen in Table 1. 

Standard deviations of the replicates were estimated between 0.18 and 0.42.
The multispectral images were acquired using a VideometerLab, see Figure 1, which 

records 18 different reflectance spectra corresponding to the wavelengths; (430 nm, 450 nm,  
470 nm, 505 nm, 565 nm, 590 nm, 630–645 nm, 660 nm, 700 nm, 850 nm, 870 nm, 890 nm, 910 nm, 
920 nm, 940 nm, 950 nm and 970 nm).

The VideometerLab uses an LED technology, which means that no filtering of the incoming 
light is needed. Furthermore, the camera is equipped with an integrated sphere coated with a 
matte material, which ensures uniform lighting, avoids highlights and makes it easy to optimise 
the dynamic range in low contrast areas. VideometerLab technology is a low cost way of acquiring 
multispectral images since it uses standard silicium chip technology.

For the entire experiment, only the longest 8 wavelengths, the NIR channels, were used for the 
analyses, in order to avoid e.g. confounded variables in the data modeling. 

Table 1. Water Content determined by the dry-matter method.

200 o 225 o 250 o

120 s 54,32 % 53,17 % 51,01 % 

160 s 52,66 % 53,96 % 46,29 %

200 s 51,49 % 52,55 % 49,70 % 

240 s 51,16 % 51,27 % 48,28 % 
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Data analysis
Having a set of 8 NIR images measured between 850 and 970 nanometers (both included), with 
corresponding pixels, leads to application of multivariate and chemometric methods. Before 
applying a multivariate method and calibrating the water system, an expansion of the multispec-
tral images was done. All possible ratios of all eight NIR wavelengths were derived in order to find 
better features to describe the water content of the sample. The new multispectral image including 
the ratio set had a total of p2 channels, where p is the number of original channels. For each of 

Figure 1. 850 nanometers: unprocessed image.

Figure 2. 850 nanometers: processed image: only local maxima remain.
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the channels in this new image, a mask was created to include only the local maxima of the meat 
granules using a mathematical morphological operation, called the h-domes technique.2 The very 
coarse surface of the minced meat gives rise to shadows with less information, which is why only 
the fully illuminated areas of the images are considered in the analysis, as seen in Figure 2. 

The preprocessed p2 channels were then converted to intensity densities, where the 1st, 5th, 
10th, 25th, 50th, 75th, 90th, 95th and 99th percentiles were calculated. The percentiles give infor-
mation about the shape of each of the p2 density estimations, and are used as covariates in a now 
very ill posed linear regression problem of the form 

 y = Ax + b + e 

The actual water content from is used as the dependent variable y, and the expanded feature 
space of the multispectral images is used as the independent variable space x.

A large amount of the calculated variables are nearly linearly dependent, and bring no actual 
information. This means a standard PLS calibration would give us a very large and complex 
model. In order to get a more parsimonious and interpretive model, a sparse method is utilised 
to select relevant features. Many sparse methods exist to solve such problems, where a very well 
known and intuitive method is the stepwise selection method, chosen to solve this problem. 

Results and discussion
The very sparse set of NIR measurements made this an interesting study. Even though the water 
absorption band at 850 and 970 nanometers are relatively weak compared to bands at lower 
frequencies we managed to get good correlation results with independent chemical measure-

Figure 3. The resulting model shows good correlation between measured and predicted values of water.
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ments. A value of R2 of 0.95 was obtained between the predictions and the measured response in 
is seen in Figure 3. 

The final model selected by the stepwise regression was

 

920
1 970 2 890 1

910
( ,50%) ( ,99%) ,1%

λα λ α λ α ε
λ

� �= + + +� �
� �

y q q q
 

ai denotes the coefficients, q denotes the quantile function with two parameters, the first being 
the variable from the expanded basis, and the second being the quantile-number. In this study, the 
absorption bands at 970 and 890 nanometers play the most important role in the prediction model, 
which had a p-value of 0.03.  The model performance was calculated using a Leave One Out Cross 
Validation (LOOCV) scheme, due to the small amount of observations. 

Due to water bands high sensitivity to temperature, it is of course important to emphasise that 
the measurements in this experiment were performed at 20°C. This means that for on-line use, a 
calibration needs to be performed in order to compensate for the temperature.
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Abstract

A large experiment regarding quality in stored minced pork meat has been
performed to test the ability of a rapid multispectral imaging device to quan-
tify spoilage degree. Bacterial counts of a total of 167 meat samples stored for
up to 580 hours have been quantified using traditional laboratory methods.
Meat samples were contained under 2 different storage conditions - aerobic
and modified air packages as well as under different temperatures. Besides
bacterial counts, a sensory panel has judged the spoilage degree of all meat
samples into one of three classes. We find that the multispectral imaging
device is able to classify 76.13% of the meat samples correctly according to
the defined sensory scale. Furthermore we find that using the multispectral
camera device, we are able to predict total viable count with a standard error
of prediction of 7.47%. We conclude that there is a good possibility for a
setup like the one investigated will work for detection of spoilage degree in
minced pork meat.

Keywords: Multispectral Imaging, Meat spoilage, Baranyi modeling,
Chemometrics, Aerobic storage, MAP storage
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1. Introduction

Colour is among the most important factors playing a significant role in
the evaluation of meat quality. Muscle colour at the point of purchase is an
indicator of freshness and anticipated palatability for the consumer [1, 2]. Mi-
crobial growth in fresh meat is the main factor associated with deterioration
of meat quality, spoilage and economic loss, and is closely associated with
the colour and appearance of the meat[3]. During conventional slaughter pro-
cedures and further processing necessary to prepare meat for consumption,
microorganisms are introduced into and onto carcasses.The type of spoilage
is affected by intrinsic and/or extrinsic parameters [4]. These could be the
characteristics of the meat or the storage or transportation environment as
well as processing parameters such as how the meat is minced or grinded
[3, 5]. These parameters influence the establishment of the particular micro-
bial association and determine the rate of attainment of a climax population
so called ’Ephemeral Spoilage micro-Organisms’ (ESO) [3, 6]. It has been
shown that pseudomonads are the ESO under aerobic storage conditions
while Lactic acid bacteria or Brochothrix thermosphacta have been named
as such for storage under Modified Atmosphere Packaging (MAP) condi-
tions. So far more than 50 chemical, physical and microbiological methods
have been proposed for the detection and measurement of bacterial safety
or spoilage in meat. However most of these methods are time-consuming
and provide retrospective information and thus they can not be used on- or
at-line. Additionally the changes and development in technologies for food
processing and preservation [e.g., vacuum packaging (VP), modified atmo-
sphere packaging (MAP), active packaging, etc] make it evident that the
important and urgent task of identifying safety and spoilage indicators is a
complicated proposition. On the other hand, the meat industry needs rapid
analytical methods or tools for quantification of these indicators in order to
determine and select suitable processing procedures for their raw material
and to predict the remaining shelf life of their products. Furthermore, in-
spection authorities need reliable methods for control purposes, while the
wholesale and retail sectors need these valid methods to ensure the freshness
and safety of their products and to resolve potential disputes between buyers
and sellers. The use of microbial metabolites as a consequence of microbial
growth in meat has been continuously recognized as a potential means for
assessing meat quality [3, 7].
Multispectral imaging techniques are a natural extension to normal colour
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cameras. Whereas normal colour cameras integrates electromagnetic radi-
ation over three broad bands in the visual range, multispectral cameras
are able to record electromagnetic information in more narrow bands. This
means multispectral cameras are able to record spectral reflection properties
in narrow bands, which thereby makes it possible to assess the composition
of surface chemistry of the object of interest. Such recordings may thus be
used to extract intrinsic chemical and molecular information such as water,
fat, protein or other hydrogen-bonded constituents. Sometimes multispec-
tral images are also referred to as surface chemistry maps [8] or hypercubes.
In short, multispectral images can provide not only spatial information, as
regular imaging systems, but also spectral information for each pixel in an
image. Thus, using hyper-spectral images, it is possible to assess physical
and geometric characteristics such as colour, size, shape, and texture. Several
publications have been written on the subject of using multispectral imaging
for food control [9, 10, 11].
Multispectral images are a natural source of massive high dimensional datasets,
which may be analysed using specific techniques. A discipline which is gain-
ing ground in the area of chemical and biological analysis is the discipline of
machine learning. When used in conjunction with massive modern datasets
of chemical or biological character it is sometime referred to as chemomet-
rics, which focuses more on specific machine learning methods than others.
Machine learning covers advanced statistical and numerical machine learning
methods such as support vector machines, cluster analysis, neural networks,
partial least squares and logistic regression. Both supervised as well as unsu-
pervised statistical methods are considered, and may be used in conjunction
with multispectral image analysis to relate multispectral images to chemi-
cal reference measurements values or sensory labels. Clustering algorithms
based on data from multispectral images have been thoroughly investigated
to assess food quality [12].
In this study, the potential of multispectral imaging techniques was exploited
for assessment of spoilage degree in pork meat. The specific objective was
to evaluate pork meat quality based on spectral as well as spatial informa-
tion using various chemometric techniques; regression and clustering. The
aim was to make a method that would be able to evaluate meat spoilage
at different storage temperatures (0, 5, 10, 15, and 20◦C) and package type
(aerobic and modified atmosphere). The evaluation was based on predicting
microbial growth as well as by classifying between different quality classes as
evaluated by a sensory panel.
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2. Materials and Methods

2.1. Sample preparation

Fresh minced pork was purchased from the central meat market in Athens
and transported under refrigeration to the laboratory within 30 min,. Minced
pork was divided in portions of 75 g and packed individually either aer-
obically or under modified atmosphere (MAP). For aerobic storage, meat
samples were placed on foam trays which were subsequently wrapped with
air-permeable polyethylene plastic film. Moreover, samples packaged in MAP
were enclosed inside plastic pouches with oxygen permeability of 6cm3m−224h−1

at 20◦C and 50% RH, flushed with a gas mixture of 60% CO2 / 20% O2 /
20% N2 and heat sealed with a HencoVac machine (Howden Food Equip-
ment BV, The Netherlands). Meat samples were stored under controlled
isothermal conditions at 0, 5, 10, 15, and 20◦C in high precision (±0.5◦C)
incubators (MIR-153, Sanyo Electric Co., Osaka, Japan) for an overall period
of 580 h, depending on storage temperature, until spoilage was pronounced.

2.2. Microbiological analyses

Minced meat samples (25 g) were weighed aseptically, added to ster-
ile quarter strength Ringers solution and homogenized in a stomacher (Lab
Blender 400, Seward Medical, London UK) for 60 s at room temperature.
Further decimal dilutions were prepared with the same medium and dupli-
cate 0.1 or 1 ml samples of the appropriate dilutions were spread or mixed
on the following agar media: Plate Count Agar (PCA, Biolife 4021452, Mi-
lano, Italy) for total viable counts (TVC), incubated at 30◦C for 48h; Pseu-
domonas Agar Base CN selective supplement (PAB, Biolife 401961, Milano,
Italy) for Pseudomonas spp, incubated at 25◦C for 48-72h; Streptomycin
Thallous Acetate-Actidione Agar (STAA, Biolife 402079, , Milano, Italy)
for Brochothrix thermosphacta, incubated at 25◦C for 72h; Rose Bengal
Chloramphenicol agar (RBC, LabM36, supplement X009, LabM, London,
England) for yeasts and moulds, incubated at 25◦C for 72h; Violet Red
Bile Glucose Agar (VRBGA, Biolife, 402185, Milano, Italy) for Enterobac-
teriaceae counts, overlaid with the same medium and incubated at 37◦C
for 18-24h; de Man-Rogosa-Sharp medium with pH adjusted to 5.7 (MRS,
Biolife, 4017282, Milano, Italy) for lactic acid bacteria, overlaid with the
same medium and incubated at 30◦C for 48-72h. Duplicate packages from
each storage temperature and packaging condition were analysed at appropri-
ate time intervals to allow for efficient kinetic analysis of different microbial
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groups. Growth data from plate counts were log transformed and fitted to
the primary model of Baranyi and Roberts [13] using the DMFit /program
(available at www.combase.cc) to determine the kinetic parameters of mi-
crobial growth (maximum specific growth rate and lag phase duration). In
parallel with microbiological analyses, the pH value of minced pork meat was
recorded with a digital pH-meter (Metrohm pH Lab, Switzerland), the glass
electrode of which was immersed in the homogenised meat sample after the
end of microbiological analysis.

2.3. Sensory analysis

Sensory evaluation of pork samples was performed during storage by a
sensory panel composed of three members (in-house trained staff from the
laboratory) at the same time intervals as for microbiological analyses as de-
scribed elsewhere [14]. The same trained persons were used in each evalua-
tion, and all were blinded to the meat sample tested. The sensory evaluation
was carried out in artificial light and the temperature of the packed product
was close to ambient. The descriptors selected were based on the perception
of colour, smell, and taste. The first two descriptors were assessed before and
after cooking for 20 min at 180◦C in a preheated oven, while the last descrip-
tor was evaluated only after cooking. Each sensory attribute was scored on
a three point hedonic scale corresponding to: Fresh, Semi-fresh and Spoiled.
The first vague indications of meat spoilage occurred at the point labeled
Semi-fresh. Odour characteristics of minced pork, as determined by spe-
cial samples kept frozen and thawed prior to each sensory evaluation, were
considered as fresh. putrid, sweet, sour, or cheesy odours were regarded as
indicative of microbial spoilage and classified the samples as spoiled. Bright
colours typical of fresh oxygenated meat were considered fresh, whereas a
persistent dull or unusual colour rendered the sample spoiled [15, 16, 14].
Overall, 167 minced pork meat samples were scored by the taste panel and
discriminated into the pre-defined groups as fresh (22), semi-fresh (65), and
spoiled (80).

2.4. Multispectral Imaging System

The data acquisition was done using VideometerLab [17], which acquires
multi-spectral images in 19 different wavelengths ranging from 405 to 970nm.
The spectral radiation of the 19 bands is not uniformly distributed over the
sampling area but rather at wavelengths 405, 435, 450, 470, 505, 525, 570,
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590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. The acquisi-
tion system records surface reflections with a standard monochrome charged
coupled device chip, nested in a Point Grey Scorpion camera. The object of
interest is placed inside an integrating or Ulbricht sphere in which the camera
is top mounted. The sphere has its interior coated with a matte coating. The
coating together with the curvature of the sphere ensures a uniform reflection
of the cast light, and thereby a uniform light in the entire sphere. At the
rim of the sphere, Light Emitting Diodes (LED) with narrow-band spectral
radiation distribution are positioned side by side. The LEDs are placed in a
pattern which distributes them uniformly around the entire rim. When an
image is acquired the LEDs are turned on successively and the reflection from
that specific wavelength is recorded by the top mounted camera. The result is
a monochrome image with 32 bit floating point precision for each LED type,
giving in the end, a hyperspectral cube of dimensionality 1280x960x19. The
system is first calibrated radiometrically and geometrically using well-defined
standard targets, followed by a light setup based on the type of object to be
recorded [18]. The homogeneous diffuse light together with the calibration
steps ensures an optimal dynamic range and minimizes shadows and shading
effects as well as specular reflection and gloss-related effects. The system has
been developed to guarantee the reproducibility of collected images which
means it can be used in comparative studies of time series or across a large
variety of different samples [19, 20, 21, 22].

2.5. Image processing and Data Analysis

An example of a recorded multispectral image is seen in Figure 1(a), where
the channels are listed according to wavelengths mentioned in previous sec-
tion. Moreover, Figure 1(b) and 1(c) illustrate the mean reflectance spectrum
with error-bars indicating 1 standard deviation for 3 different locations in the
same piece of meat. The mean spectra are calculated as mean values of all
the pixels within each of the three squares indicated in Figure 1(b). The
diversity of spectra contained within each image may be appreciated when
looking at the difference between these mean-spectra. The largest difference
between the spectra is a scaling, which basically indicates how much light
is reflected in general in a point, or in other words the luminosity. Scaling
differences has many causes, but two essential causes are shadow effects as
well as light scattering effects due to the topology of the surface. In order to
compensate for such influences, a simple preprocessing step commonly known
as autoscaling or simple standardization of data [23] which centers all spectra
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and ensures unit variance has been used on the images. Such a preprocess-
ing step will help enhance the true differences in the spectra, and thereby
improve the later signal processing. Figure 2 shows an overview of the entire
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Figure 1: (a) All channels, ranging from 410 nanometer to 970 nanometer. (b) Channel
recorded at 525 nm with squared annotation areas. (c) Mean Spectra of square areas in
(b)

data processing pipeline which has been performed in order to quantify the
spoilage degree. The images are initially segmented or divided into regions
of interest. This means dividing the images into foreground and background,
meaning only the meat area except fat-areas is to be considered in the further
statistical analysis. It is common to use orthogonal transformations such as
Principal Component Analysis to find similar tissues in the multispectral
image space. However, PCA creates orthogonal projection vectors based on
a variance maximizing criterion and does not take spatial information into
account. The Maximum Noise Fraction (MNF) [24] is a related method also
belonging to the orthogonal transformation function family which seeks to
maximize the Signal to Noise ratio (SNR) instead of the variation. This is
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done by estimating the covariance matrix of the spectra, Σ as well as the
covariance matrix of the noise Σ∆ [25] and finding vectors, b, that maximizes
the ratio of these (the Rayleigh quotient)

R(b) =
bTΣ∆b

bTΣb
(1)

When the noise covariance structure is estimated as the covariance of
the difference of neighboring pixels, the MNF reduces to the Maximum Au-
tocorrelation Factor (MAF). A maximization of the signal to noise ratio is
then achieved by minimizing the autocorrelation between neighboring pixels.
This optimally finds projection directions of similar neighboring reflection
properties. Two components are used to cut away background as well as
fat tissue, where an adaptive thresholding technique, [26], is used to trans-
form components to masks which indicate pure meat. Before clustering the
spectra, a standardization of the spectra as previously described has been
performed. All pixels are finally mapped to identified clusters to indicate ar-
eas of spoilage in order to improve predictability of the entire sample image.

3. Results and Discussion

3.1. Development of microbial association

The changes in the population of Total Viable Counts (TVC) during
storage of minced pork meat storage at different temperatures and packaging
conditions is presented in Figure 4, whereas the estimated kinetic parameters
for the Total Viable Counts after fitting the primary model of Baranyi and
Roberts are shown in Table 1 for aerobic and MAP packaging. The model
fitted the experimental data well as can be inferred by the low values of the
standard error of fit and the high values of R2. However, in some cases of
data derived from MAP packaging (0 and 5◦C), no typical sigmoidal growth
curves could be obtained (Figure 4). A lag phase was observed at 0 and
5◦C in aerobically stored meat samples, the duration of which was greatly
reduced or not observed at all at higher temperatures. However, in MAP
packaging no lag phase was observed in most of the cases (Table 1). A
progressive increase of maximum specific growth rate (µmax) was observed for
all members of the microbial association with increasing storage temperature.
The influence of packaging type was also evident on the calculated values of
µmax. In fact, at the five different storage temperatures assayed, the microbial
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Figure 2: Schematic structure of processing pipeline

association presented lower values of growth rates for MAP compared to
aerobically packaged samples. In general, aerobic storage of minced pork
at all temperatures allowed the members of microbial association to reach
higher population levels as can be concluded by the final population values
(yend) determined by the Baranyi and Roberts model, Table (1). With air
packaging, Pseudomonas spp. were the dominant microorganism followed
by Br. thermosphacta, whereas lactic acid bacteria and Enterobacteriaceae
remained at lower levels. On the other hand, with MAP storage, lactic acid
bacteria became the dominant bacteria throughout storage together with
Br. thermosphacta. This is on line with the already existing data from
previous studies dealing with the meat spoilage and the contribution of the
ESO [3, 27] The estimated kinetic parameters by the Baranayi model are
presented in Table 1. From Figure 4 it is clearly seen how the lag phase
decreases significantly as temperature increases. Initial total viable counts
ranged between 5.38 and 5.95 log cfu g−1 while the end measurements ranged
between 9.65 and 9.84 for aerobic packages and 7.19 to 8.68 log cfu g−1 for
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MAP packages indicating a clear difference in microbial growth in the two
environments. Based on preprocessed spectra originating from the pure meat
area, a large variation in the pixels is still found, however more subtle. By
empirically looking at spectra as well as colour transformed images, it was
found that 5 different types of meat was the optimal subdivision of meat
types existing across the meat samples. These types of meat were basically
very bright areas with high fat content, more pure meat which had been
oxidized, areas which appeared very spoiled with abnormal meat colours and
two intermediate types. A K-means algorithm [23] was used to identify the
cluster centers shown in Figure 3 as normalized spectra. A certain cluster
center is shown as a dashed line, which indicates areas of meat with a spoiled
appearance. Carefully inspecting the characteristics of this spectrum reveals
a higher response in the area of shorter wavelengths corresponding to blue,
and a lower response from 600 to 800 nm resembling the reddish colours.
Furthermore it then seems to shift in the high end of near infrared area,
indicating a higher response here compared to the remaining four cluster
centers. These characteristics resemble quite well an intuitive understanding
of the appearance of spoiled meat as being less red and more green/blue.
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Figure 3: Spectral characteristics of the 5 meat types. The dotted line indicates the
spectrum for spoiled meat types

Having normalized images as well as identified cluster centers, a mapping
of each recorded spectrum in each picture may be done by calculating either
true or approximated euclidean distances and assigning each pixel to its
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Temp. Pack. lag phase(h) y0 (pred.) yend (pred.) µmax se r2

0 AIR 74.138 5.951 9.680 0.045 0.332 0.947
5 AIR 21.667 5.627 9.640 0.093 0.255 0.974
10 AIR 2.306 5.398 9.347 0.146 0.369 0.933
15 AIR 1.767 5.372 9.513 0.205 0.404 0.930
20 AIR 3.813 5.881 9.429 0.325 0.327 0.938
0 MAP 6.067 5.579 7.207 0.008 0.258 0.830
5 MAP 0.000 5.652 7.780 0.027 0.246 0.902
10 MAP 7.893 5.464 7.949 0.082 0.251 0.929
15 MAP 1.789 5.503 8.264 0.126 0.266 0.928
20 MAP 0.000 5.362 8.326 0.218 0.366 0.877

Table 1: Estimated kinetic parameters of total viable counts (TVC) by the Baranyi model

closest cluster. This process creates a further segmented image, where it
is possible to estimate the distribution of different types of meat surface in
each image. This distribution may then directly or indirectly be used for e.g.
classifying the image as being fresh, semi-fresh or spoiled, or for quantifying
the amount of bacterial growth on the meat by predicting the total viable
counts, which both are shown as the two output boxes in Figure 2. The
actual classification of images and prediction of total viable count was done
using a logistic regression model [23] and a partial least squares model [23],
respectively.

Figure 5(a) shows a binary mask of the meat sample in Figure 5(b). The
mask indicates the areas which represent only meat, i.e. no background or
fat. This mask was created using a maximum autocorrelation transformation,
which decomposes a multispectral image into similar tissue types, the first
step in the spectral process line (Figure 2). This specific piece of meat is a
very spoiled one having a total viable count of 9.83 log cfu g−1. A graphical
representation of the image after each pixel has been assigned to a cluster
center is shown in Figure 5(c). The image contains 5 levels of graytones,
each corresponding to a cluster center. The very dark area represents spoiled
meat, while the very bright area represents less spoiled meat. For comparison
a fresh piece of meat is seen in Figure 5(d) with TVC measured to 5.63 log
cfu g−1. A clear difference is seen as the meat area generally appears much
brighter in the fresh sample; Figure 5(d), compared to the spoiled image in
Figure 5(d). Thus the majority of pixels in the 2 images have been assigned
to different clusters. The dark edges of the fresh piece of meat might be due
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Figure 4: Changes in the population of total viable counts in pork stored in aerobic and
modified atmosphere at 0, 5, 10, 15 and 20◦C. The curve represents models fitted with
the Baranyi bacterial growth model.

to an initial spoilage, but may also be due to scattering effects as well as
shadow effects caused by the change in topology in these regions.

Being able to spatially determine areas of spoilage enables spatial infer-
ence on the images. This means e.g. it is possible to count how many pixels
occurrences of each meat type there exist in the image, and estimate the total
area percentage covered by a specific meat type. Doing this for all types of
area on all images, and plotting it as a function of total viable count is seen
in Figure 6. In Figure 6 the meat area for cluster 1 shows an increase in area
as TVC increases while the area for cluster 5 shows a linear decrease as TVC
increases. The area size for the intermediate clusters shows little or no devel-
opment as TVC increases. The trends of cluster 1 and 5 are interpreted as
a spoiled meat cluster and a fresh meat cluster. In order to extract the best
features for a prediction model of TVC as well as for a classification model of
sensory labels, the mean spectrum of the area of spoiled meat in all images is
used as a feature space. A logistic regression model using the extracted fea-
tures as covariates was used to classify the pork samples into three sensorial
categories (fresh, semi-fresh, spoiled). For comparison a logistic regression
was similarly used to classify the same samples into the same categories using
the measured four microbial measurements as independent variables. Due to
the small amount of samples, both classification models were assessed using
leave one out cross validation in order to obtain realistic and generalizable
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Figure 5: (a) shows a binary mask for a piece of spoiled piece of meat having TVC of
9.83 log cfu g−1. A grayscale image of this same piece of meat is seen in (b), where the
recording at 590nm. is shown. The binary mask indicates where in the image meat is
located, which is used in further analysis. (c) shows the spatial distribution of how pixels
have been mapped to identified clusters. There are a total of 5 clusters. Dark areas
indicate spoiled meat, while lighter areas represent more fresh meat. (d) shows spatial
distribution of clusters in a fresh portion of pork meat. The clusters are colour coded in
same order as in (c), ie. light clusters being fresh meat. The difference in cluster colours
in the two images is very clear.
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Figure 6: Meat area size as a function of total viable count with correlations 0.68, -0.49,
0.55, -0.058 and -0.67. Each plot represents a meat area assigned to a similar euclidean
cluster as presented in Figure 8. ∆ symbolizes fresh samples, o symbolizes semi-fresh and
x symbolizes spoiled samples.

Fresh Semi-fresh Spoiled Row total Sensitivity(%)
Fresh 10 7 1 18 55.5

Semi-fresh 7 46 11 64 71.8
Spoiled 1 10 62 73 84.9

Column total 18 63 74 155
Specificity(%) 55.56 73.02 83.8
Total classification rate: 76.13%, Cohens Kappa value: 0.598

Table 2: Logistic regression on sensory labels using meat area estimations

results. The classification accuracy of the classification models is seen as con-
fusion matrices together with their sensitivity, specificity and total correctly
classified percentage. The performance of the predictability of TVC for each
meat sample analyzed was determined by the bias and accuracy factors [28],
the mean relative percentage residual, the mean absolute percentage resid-
ual [29], and finally by the root mean squared error of prediction and the
standard error of prediction.

A classification rate of 73.6% for overall correct classification as seen in
Table 2 was obtained. The sensitivity of the model was found to be 55.5%,
71.8% and 84.9% for fresh, semi-fresh and spoiled meat samples, respec-
tively. This indicates fairly high uncertainty for the fresh samples, which are
frequently identified as semi-fresh and vice versa. The sensitivity increases
for semi-fresh and spoiled, which has several reasons. The sensory labels
were based on other organoleptic senses than visual appearance, such as
taste and odor which are very subjective factors. The amount of fresh sam-
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Fresh Semi-fresh Spoiled Row total Sensitivity(%)
Fresh 12 6 0 18 66.6

Semi-fresh 6 46 12 64 71.8
Spoiled 0 7 66 73 90.4

Column total 19 61 75 155
Specificity(%) 63.2 75.4 88
Total classification rate: 80%, Cohens Kappa value: 0.662

Table 3: Logistic regression on sensory labels using microbial reference data

ples compared to the amount of semi-fresh and spoiled is very small, which
gives a high probability that even a small subset of semi-fresh samples which
overlaps fresh samples in feature space will affect the fresh class sensitivity
significantly. For comparison, the actual microbial counts were likewise used
for classifying the sensory labels, which is seen in Table 3. Slightly better
results are seen for this set of predictors with sensitivity of 66.6%, 71.8%
and 90.4%. Thus, the same problem of differentiating between fresh and
semi-fresh classes exists for these predictors. Cohens Kappa value [30] was
calculated to be 0.59 and 0.66, meaning that both values lie in the region
of substantial agreement between predicted and observed classes. The pre-
diction of total viable counts as seen in Figure 7(a) shows very small errors
around the line of equality, y = ax+ b, a = 1, b = 0, all within ±1 log unit
area shown with stippled lines. However, three samples did fall outside the
area of 1 log unit. A Partial Least Squares model was used for TVC pre-
diction, which requires a separate training and test set for selecting model
parameters and to evaluate the model. The selection of parameters was done
using leave one out cross validation on 2/3 of randomly selected data from
the entire set of 155 samples. The remaining 52 samples are used for validat-
ing the model. It is very crucial that the data which was used for selecting
model parameters is not used for validating the model, as this clearly will
give a biased and over-fitted model.

The predictive performance of the TVC model is furthermore presented
in Figure 7(b) where the relative error in percent is plotted as a function
of the observed microbial population. The errors are seen to be distributed
equally around 0, with 83% of the predicted microbial counts included within
the ±10% zone of relative errors. Further statistical values for the TVC pre-
diction model are presented in Table 4. Ross [28] introduced Bias factor and
Accuracy factor as interpretable indices for average deviation or the spread
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Figure 7: (a) Regression results for Total Viable Counts using a Partial Least Square
Model trained using cross validation on a training set and validated on an unknown test
set. The plotted values are predicted versus total viable counts. The lines show the line
of equality i.e. a perfect fit, while the dashed lines represent ±1 log cfu unit. (b), Relative
errors in % between observed and predicted total viable counts (TVC) during storage of
pork meat at different temperatures, atmospheres and time-spans (F: fresh; SF: semi-fresh;
S: spoiled meat samples).

of the results about the prediction. Perfect agreement between the predicted
and observed values will lead to bias factors of 1, while bias factors above
1 indicates ’fail-dangerous’ models and below 1, ’fail-safe’ models. E.g. a
value of 1.1 indicates that the predictions exceed the observations, on av-
erage, by 10%. Thus, the further away from 1, the more poor the model,
i.e. a bias factor of 0.5 indicates a poor model. For the accuracy factor, the
larger the value, the less accurate is the average estimate. For an accuracy
factor of two, the prediction is on average a factor two different from the
observed value - half as large or twice as large. The bias factor shows values
slightly below 1, indicating a very small tendency of under estimation for
all types of meat, including the overall bias factor. The accuracy factor fur-
thermore shows that on average the predictions were ≈ 11.3%, ≈ 20.8% and
≈ 10.3% above the observed values for fresh, semi-fresh, and spoiled meat
samples, respectively, while in total ≈ 15%. This is also confirmed by the
mean absolute percentage error, representing the average deviation between
observed and predicted counts. The mean relative percentage residual index
confirmed the under-prediction for all classes since they are all below 0. The
standard error of prediction index is a relative typical deviation of the mean
prediction values and expresses the expected average error associated with
future predictions. The model shows good predictive performance, i.e. below
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Expression Fresh Semi-fresh Spoiled All

Bias Factor 10
∑ log(ŷ/y)

n 0.923 0.920 0.973 0.940

Accuracy Factor 10
∑ | log(ŷ/y)|

n 1.114 1.209 1.103 1.152

MRPE 1
n

∑ 100·(y−ŷ)
y

-3.662 -4.153 -1.331 -3.005

MAPE 1
n

∑ 100·|y−ŷ|
y

4.821 8.563 4.348 6.337

RMSEP
√

1
n

∑
(y − ŷ)2 0.348 0.666 0.466 0.551

SEP 100
ȳ

√
1
n

∑
(y − ŷ)2 5.842 9.716 5.410 7.478

Table 4: Key values for the predictive performance of the TVC model for all classes,
including overall predictive performance. The abbreviations are; MRPE: Mean relative
Percentage Error, MAPE: Mean Absolute Percentage Error, RMSEP: Root Mean Square
Error of Prediction, SEP: Standard Error of Prediction

10% standard error of prediction for all three classes, although especially for
spoiled and fresh samples with only a percentage standard error of 5.4% and
5.8%.
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4. Conclusion

In this article a large experiment regarding quality of stored pork meat
has been performed in order to assess the ability of a rapid multipectral
imaging device to quantify sensory labels as well as microbial count. The
multispectral imaging device recorded spectra in the visible and beginning of
the near infrared area. Recordings were used to investigate microbiology on
pork meat stored in two different types of atmospheres under five different
temperatures (0, 5, 10, 15 and 20◦C) in varying timespans up to almost 600
hours. Various machine learning and vision techniques were used to analyse
the multispectral images. Features were extracted to evaluate the spoilage
of the meat by predicting Total Viable Counts as well as classifying meat
pieces into one of three classes; fresh, semi-fresh or spoiled, with ground
truth being set by a sensory panel. For the multispectral images, an overall
classification performance of 76.13% was achieved. For the microbial counts
an overall classification performance of 80% was achieved. Thus, considering
the fact that the electromagnetic area was sampled in only 18 distinct areas in
mainly the visible region, a classification error of 76.13% is a relatively good
performance A very good discrimination between spoiled and fresh pieces of
meat was achieved while semi-fresh meat caused bigger problems. It should
be noted that due to the spoilage nature of pork meat, there was an unequal
distribution of samples across the three spoilage classes, with a significantly
larger amount of samples in the spoiled class than in the fresh class. A set
of seven images were manually removed as outliers due to their very large
residual variation. The problem of correctly classifying semi-fresh pork meat
may have an explanation in the fact that actual definition of the boundaries
between classes are rather fuzzy for the sensory panel. This might indicate
that an automated method may perform better if based on quantification
of quantitative units (TVC) rather then qualitative units (Sensory labels).
Spoilage classes might then be set, based on knowledge about total viable
counts, as also done in the past [31, 32]. The difference here is that a much
cheaper and more rapid equipment, requiring no sample preparation has been
used. Furthermore, as opposed to the previous works, additional parameters
have been included in this work such as time, temperature and atmosphere.
As indicated in Figures 7(a)-7(b) and Table 4 the prediction performance
on an unknown test set yielded good results especially for fresh and spoiled
samples (standard error of prediction under 6%). This could help laboratory
workers speed up their work significantly by providing non-invasive, and low
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cost microbiological analyses [32]. The values of the bias factor were close to
unity indicating good agreement between predictions and observations. The
calculated values of the bias factor are within the range of 0.9 - 1 which are
considered adequate [28]. Thus a setup asthe one presented in this paper
could in the future be used to satisfactorily predict microbial counts as well
as sensory labels of pork meat.
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Abstract

Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid
pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a
rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures
reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration
of astaxanthin. The samples ranged from 0.20 to 4.34 µg per g fish. A PLSR model was calibrated to
predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27.
For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45.
The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained
suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration
in rainbow trout fillets.

Introduction

Color is a highly important quality parameter in relation to the commercial production of salmonid fishes.
The consumers associate increased intensity of red in salmonid fishes with superior quality, being fresher
and having a better flavor [1, 2]. As the change in surface color is the first quality parameter evaluated
by the consumer, it is of great economic importance that the color of the salmonid fishes meets consumer
preferences. The color of salmonid fishes is caused by deposition of cartenoid pigments in the muscular
tissue. Besides being essential for reproduction, proper growth and survival of the fish, carotenoids, pri-
marily astaxanthin and castaxanthin, are also important for the red color in salmonids. As fish cannot
synthesize carotenoids de novo their intake rely on the content of cartenoids in the feed. Wild salmonids
obtain the cartonids from intake of e.g. crusteceans, krill and other sources rich in carotenids whereas
carotenoids primarily astaxanthin is added to the feed of farmed salmonids. The primary use of astaxan-
thin within aquaculture is as a feed additive to ensure that farmed salmon and trout achieve a coloration
that comply with the consumers preferences.
Astaxanthin is the single most expensive constituent in salmonid fish feed. Even though astaxanthin
constitutes less than 20% of the total fish feed costs, control and optimization of the concentration of
astaxanthin from feed to fish is of paramount importance for a cost effective salmonid fish production. Tra-
ditionally, astaxanthin content in fish is determined by spectrophotometric analysis or high-performance
liquid chromatography (HPLC) analysis. In both methods astaxanthin is extracted from the minced
sample into a suitable solvent such as acetone or hexane before further analysis. U.S. Food and Drug
Administration (21 CFR 73.185) and Canadian Food Inspection Agency (Registration no. 990535) have
accepted the method based on HPLC analysis for determining astaxanthin content of a product. Both
methods have several drawbacks. First, the method based on spectrophotometric analysis overestimate
the astaxanthin as other compounds such as lutein, canthaxanthin and astacene are falsely included. This
means they absorb light at the same wavelength as astaxanthin and thereby increase the signal. Second,
both methods are time consuming, labor demanding and sample destructive.
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For quality assessment of salmonid color there are two widely accepted color standards in the salmonid
industry, which are used by quality inspectors in their visual assessment of fillets, the SalmoFanTMcard
and the SalmoCardTM(Hoffmann-La Roche Basel, Switzerland). Both methods enable an inspector to
score the color of a salmonid fillet into one of 15 red color categories ranging from 20 (pale red) to 34
(dark red). This method has the advantage of being a very straight forward, intuitive and cheap. It is
easily applicable and does require intensive expert training. In spite of these advantages there may be
reasons to inspect the color quality of fish fillets using other methods. A human operator is required in
order to use the SalmoFan / SalmoCard, which means such a color-evaluation will be subject to operator
bias and fatigue while also being time-consuming, costly and relatively labor-expensive.
Other instruments previously used for color evaluation are tricolorimeters, spectrophotometers and stan-
dard trichromatic charged coupled device cameras. These devices probe the visual spectrum in order
to in some sense imitate human visual perception and objectively quantify colors. A Colorimeter (e.g.
Minolta Chroma Meter II-CR200, Hunterlab Miniscan) makes use of a stable light source such as Xenon
to illuminate a small surface patch of roughly 1cm2, and measures the reflection of the surface in this
area. The reflection is then integrated according to the CIE-XYZ [3] tristimulus curves and transformed
to the uniform L*, a*, b* color space [3]. The L*, a*, b* color space is a three dimensional color space,
where L* represents the lightness of the color (100 being diffuse white), a* the mix of red and green and
b* the mix of yellow and blue. Examples of studies where a colorimeter was used in conjunction with
studies of fish color include [4–6] where the latter established that the intensity of redness (a*) increases
with the carotenoid content in the raw flesh of Atlantic salmon, while lightness (L*) decreases and yel-
lowness (b*) remains unaffected. While colorimeters acquire very accurate colors, they do not contain
any spatial information, and therefore no information on surface texture and structure / shape. On the
other hand chromatic images measure a larger spatial area of reflected photons and thereby provide color
as well as spatial information. A review of vision technology and color cameras in the food industry may
be found in [7]. The actual color evaluation ability of a trichromatic camera in regard to fish quality
inspection was investigated in [8], where comparisons between trichromatic camera images and SalmoFan
evaluations were performed on fillets of the Atlantic salmon (Salmo salar). The comparison was based on
measurements from five different locations, more or less uniformly spatially distributed across the fillet
surface. Here the authors found that there was no significant statistical difference between SalmoFan and
camera-based evaluations. Similar experiments were performed in [9], where the authors found a corre-
lation of 0.95 between sensory panel SalmoFan evaluations and computer vision based color evaluations.
Current state-of-the art vision systems for quality and process control in the fish processing industries are
typically based on traditional trichromatic (Red Green Blue) imaging. In this study we are interested in
going one step further, by quantifying the astaxanthin content and thereby indirectly also the color of the
fillet. The relative presence of some wavelengths and absence of others is a specific characteristic of many
material properties. Consequently the adaption of multispectral imaging technology can reveal relevant
information and measurement of more biological quality parameters such as fat, astaxanthin and cartilage
content, simultaneously. A multispectral image may also be referred to as a surface chemistry map [10]
where a set of neighboring spectra are recorded, revealing information about the surface chemistry to a
larger degree than in a trichromatic image. Thus, multispectral imaging is well suited for applications
where it is crucial to detect small differences in texture, color and surface chemistry [11–15]. It is expected
that vision systems based on multispectral imaging will be employed to a much larger extent in the near
future [16–20]. Aquaculture and the fish processing industries are areas where the added information
in a multispectral image can be exploited to improve the general quality and/or reduce the production
cost. In this study we investigate the use of multispectral images for estimating natural astaxanthin
concentration in rainbow trout fillets. In order to justify the use of multispectral images we calibrate and
compare multivariate models for multispectral as well as traditional color images of trout fillets to predict
astaxanthin content. Furthermore we illustrate shortly how the calibrated model can be used to predict
all spectra in an image in a pixel-wise manner, in order to visualize the predicted spatial astaxanthin
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distribution within the fish fillet.

Materials and Methods

Sample preparation

The Rainbow trout (Oncorhynchus mykiss) were from the organic farm at Bisserup Havbrug and har-
vested in November 2009. The fish were fed with commercial organic trout feed of approximately 1.5%
of body weight per day throughout the entire rearing in accordance with commercial practise. According
to legislation, the fish feed were coated with natural astaxanthin [21]. The fish were slaughtered at 2
years of age, with an average weight of 1.1 kg. The fish were filleted and trimmed by hand at Bisserup
Havbrug the day after slaughtering and transported to the Technical University of Denmark on ice at the
same day. The fillets were stored overnight on ice in a 2◦C chill room. The fillets were then subsequently
cut into three pieces (Figure 1). The middle piece was used as the experimental sample in the further
analysis. The samples were placed in plastic petri dishes (90 mm diameter) and stored on ice in styrofoam
boxes. Multispectral images of the samples were captured 30 minutes after placement in the styrofoam
box. Right after image capture each sample was minced and subsequently frozen at −40◦C. After 14
days of storage at −40◦C the astaxanthin concentrations were determined using chemical extraction.

Chemical determination of astaxanthin content

Astaxanthin content of the minced fillets was determined in duplicate from the lipid extracts of the fish
meat using an Agilent 1100 series HPLC (Agilent Technologies, Palo Alto, CA), equipped with a UV
diode array detector. The fillet sample were minced, and 10 g in duplicates was used for extraction using
chloroform and methanol according to the modified protocol of Bligh and Dyer [22]. A fraction of the lipid
extract was evaporated under nitrogen and redissolved in 2mL of n-heptane before injection.Astaxanthin
content was determined after injection of an aliquot (50 µL) of the n-heptane fraction onto a LiChrosorb
Si60-5 column (100 mm x 3 mm, 5 µm) equipped with a Cromsep Silica (S2) guard column (10 mm
x 2 mm; Chrompack, Middelburg, The Netherlands) and eluted with a flow of 1.2 mL min-1 using n-
heptane/acetone (86:14, v/v) and detection at 470 nm. Concentrations of astaxanthin were calculated
using authentic standards from Dr. Ehrenstprfer GmbH (Augsburg, Germany).

Reflection characteristics of astaxanthin

The reflection properties of natural astaxanthin [22] in a solution of fishoil was recorded by a NIRSystems
6500 absorption spectrometer and transformed to reflection values using the standard relation A =
−log(R), where A is absorption values and R is the reflection values.

Multispectral Imaging System

Data acquisition was done using a VideometerLab [10], which obtains multi-spectral images at 19 different
wavelengths ranging from 385 to 970 nm, fully shown in Table 1. The acquisition system records surface
reflections with a standard monochrome charged coupled device chip, nested in a Point Grey Scorpion
camera. Figure 2 shows the principal setup of the system where the object of interest is placed inside
an integrating or so called Ulbricht sphere, with a matte white coating. The coating, together with the
curvature of the sphere, ensures a uniform reflection of the cast light and thereby a uniform light in the
entire sphere. At the rim of the sphere Light Emitting Diodes (LED) are positioned side by side in a
pattern which distributes the LEDs belonging to each wavelength uniformly around the entire rim. The
system is first calibrated radiometrically using both a diffuse white and dark target followed by a light
setup based on the type of object to be recorded. The system is geometrically calibrated with a geometric
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target to ensure pixel correspondence for all spectral bands [23]. The homogeneous diffuse light, together
with the calibration steps, ensures an optimal dynamic range and minimizes shadows and shading effects
as well as specular reflection and gloss-related effects. The system has been developed to guarantee the
reproducibility of collected images which means it can be used in comparative studies of time series or
across a large variety of different samples [24–27].

Color Images

The advantage of going from color to multispectral images is illustrated by comparing models calibrated
using either of the two types of images. To be able to compare results from the two models we have
transformed the multispectral images to RGB images. In this paper we used a spectral reconstruction
technique [28] in order to estimate the reflectance spectrum in each pixel with 5 nm spacing. Each
spectrum was then integrated over the entire recorded spectral range in 3 different intervals, according
to a CIE 1931 2◦ Standard Observer [3]. The resulting color images were then transformed to standard
RGB images using a transformation formula described by Wyszecki, G. and Stiles [3].

Image segmentation and data extraction

Segmenting images into distinct regions is a very important preprocessing step in image analysis before
further analyzing the images. Having a specific region representing only the area of the image which should
be analyzed is called a region of interest (ROI). Segmentation of images may be done in a large variety
of ways, where we in this work made use of statistical orthogonal methods or so called decomposition
techniques to highlight desired features for easy extraction. Specifically we have used a Maximum Noise
Fraction (MNF) [29] transformation to remove the image background material (petri dish and cardboard
under the petri dish). Canonical Discriminant Analysis (CDA) [30] was then used to remove areas assumed
to be fat and collagen. The decomposed result with desired features highlighted was then segmented
easily using an adaptive thresholding technique known as Otsus adaptive thresholding method [31].
Having segmented the image into a ROI, the image could be transformed to a spectrum based on a mean
calculation. Thus each image contributed with a single spectrum for the model calibration.

Data Analysis

Partial least square regression (PLSR) [32] was used to estimate calibration models between the extracted
spectra and reference values (chemically determined) using LOOCV; a total of 59 samples were included
in the analysis; 20 for training and 39 for validation. Models were calibrated using leave one out cross
validation (LOOCV) [33] using a training set and validated using a testset. The quality of the models
was determined based on the coefficient of determination (R2), the prediction error expressed as the root
mean square error of prediction (RMSEP) and the standard error of the fit. Spectra were centered by
substracting the mean calculated from each wavelength followed by a scaling with the standard deviation
calculated from each wavelength, commonly known as autoscaling or standardization [34]. More formally
this is calculated as

µXj =
1

N

N∑

i=1

Xi, j = 1, 2, .., p

σXj =
1

N − 1

N∑

i=1

(Xi − µXj )
2

Xstdij =
Xij − µXj

σXj

, i = 1, 2, .., N ∧ j = 1, 2, .., p

(1)
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X is here a matrix of size Nxp containing all the spectra in the calibration, where N is the number of
samples and p is the number of sampled wavelengths. A pixel-wise astaxanthin prediction of the images
was done. The loadings of the astaxanthin PLS model (as described above) were used to project acquired
preprocessed images into a subspace highlighting the distribution of the astaxanthin contentbased on
electromagnetic reflection properties in each fillet. Principal Component Analysis (PCA) was used for
visualizing trends in the multivariate dataset, and identifying outliers. All extraction, image analysis
routines, color transformations, pixel based predictions and calibration analyses were programmed in
Matlab 7.8 (The Mathworks Inc., Natick, MA, USA).

Results and Discussion

Reflection characteristics of astaxanthin

The reflection spectrum recorded by the NIRSystems 6500 instrument, seen in Figure 3, shows large
reflection properties starting from around 600 nm as well as large absorption properties from around 400
nm to 600 nm. This corresponds to having high absorption in the cyan, green and yellow area while the
red and blue area is highly reflected, giving astaxanthin its characteristic dark red/purple color. The
present measurements are well in accordance with previous absorption measurements of astaxanthin [35].

Reference data

The results from the chemical measurements of the astaxanthin content are presented in Figure 4. The
astaxanthin concentration in the samples ranges from 0.2 to 4.34 µg per g fish with a mean of 1.69 µg
per g fish and a standard deviation of 0.95 µg per g fish.

Acquired images and segmentation results

An example of a recorded multispectral image is presented in Figure 5 with the channels listed according
to their wavelength number in Table 1. It is clearly shown that the general brightness of the image
increases as the wavelength increases and that some features are more pronounced at certain wavelengths
that others e.g. fat and collagen in meat structure are primarily pronounced at low wavelengths (395
nm to 570 nm). An example of the final segmentation results is shown in Figure 6, where the mask
indicates the segmentation of fillet from background the using the MAF transformation and fat the CDA
transformation. The MAF transformation is a contrast between the extreme bands, ultra blue (385 nm)
and NIR (970 nm), and the middle color bands in the blue / green area of the visible spectrum (630-700
nm). The segmentation of meat based on CDA transformation relies primarily on the blue part of the
spectrum (430-470 nm).

Extracted spectra

Figure 7 shows the mean spectrum of each of the 59 recorded trout fillets. A general scaling difference
is seen in the spectra which have been removed using autoscaling preprocessing, thereby highlighting
the nonlinear differences. The scaling of a spectrum in the visible range is in general an expression
for the brightness of the sample, which means some fish among the samples set appear brighter than
other. A clear difference in the intensity of the spectra, which becomes very apparent after treating with
autoscaling in Figure 8, is seen in the area around 450 to 525 nm. This area corresponds quite well to a
known absorption area of astaxanthin, which also is seen in Figure 3. Further a deviation in the spectra
is seen in the NIR area and below 435 nm.
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Calibration models

Figure 9 shows a score plot (PC1 versus PC2) of a PCA of the entire dataset after autoscaling. The
plot shows a clear trend in the first component describing 80% of the variation with few outliers. Based
on outlier diagnostics seven samples were categorized as outliers and removed from the data set prior to
further analysis. All outliers were characterized by bad filleting. Table 2 shows the results of the final
PLSR model for astaxanthin prediction based on a multispectral image. The reported RMSEP of 0.26
from a 7 component PLSR model is based on an independent test set while the model itself was cross
validated on a trainingset. The cross validation showed a minimum generalization error when using 7
PLS components (Figure 10), which together with a total variance description on the response variable
of 91% led to the choice of 7 components in the model. The variance decription percentages for the 7
components in the response variable were 48, 69, 75, 83, 86, 89 and 91% which shows that the performance
of the model drastically increases with the first 4 components. The loadings for these components are
shown in Figure 11. The first 2 components clearly show high response in the area around the absorption
peak of astaxanthin in the blue/green area of the visual spectrum. The components naturally reflect
the areas of largest variation in the preprocessed spectra shown in Figure 8. Table 2 also contain a
PLSR model fitted on the same data after transformation to sRGB images. This means only a total of
3 variables exists for the regression problem which could basically be handled using a full multiple linear
regression. This was tested together with a PLS model, which was found to yield equal results. The RGB
model in Table 2 is seen to have a higher RMSEP value, indicating reduced prediction abilities than the
multispectral mode. Among the two models the multispectral models has best variance description with
an R2 value of 0.86 versus and R2 value of 0.66 for the RGB model. Furthermore the variance in the
residuals is seen to be smaller for the multispectral model with a standard error of 0.02 against 0.05 for
the RGB model. Previously similar techniques has been investigated using VIS spectroscopy and digital
photography in [36], for calibration against chemically measured astaxathin. VIS spectroscopy was here
found to have a correlation coefficient of 0.92 with a RMSEP of 0.42. For digital photography a correlation
of 0.92 was found together with an RMSEP of 0.41. They reported a cross validation error based on
all samples, meaning this error was used to chose the correct number of components. Compared to our
results, we managed to achieve an RMSEP of 0.27 on an independent testset, to get a truly unbiased
model, for the multispectral images.
The calibrated PLS model makes it possible to predict the astaxanthin concentration in each pixel of the
image - a so called pixel-wise prediction. The pixel-wise prediction can therefore be used to estimate the
astaxanthin distribution in the fillet. An illustration of this is seen in Figure 12, where a multispectral
image of a trout piece is projected pixel-wise, in order to get an impression of the spatial distribution
of the astaxanthin concentration. The pixel-wise prediction is color-coded according to the amount of
astaxanthin predicted in each pixel, so that pixels with high values of astaxanthin appears red, while low
value astaxanthin pixels appear blue. The projected image clearly shows that the upper part of the fillet
contain the largest concentration of astaxanthin. This technique is well suited for visualization purposes.
However, since the PLS model in this study was based on the preprocessed mean spectra from the entire
salmonid pieces, the accuracy of this pixel-wise predictions remains to be validated properly in a further
study.

Conclusion

In this paper an experiment was conducted to examine the possibilities of using multispectral imaging to
assess the concentration of cartenoids, with focus on astaxanthin, in rainbow trout fillets. The recorded
images ranged spectrally throughout the visible area and up into the first part of the near infra red
area. The astaxanthin concentration of the investigated fillets ranged from 0.2 to 4.34 µg per g fish with
a mean of 1.69 µg per g fish. A total of 7 images were classified as outliers using PCA scoreplots for
identification. A PLSR model was calibrated based on mean values of spectral value in a region of interest
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in the image. A training set was used for model training in a leave one out cross validation scheme, while
a separate test set was used to evaluate the model in terms of RMSEP and and R2. The result was
compared to a similar model based on color images extracted from the multispectral images, in order to
motivate the use of multispectral images in a study like this. As a consequence of offering more spectral
information about the sample, it is possible to gain more knowledge about which area of the spectrum
yields the information we are interested in. The RMSEP obtained from the test set was 0.27 for the
multispectral images and 0.45 for the color images, showing a somewhat higher prediction certainty for
the multispectral images. Furthermore, the goodness of fit (R2) was similarly somewhat better for the
multispectral model, being 0.86. The most significant components of the PLSR model revealed that the
area between 470 and 525 nm. carried the largest amount of variation, which corresponds very well with
absorption peaks of pure astaxanthin being in the vicinity of 450 to 600 nm. In conclusion, the current
study has shown that multispectral imaging is a promising method for rapid analysis of the astaxanthin
concentration of rainbow trout, and thereby a qualified candidate for replacement of ordinary laborious
and destructive sampling of astaxanthin for concentration prediction.
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Figure Legends

Figure 1. Trout fillet. This image shows how the fillets were cut in order to fit under the camera.
The middle piece is used in further analysis.

Figure 2. Principal setup of the multispectral system. An integrating sphere coated with a
matte white coating ensures optimal lighting conditions. In the rim of the sphere a set of narrow band
light emitting diodes ranging from 395 to 970 nm. are mounted. The image acquisition is performed by
a monochrome grayscale CCD camera mounted in the top of the sphere. The arrows illustrate how the
light is distributed inside the sphere to uniformly illuminate the fillet.
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Figure 3. Reflection properties of astaxanthin. These reflection properties has been recorded
using an absorbance spectrometer and transformed to reflection properties. The axes shows amount of
light reflected as a function of wavelength.

Figure 4. Distribution of measured astaxanthin. A histogram of the reference data shows the
sample count as a function of µg astaxanthin per fish, revealing a high number of observations around
2µg.
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Figure 5. Channels ranging from 395 nanometer to 970 nanometer. A multispectral image of
a trout fillet is here shown where the reflected light is seen for each narrowband LED, which gives a 19
dimensional spectrum for each pixel in the image.

Figure 6. Example of fillet used in analysis with region of interest indicated as contours.
The colors of the image are reconstructed from the multispectal image, while the mask is created using
the maximum autocorrelation decomposition and otsu’s threshold method.
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Figure 7. Autoscaling of mean spectra. The mean of all mean spectra is seen together with
errorbars indicating one standard deviation of all mean spectra. Each mean spectrum is calculated as
the mean of all pixels within the region of interest in a multispectral image.
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Figure 8. Autoscaling of mean spectra. Autoscaled spectra show significant lower variation in
general except for the area between 400 and 500 nm which is now highlighted
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Figure 9. Directions of maximum variation in the autoscaled meanspectra. A scoreplot for a
principal component analysis of the 19 dimensional mean spectra shows a definite trend in the the data
along the first principal component which accounts for 80% of the variation in the dataset. The second
principal component on the y axis accounts for a total of 14%. Each label in the plot represents a
multispectral image of a trout fillet, and the number is the concentration in the corresponding fillet in
µg.
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Figure 10. Generalization error calculated as RMSECV. To select a proper model, a leave one
out cross validation scheme has been used, where the sum of squared errors (RMSECV) are shown here
as a function of components included in the model. The lowest error is indicated with a vertical line,
corresponding to a total of 7 components.

Figure 11. Loadings from PLS model of the multispectral images. The PLS model used to
make astaxanthin predictions is based on seven loadings where the first four are shown here. Each
loading is shown with a unique symbol, and indicates that especially the area in the beginning of the
visible spectrum is important for astaxanthin prediction.
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Figure 12. Projected PLS image. Chemically measured average astaxanthin content for
the entire piece: 2.26µg The multispectral image is unfolded and projected using the loadings from
calibrated prediction model. The result is reshaped to an image which then gives a spatial overview of
the astaxanthin within the fillet, based on the light properties of the surface.
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Tables

Table 1. Spectral bands of VidemeterLab

01) 395 nm. 09) 630 nm. 17) 940 nm.
02) 435 nm. 10) 645 nm. 18) 950 nm.
03) 450 nm. 11) 660 nm. 19) 970 nm.
04) 470 nm. 12) 700 nm.
05) 505 nm. 13) 850 nm.
06) 525 nm. 14) 870 nm.
07) 570 nm. 15) 890 nm.
08) 590 nm. 16) 910 nm.

Narrowbanded lightsources of VideometerLab. The wavelength values shown are the peak values of all
light emitting diodes mounted in the sphere. The diodes cover the visible and the first part of the near
infrared spectrum.

Table 2. Prediction results obtained using multispectral and sRGB images

Multispectral sRGb
R2 (testset) 0.86. 0.66

RMSEP (testset) 0.27 0.45
Std. Error (testset) 0.02 0.05

Multispectral imaging for determination of astaxanthin concentration in
salmonids 169



170 Appendix F



Appendix G

Temporal Reflectance change
of vegetables

Published in Proceedings for IEEE Color and Reflectance in Imaging and Computer
Vision Workshop, CRICV 2009, October 2009



Temporal reflectance changes in vegetables

Bjørn S. Dissing1 , Line H. Clemmesen1, Hanne Løje2, Bjarne K. Ersbøll1 and Jens Adler-Nissen2
1Department of Informatics and Mathematical Modelling

Technical University of Denmark, DK-2800 Lyngby, Denmark {bdi,lhc}@imm.dtu.dk
2National Food Institute of Denmark

Technical University of Denmark, DK-2800 Lyngby, Denmark
{halo,jadn}@food.dtu.dk

Abstract

Quality control in the food industry is often performed
by measuring various chemical compounds of the food in-
volved. We propose an imaging concept for acquiring high
quality multispectral images to evaluate changes of car-
rots and celeriac over a period of 14 days. Properties
originating in the surface chemistry of vegetables may be
captured in an integrating sphere illumination which en-
ables the creation of detailed surface chemistry maps with a
good combination of spectral and spatial resolutions. Prior
to multispectral image recording, the vegetables were pre-
fried and frozen at −30◦C for four months. During the
14 days of image recording, the vegetables were kept at
+5◦ C in refrigeration. In this period, surface changes and
thereby reflectance properties were very subtle. To describe
this small variation we employed advanced statistical tech-
niques to search a large featurespace of variables extracted
from the chemistry maps. The resulting components showed
a change in both the carrot and celeriac samples. We were
able to deduct from the resulting components that oxidation
caused the changes over time.

1. Introduction

Quality assessment of food products is a non trivial task
which has been approached in different ways over time. De-
pending on the food product, different parameters are con-
sidered important for the overall quality estimation of the
food product. Parameters such as surface color, texture and
appearance are very general, and should be assessed in most
quality estimation scenarios.
Online quality inspection for food process control is today
often done by human expert operators who have many years
of experience. However, the trend seems to point towards
fast non-invasive inspection methods such as Near Infra Red
(NIR) technology for quality inspection in different food

process control tasks instead. We propose the use of mul-
tispectral imaging in the visible as well as the NIR area of
the electromagnetic spectrum to quantify chemical proper-
ties of food, and thereby stating its level of quality, instead
of human operators and as an alternative to standard NIR
measurement methods. By employing imaging instead of
point measurements it is possible to gain more spatial infor-
mation about the process, which makes it possible to assess
non-chemical as well as chemical quality features. Non-
chemical quality features are evaluations of e.g. piece-size,
shape and texture.
In this study, we are specifically investigating the quality
loss of meal elements for professionally prepared meals
with regards to change in surface color after super-chilling
and during thawing at+5◦C over a period of 14 days. Meal
elements are robust semi-prepared convenience components
based typically on meat, fish or vegetables and meant for
professional use. The authors have recently shown that
pre-fried vegetable meal elements have promising proper-
ties with respect to high culinary quality and robustness to-
wards freezing and thawing, thereby potentially solving a
major hindrance for the use of heat treated vegetables as
meal elements [3]. Super chilling involves a partial freez-
ing of the products, which slows down quality deterioration
[4]. In [16] an experiment of celeriac stored in an refrig-
erated environment was carried out and various parameters
were measured using traditional methods. Celeriac and car-
rots were the subjects of this study, where we measured the
reflectance properties using a multispectral imaging device
called VideometerLab which will be described in the next
section. The pre-fried vegetables were produced by a new
process for continuous stir-frying in industrial scale, which
has been introduced for producing convenience high-quality
vegetables [1]. The pre-fried vegetables have a low fat con-
tent (typically 1%-2% of the product weight), a texture and
flavor similar to what can be achieved in the kitchen, and vi-
tamins are preserved almost 100% [5]. In subsequent stud-
ies it was observed that the products may be frozen and re-
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heated on a frying pan or in a convection oven without any
exudation of excess water, which is a major advantage over
existing quick-frozen vegetables [2].

2. Materials and methods

In the following, the experimental design, the acquisi-
tion of digital images of the vegetables and further post-
processing of these are described.

2.1. Experimental setup

In the present work the quality of pre-fried vegetables
(celeriac and carrots shaped as cubes of size approximately
0.5 cm3 ) were evaluated (e.g. by means of change in
color surface) after freezing and thawing. In a pilot plant,
the raw products were pre-fried using a special frying ma-
chine ”the continuous wok” [1]. After frying, the products
were packed in 500g portions in plastic bags and frozen
at −30◦C. After four months of freezing, the bags with
the pre-fried vegetables were removed from the freezer and
thawed up to 14 days at +5◦C in refrigeration. On each
day of analysis (day 2, 4, 8, 10, 12 and 14) one plastic bag
was taken out from the refrigerator and the contained veg-
etables were digitized. For both types of vegetables, the
samples were digitized using two petri dishes to create a
test and training set. The multispectral images were seg-
mented in two steps, first isolating all vegetable-piece in the
image, and then separating the pieces from each other. After
segmentation, ratios were calculated for all combinations of
wavelengths to remove shadow effects and possibly get bet-
ter baseline separation in different spectral bands. For each
ratio in each vegetable-piece, the 1st, 5th, 10th, 25th, 50th,
75th, 90th, 95th and 99th percentiles were calculated. This
yielded a total of 3249 variables, in a test and training set
having 193 and 192 observations respectively for the car-
rot data. For the celeriac data, similar datasets were created
yielding a total of 3249 variables with 207 and 206 observa-
tions in the test and training set respectively. Obviously we
need a way to figure out which ratios best describe changes
over time. For this task a penalized LS algorithm called
LARS-EN which is described later was employed to find
a set of optimal components. Subsequently statistical tests
were performed to evaluate if the identified changes were
significant.

2.2. VideometerLab

The acquisition of data was done using Videome-
terLab(http://www.videometer.com) which acquires
multi-spectral images in up to 20 different wavelengths
ranging from 430 to 970 nm. The camera setup is seen
in Figure 1a. The object, in this paper, vegetables, is
placed inside an integrating or Ulbricht sphere which has
its interior coated to obtain high diffuse reflectivity for

optimal light conditions. In the top of the sphere a camera
is located with the sensitivity spectrum seen in Figure
1c. The sensitivity decays towards the near-infrared area,
which means that the illuminating diodes in this area needs
more power to achieve the same level of intensity as the
visible bands. The LEDs, having the spectral radiant power
distributions seen in Figure 1b, are strobing successively,
resulting in an image for each LED of dimensionality
1280x960. These are calibrated radiometrically as well
as geometrically to obtain the optimal dynamic range
for each LED as well as to minimize distortions in the
lens and thereby pixel-correspondence across the spectral
bands. The well defined and diffuse illumination of the
optically closed scene aims to avoid shadows and specular
reflections. Furthermore, the system has been developed to
guarantee the reproducibility of the collected images. This
allows for comparative studies of time series of images [8].

2.3. Segmentation of the images

In the experiment we considered one vegetable-piece as
an observation. In order to extract each vegetable-piece of
the multispectral image seen in Figure 2, a relative difficult
segmentation problem is at hand. This is caused by the fact
that the individual pieces were not placed in a systematic
manner where they were isolated, but instead lie in lumps,
touching each other. This means that they cast shadows on
each other as seen in Figure 2. Furthermore the pieces have
very similar spectral fingerprints which means they cannot
be discriminated using purely spectral values.
As an initial step, the background, meaning everything but
the vegetables was isolated. This was done using Otsu’s
method [13] on the multispectral image, projected onto a
hyperplane. The projection function used to carry out this
projection, optimally separates pixels coming from one of
two populations. These populations are described by two
types of labels which were manually annotated. One set
of labels contained spectra of petri dish and general back-
ground, while the other of vegetable surface, either carrot or
celeriac. The labeled data was used to calculate the projec-
tion function by means of a Canonical Discriminant Analy-
sis (CDA) [11].
In order to isolate each piece, spatial information is needed,
especially gradient information. This information acts
as a good guide for the segmentation, and together with
morphological transformations employed under a marker-
controlled Watershed segmentation as described in [9] we
were able to do an automatic segmentation of the vegeta-
bles. The result of the segmentation is seen in Figure 2.
This seems to be a relatively good result, although flaws are
present. In the upper left corner of the petri dish, two pieces
are merged together as a result of bad gradient information.
In the middle right side it is seen how a dim piece has been
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Figure 1. a) Principle of imaging with integrating (Ulbricht) sphere illumination. The LEDs located in the rim of the sphere ensures
narrowband illumination. b) Normalized spectral power distributions of the LEDs located in the VideometerLab. c) Spectral sensitivity of
the camera mounted in VideometerLab. It is seen in a) that the camera is placed above the object of interest.

totally ignored by Otsu’s method due to its dark appearance.
These flaws might be avoided by using an alternative seg-
mentation technique but they were not crucial for the task
at hand.

(a) (b)

Figure 2. Both figures show band 10, corresponding to 645 nm of
the carrot sample, on day 2. a) is the pure image and b) has the
segmentation result superimposed on the image.

2.4. Feature selection method

Having a feature space with n observations and p vari-
ables, there are different ways of using this space to de-
scribe a variable depending on it. A common technique
used to relate the dependent variable and the feature space
in a well-posed problem is by using Ordinary Least Square
(OLS). Here we have chosen the dependent variable to be
the number of the day the observation belongs to, while the
independent variables as mentioned earlier are the ratios of
the recorded spectrum.
If a problem is well-posed it means among other things that
the solution of the problem is unique. Some problems are
however not well-posed, which is why many have looked
into solving so called ill-posed problems [10] where the co-
variate matrix does not have full rank. This will always be
the case when there are more variables than observations
(p > n). If such a problem is to be solved properly using
Least Squares (LS), some sort of regularization is neces-
sary. Typically this involves including additional assump-
tions, such as smoothness of the solution. Tikhonov regu-
larization [15] also known as ridge regression [12] is one

of the most common ways of regularizing a linear ill-posed
problem or an overdetermined system. The ridge regres-
sion minimizes the residual sum of squares like an OLS,
but in addition it penalizes the L2-norm of the model coef-
ficients. This means all variables are kept in the model but
in a smoothed manner. However, in some situations where
p >> n, ridge regression is not well suited because it cre-
ates very complex and thus very little interpretable models.
This also means that if some variables contain none or lit-
tle information regarding the dependent variable, they will
still contribute to the final model and thus induce noise. An-
other approach to solve p >> n problems is by using sub-
set selection or stepwise selection. These methods choose
variables having largest partial correlation with the depen-
dent variable, and discards the rest. This type of model is
also sometimes known as a parsimonious model and is of-
ten much more interpretable, although unfortunately often
yields lesser prediction ability.
The Least Absolute Shrinkage and Selection Operator
(LASSO), proposed by Tibshirani in [14] was created to
solve this problem. Here an L1-norm penalization of the
coefficients is used instead of the L2-norm. This means that
a sparse solution, as is the case with stepwise selection, is
obtained while still continuously smoothing the coefficients
to some degree for good prediction. This approach proved
to be an improvement of the ridge regression in many cases,
while boosting regression and forward stagewise regression
both were invented as alternative methods approximately
thereafter. These are all described in [11].
A method able to obtain the solution of all these methods
in a computationally fast manner is the Least Angle Re-
gression (LARS)[7], proposed by Efron. This regression
method gives rise to at most the same amount of calcula-
tions as an ordinary LS. An alternative regularization and
variable selection method is the elastic net (EN) by Zou
[17], which often outperforms forward stagewise regres-
sion as well as lasso regression. The elastic net can be in-
corporated into the LARS regression, commonly known as
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LARS-EN, and penalizes the L1 as well as the L2 norm of
the coefficients; see Equation (1).

L(x, θ) =

n∑

i=1

⎛
⎝

p∑

j=1

(θjxij)− yi

⎞
⎠

2

s.t.

p∑

i=1

θ2 ≤ s1 and

p∑

i=1

|θ| ≤ s2

(1)

L denotes the loss function, which is the residual sum of
squares. θ are the model coefficients and y is the depen-
dent variable, in this case the experimental days. s1 and
s2 are the constraint bounds on the LASSO and ridge con-
straints respectively, which together gives the Elastic Net
constraint.
The Contours as well as constraints of a simple 2 dimen-
sional problem, simulated as an example of Equation 1 is
also seen graphically in Figure 3. This regression scheme
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θ 2
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Figure 3. Contours of the residual sum of squares function with the
Ordinary LS solution defined as the minimum. The ridge, LASSO
and Elastic Net constraints are similarly illustrated. Where the
respective constraints and contours intersect, the ridge, LASSO
and Elastic Net solutions will be defined.

is especially suited to solve p >> n problems due to the
stability of the L2 norm, and the sparsity property of the L1
norm, which is also shown in [6]. Here the LARS-EN effi-
ciently manages to select a set of suiting variables to detect
water in different types of sand, which also is the reason
why we have chosen to use it to solve the problem in this
paper.

3. Results and discussion

In order to generalize the model as much as possible a
leave one out cross validation (LOO-CV)[11] was used on
a training set (A) to estimate the model, and a separate test
set (B) was used to evaluate the performance of the model.
To further check the repeatability of the model, the training
and test set were switched and a new model estimated. Pre-
dictions of the estimated models are seen in Figure 4. The

boxes in the figures are standard type boxplots and have
lines at the 25th, 50th and 75th percentiles. The whiskers
are lines extending from each end of the boxes to show the
extent of the rest of the data. Outliers are data with val-
ues beyond the ends of the whiskers. By visually inspect-
ing the boxplots in Figure 4 there seems to be a tendency
that the celeriac models having MSE: (5.88, 4.77) respec-
tively, generally have a better prediction ability than the car-
rot models having MSE: (17.31, 13.88). It also seems that
there is a difference between some of the groups in each of
the four models, which generally increases slightly in the
beginning and then flattens out towards the end. Specifi-
cally for the carrots it seems that after day 4, the predictions
starts to oscillate, as if an equilibrium has been reached. The
same is the case for the celeriac after day 8.
Figure 5 shows the result of all pairwise two-sided t-tests
between all days in each model. The t-tests test the H0-
hypothesis, that two groups can be assumed to come from
the same population at the 5% level of significance. The

D2 D4 D8 D10 D12 D14
D2 0 2 2 2 2 2
D4 2 0 0 0 2 1
D8 2 0 0 0 2 0
D10 2 0 0 0 2 1
D12 2 2 2 2 0 2
D14 2 1 0 1 2 0

(a)

D2 D4 D8 D10 D12 D14
D2 0 2 2 2 2 2
D4 2 0 1 2 2 2
D8 2 1 0 2 2 2
D10 2 2 2 0 1 1
D12 2 2 2 1 0 0
D14 2 2 2 1 0 0

(b)

Figure 5. Both tables show all pairwise 2-sided t-tests between all
groups of the carrot model(a) and the celeriac model(b). 0 indi-
cates neither model can reject the H0-hypothesis (i.e. we accept
that the means are equal). 1 indicates one of the two models re-
jects the H0-hypothesis, and 2 indicates both models reject the
H0-hypothesis(i.e. the groups are significantly different at a 5%
level). Both tables are symmetrical respectively. The diagonal
contain only zeros.

statistical tests show that for carrots we are able to verify a
significant change in the mean from day 2 to day 4. After
day 4 we are not able to verify a significant change in mean
for the carrots, which could indicate a steady state has been
reached. However, for the celeriac we are able to signifi-
cantly track a change from day to day until day 12, with the
exception of day 8 where some uncertainty appears.
As mentioned in the section about the experimental setup,
the vegetables were kept in the refrigerator in plastic bags.
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Figure 4. All figures show predictions grouped by true sample day. The top two plots show predictions for the carrot samples, while the
bottom two plots show the predictions of the celeriac. The two leftmost figures show the model trained with LOO-CV on dataset A and
tested on dataset B, while the rightmost figures show the model trained with LOO-CV on dataset B and tested on dataset A.

Plastic bags are not able to isolate oxygen molecules, which
is why we believe the change in the spectra is caused by
oxidation of the vegetables. An oxidation causes brown-
ing/graying of celeriac and carrots to become more pale.
An increasing brown/gray color is a change in a wide range
of the spectrum, and is essentially a change of brightness.
The most significant components describing the celeriac
consists of wavelengths from the entire visible spectrum,
which coincides with a general shift in brightness. For the
carrots the components seem to have a tendency to lie in
the red/NIR area, which also coincides with a general more
pale appearance, or removal of redness/orangeness, which
essentially is an oxidation of the beta-carotene. This is ex-
actly the color change to expect in an oxidation process of
these vegetables.

4. Conclusions

An objective measure of the quality change of carrots
and celeriac was proposed which uses multispectral im-
age analysis. Six images were recorded over 14 days, for

two different data sets. Each carrot or celeriac piece was
isolated using a combination of a Canonical Discriminant
Analysis and watershed algorithm, for a total of around 200
pieces per training and test set, for both carrots and celeriac
pieces respectively. A set of 3249 features were extracted
for each vegetable piece, giving rise to a very ill posed
p >> n problem. A special regression technique, Least
Angle Regression-Elastic Net, was performed on both the
carrot and celeriac data sets. Test and training were inter-
changed, resulting in two models per vegetable type. These
were estimated to check the repeatability and statistical tests
were performed to check if it in fact was possible to discrim-
inate between the different days predicted on behalf of the
estimated models.
The results showed that the celeriac predictions were some-
what better than the carrots, although a trend was seen in
both. We see that there is a large change from day 2 to day
4 in the reflectance spectrum for both carrots and celeriac,
and for the celeriac we see the change continuing until day
12. The pairwise two sided t-tests showed exactly that these
changes were statistically significant at a 5% level of signif-
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icance. The corresponding sensory tests showed no differ-
ence over the 14 days, which makes it the more important
that we are able to detect minor changes using multispectral
imaging.
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We propose a novel method to map a multispectral image into the device independent colorspace
CIE-XYZ. This method provides a way to visualize multispectral images by predicting colorvalues
from spectral values while maintaining interpretability and is tested on a Light Emitting Diode
based multispectral system with a total of 11 channels in the visible area. To obtain interpretable
models, the method estimates the projection coefficients with regard to their neighbors as well as
the target. This results in relatively smooth coefficient curves which are correlated to the CIE-XYZ
color matching functions. The target of the regression is a well known color chart, and the models
are validated using leave one out cross validation in order to maintain best possible generalization
ability. We compare the method with a direct linear regression, and see that the interpretability
improves significantly, but comes at the cost of slightly worse predictability.

I. INTRODUCTION

The majority of today’s color images are acquired with
a CCD or CMOS chip equipped with a Bayer filter i.e. a
mosaic filter which splits the incoming photons into three
broad primary channels representing the colors or vari-
ables; Red, Green and Blue(RGB). Exactly three vari-
ables were according to Grassman [1, 2] enough to de-
scribe a color sensation.
The usual camera model, assuming lambertian surfaces,
is modelled as a linear transformation, Equation 1,

Pi =

∫

λ

Qi(λ)Ri(λ)Ei(λ)dλ + ǫ (1)

integrating the lightsource spectrum E, the surface reflec-
tion R and the sensor spectral sensibility Q over the vis-
ible region of the electromagnetic spectrum for the i’the
camera channel, i = 1, 2, 3 for standard color images. ǫ
is the molling error, assumed gaussian.
This way of capturing color has definitely proven itself us-
able, but unfortunately it also has some drawbacks. The
rough splitting of the photons has the consequence that
the intensity recorded in each channel is an integration
over a large range of wavelengths. This means that the
spectral radiant power distribution of the scene remains
hidden for the camera and can lead to metameric failure.
Metameric failure can shortly be explained as when two
objects match colorimetrically under one illumination,
but differ under another. This is because the spectral
radiant power distribution of the two objects are differ-
ent, but the rough splitting of photons fail to observe
this. Another drawback of the traditional RGB image
acquisition technique is that the colors recorded are de-
vice dependent. This means that all cameras records the
same scene slightly different, in their own color space.
One way to overcome the problems with metameric fail-
ure as well as device dependent colors is by using multi-

∗bdi@imm.dtu.dk

spectral imaging systems. In a multispectral image sys-
tem, the electromagnetic spectrum is sampled more of-
ten and in more narrow banded intervals than the three
broad intervals used in standard RGB imaging. This
means that an approximation of the true distribution of
incoming photons is known, for each pixel in the image.
There are different ways of creating multi-spectral im-
ages. One approach is to use a set of narrow-band filters
which basically makes a more delicate grouping of the
reflected light from the scene. A setup used often, e.g.
[3] and more recently in [4], is the filter wheel approach,
where a turnable wheel with different filters is mounted
between the lens and the CCD chip. Instead of using a
filter wheel, another solution is the crystal liquid tunable
filter [5, 6]. Videometer[7] has commercialized a multi-
spectral imaging system based on a Light Emitting Diode
(LED) technology. Here, a set of LEDs are strobing suc-
cessively, and an image is recorded for each LED. Further
description of this camera can be found in next section.
In the well established ICC color profile system, color is
transferred between different devices by use of a profile
connection space (PCS) which is an independent color
space, either CIE-XYZ or CIE-LAB. The mapping from
a device dependent color space to PCS is well investi-
gated and describeded in e.g. [3, 8–11], where the most
common methods used are direct linear regression or re-
gression using polynomials of various degree. Similarly,
when using a multispectral device, such as a multispec-
tral imaging system, there is a need to be able to map the
multispectral images into PCS. Such a mapping routine is
not a trivial task and is the motivation for this paper. In
[12] the authors introduce the Spectral Image Processing
System (SIPS), where a visualization is based on Spec-
tral Angle Mapping (SAM) and [13] creates an extension
to the SAM based visualization algorithm. Furthermore
[13] gives a thorough investigation and description of the
requirements for successful mapping from a multispectral
space to a three dimensional color space in a set of nine
visualization goals. As an alternative to multispectral
images, which may have problems with acquisition speed
and proper calibration, spectral reconstruction methods
offer a way to estimate the reflection spectrum of the
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sample object. Many different methods has been pro-
posed to create this reconstruction, some of them being
[14–19]. As a well established method in this area is the
Wiener method [19] which makes use of apriori knowledge
to build a reconstruction matrix which is multiplied onto
the camera response to reconstruct the reflection spectre.
Normally spectral reconstruction techniques are used to-
gether with normal RGB cameras, but certainly the pre-
cision increases with the amount of bands recorded.
In general there are two approaches to transform native
camera response to device independent colorspace. These
approaches are using an analytical method as described
above, or by first estimating the spectral functions as
also described above, and then convert it to an indepen-
dent colorspace. This paper uses an analytical method
by transforming a multispectral image to the indepen-
dent colorspace CIE-XYZ using a regression model, as
done in previous studies including [3, 20–22]. Here, direct
regression or regression of a polynomial basis expansion
of the camera response was used for the mapping. As
analternative to these previous studies we here make use
of a regression technique which penalizes the curvature
of the regression coefficients instead of direct regression.
The idea of this penalization, inspired by [23, 24], is to
be able to get more smooth, less noisy and more inter-
pretable models.
A set of training data is needed in order to calibrate the
model properly. Different standards could be used for
this, such as the NCS colorsystem which covers a vast
amount of colors.We have made use of a well known color
rendition chart, X-rite color checker standard [25][26],
containing 24 squares of different spectral simulations of
various common colors as e.g. light and dark human skin.

II. IMAGE ACQUISITION AND DATA

The acquisition of data is done using VideometerLab
which acquires multi-spectral images in up to 20 different
wavelengths ranging from 385 to 970 nm. VideometerLab
is a multipurpose camera often used for scientific purpose
and proof of concept applications, which is why diodes
emitting light outside as well as inside the visible area
of the electro magnetic spectrum is mounted. Previously
this device has been used in many different vision appli-
cations. A few examples are quality estimation of mink
fur, analysis of psoriasis lesions, classification of fungi
and temporal change detection in reflectance of vegeta-
bles [27–29].
The camera setup is seen in Figure 1 a). The object is
placed inside an integrating Ulbricht sphere which has its
interior coated with a matte coating to obtain high dif-
fuse reflectivity for optimal light conditions. By optimal
light conditions is meant conditions which avoids shad-
ows to a certain degree as well as highlights/reflections.
In the top of the sphere a Point Gray Scorpion camera is
mounted. The LEDs, having the spectral radiant power
distributions seen in Figure 1 b) are strobing successively,

and for each LED an image of dimensionality 1280x960
is acquired, which in the end yields a multi-spectral im-
age. In general, not many multispectral imaging systems
using LEDs exists, however [30] introduces a camera sys-
tem which employs a LED array coupled with a photodi-
ode array to measure reflectance spectra. Their system
is evaluated by its ability to estimate reflection spectra
using 928 colors in the ISO12642 IT8/3 chart, using a
clustering and polynomial regression method.
An image of the X-rite ColorChecker standard(Macbeth)
has been recorded in this manner using the Videometer-
Lab system. Since only 11 of the bands created by the
camera resides in the visible spectrum, these are the only
ones containing color information, which is why the rest
are discarded, weighted down, and not used further in
this study. Finally the acquired multispectral image is
seen in Figure 2 with 11 distinct wavelengths at; 430, 450,
470, 505, 525, 565, 590, 630, 645, 660 and 700 nanometer.
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FIG. 1. a) Principle of imaging with integrating (Ulbricht)
sphere illumination. The LEDs located in the rim of the
sphere ensures narrowband illumination. b) Normalized spec-
tral power distributions of the LEDs located in the Videome-
terLab. c) Spectral sensitivity of the camera mounted in
VideometerLab. It is seen in a) that the camera is placed
above the object of interest.

As seen, the x-rite standard contains a matrix of col-
ors, four rows and six columns, which sums to a total
of 24 squares. These squares are extracted from the im-
age manually, and a median value is calculated for each
square thus yielding a total of 24 spectral samples. The
real values of the colors in sRGB and CIE-Lab space are
known, and can thus be used for calibration, which will
be discussed further in the theory section.

III. THEORY

The relationship between spectral space and the three
dimensional CIE-XYZ space is known to be linear, Equa-
tion 1. Therefore we are able to map the spectra of the
multispectral image seen in Figure 2 into the CIE-XYZ
using a linear model. For the duration of this section,
the size of the spectral space will be denoted p, and
the amount of samples is denoted N . A standard lin-
ear model is written on the form 2.

y(x) = β0 + β1x1 + β2x2 + ... + βpxp + ǫ (2)
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FIG. 2. 11 Channels of a multispectral image containing a
total of 20 channels. The wavelength at which the channel
was recorded is shown on each image. The image was recorded
using the VideometerLab with an LED technology.

Here y denotes the response, which we want to be able to
predict, in this case a known CIE-XYZ value. x denotes
the independent covariates, here a sparsely recorded elec-
tromagnetic spectrum. Since we do not know the exact
relation between x and y, it is desirable to compute a set
of adjustable parameters β in such a way that ǫ becomes
as small as possible using a set of measured/observed
spectra and a known target. If there exists more spectra
samples than recorded wavelengths for each sample, the
system is overdetermined, and several solutions exists,
which is why the best approximate solution have to be
determined.
Equation 2 resembles a plane in a hyper dimensional
space, which we want to fit by minimizing the euclid-
ian distances between a given set of observations and the
plane. This fit is often written as the residual sum of
squares, and is normally known as the Ordinary Least
Square (OLS) method, Equation 3.

β̂ = argmin
β





N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2



 (3)

The fastest way to minimize Equation 3 is by setting the
derive to 0 and solve for beta since this is a strictly convex
problem. Written in matrix form, normally referred to
as the normal equations, this may be written as

β̂ =
(
XT X

)−1
XTy (4)

β̂ is a px3 projection vector which is capable of projecting
new x observations in p dimensional space into the three
dimensional color space; ŷ = Xβ, where X is the mul-
tispectral data and y is the matrix containing the true
color values.
According to the Gauss-Markov theorem, the estimate
of β in an OLS is the best linear unbiased estimator
(BLUE), which means that for all unbiased solutions, the
OLS solution is the one with smallest variance. However,
the OLS problem may be modified to get biased estima-
tors, and thereby get an even better solution. A well

known method used to modify the OLS in order to be
able to solve ill-posed problems of overdetermined sys-
tems where the Gramian matrix

(
XTX

)
is singular is the

Tikhonov regularization [23, 31, 32] method - also known
as ridge regression. This regularization basically penal-
izes the L2-norm or euclidian length of the parameter
vector, as seen below

β̂ ridge = argmin
β





N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2



 ,

s.t.

p∑

j=1

β2
j ≤ s

(5)

s is thus a parameter that basically controls the bias-
variance tradeoff as best as possible, meaning that this
regularization makes it possible to find a biased solu-
tion with smaller variance than the BLUE estimate. The
parameter s is chosen so that the generalization error is
minimized, which in other terms means the best fit which
is not an overfit. How this is done is described in the end
of this section.
Since the Tikhonov regularization is a constraint version
of the convex OLS problem, this leads to a quadratic
constrained optimization problem. Such a problem may
be solved in different ways e.g. using quadratic program-
ming with constraints or by solving the Lagrangian prob-
lem, by introducing a lagrange multiplier λ in Equation
5. After λ has been introduced, the formulation may
again be recast to matrix form.

β̂ =
(
XTX + λI

)−1
XTy (6)

I is the p × p identity matrix. The penalty term of
the Ridge Regression shrinks the coefficients towards
zero, and thereby weighs down badly influencing vari-
ables more than others.
Instead of shrinking the length of the coefficient vector,
we are interested in penalizing large variance between
neighboring coefficients in order to obtain a more smooth
coefficient/weight curve. We present a term based on
the common finite difference operators, which are used
to approximate numerical derivatives of arbitrary order.
A penalization of the gradient of the coefficients β, is
thus equivalent to a penalization of the backward finite
difference of the coefficients

∇h [f ] (x) = f(x) − f(x − h) (7)

where h is set to step a single unit. Rewritten into a
constraint, this is given as

p−1∑

j=1

(βj − βj+1)
2 ≤ s (8)

Similarly a smoothing term could be incorporated as

p−2∑

j=1

(βj − 2βj+1 + βj+2)
2 ≤ s (9)
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Both terms should have the effect of preventing large
fluctuations in the coefficients, and make it easier to un-
derstand how the model predicts. In [24], the authors
proposed a similar penalization, however with the L1-
norm instead, which gives rise to piecewise linear sparse
models which not is interesting in the type of problem
we are dealing with in this paper. Before this regulariza-
tion may be used we have to assume an ordering of the
coefficients β, which comes naturally for spectral data,
since the coefficients represents neighboring wavelengths.
Building the regularization into the OLS of a curvature
penalization , yields

β̂ = argmin
β





N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2



 ,

s.t.

p−2∑

j=1

(βj − 2βj+1 + βj+2)
2 ≤ s

(10)

Again we can rewrite this into lagrangian form

β̂ =
(
XTX + λAT A

)−1
XT y (11)

where A is a p × p tridiagonal matrix.

A =




1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
...

. . .
...

...
0 0 . . . 1 −2 1
0 0 . . . 0 0 0
0 0 . . . 0 0 0




(12)

Due to the sparse amount of observations, Leave One
Out Cross Validation(LOOCV) is used to evaluate the
model, and calculate the generalization error [33]. This
means the model is trained and evaluated n times, one
time for each sample, with all observations except the
left out sample which is used to generate a test-error
residual. Finally a total testerror can be calculated. A
finite difference or gradient descend scheme was used
to select proper parameter values for the regularization
parameters.

IV. EXPERIMENTAL DATA AND RESULTS

Having a multispectral image of a colorchecker with
24 different color patches recorded at 11 different wave-
lengths, means we have n = 24 observations and p =
11 variables, and thus an overdetermined system. 24
patches are very few observations in a regression method,
and care should be taken not to overfit the data, which
we have chosen to avoid by minimizing the testerror with
LOOCV and a finite difference scheme, as described in
the previous section. Before the calibration, all real color

patch values were transformed from CIE-Lab to CIE-
XYZ using

Y =

{
Ynf3

y for fy > δ
fy − 16

1163δ2Yn otherwise
, fy ≡ L ∗ +16

116

X =

{
Xnf3

x for fx > δ
fx − 16

1163δ2Xn otherwise
, fx ≡ fy +

a∗
500

Z =

{
Znf3

z for fz > δ
fz − 16

1163δ2Zn otherwise
, fz ≡ fy − b∗

200

, δ =
6

29
(13)

with the D50, 2 degree observer white spot reference.
Four different regression schemes were compared, i.e.
Least Squares, Ridge Regression, Gradient Ridge Regres-
sion (GRR) and Curvature Ridge Regression (CRR), all
presented in the theory section. In order to compare the
results, we report the min, max and mean ∆E of the
color reconstructions.

∆E =

√
(L1 − L2)

2
+ (a1 − a2)

2
+ (b1 − b2)

2
(14)

as well as mean euclidian distance in XYZ space, de-
noted ∆XY Z and finally the test Root Mean Square Er-
ror (RMSE).
For the penalized regression schemes, a λ was chosen for
each channel, resulting in a total of three λ per regression
scheme. Table I shows a compilation of the results, the
best being underlined.

∆EMIN ∆EMAX ∆E RMS ∆XY Z

OLS 0.24431 3.9309 1.2912 0.75088 0.58368

RR 0.26119 4.6468 1.3993 0.66173 0.64521

GRR 0.25967 4.5934 1.3191 0.64494 0.60110

CRR 0.26384 4.6233 1.3249 0.64973 0.60863

TABLE I. Resulting colorimetric errors using 4 different re-
gression methods on 11 different wavelengths. All errors are
generalization errors calculated using Leave One Out Cross
Validation.

From Table I it is seen that the OLS method attains the
lowest ∆E error of 1.29. This is however not the case
with the RMS. This is worth noticing, and is caused
by the fact that all the applied procedures minimizes
RMS and not ∆E, which has a nonlinear relationship.
Aside from OLS, the other procedures attains more or
less equal error magnitude in CIE-Lab space. It is fur-
thermore worth noticing that all methods attain mean
LAB differences below 3, which according to [3] as a rule
of thumb is Hardly perceptible by the human eye. Figure
3 shows plots of the calculated coefficients for each of the
four tested regression methods. OLS clearly stand out,
with coefficient the does not show any particular pat-
tern. The three regularized regression schemes however
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FIG. 3. a) Ordinary Least squares fit b) Ridge Regression fit b) Curvature Penalization fit of first derivative c) Curvature
Penalization fit of second derivative

shows a clear correlation with the CIE-XYZ tristimuli
curves, which would make sense to obtain in a regression
of a problem as the one posed in this paper. The blue
tristimuli model seems however a bit oscillating, while
the red and green models seems to be shifted a bit in
the spectrum compared to the real tristimuli functions.
The coefficients of the three regularized methods seem
quite similar, especially the penlization of the gradient
and curvature methods, which naturally both seem to be
a bit more smooth than ridge regression. In case we had
densely sampled hyperspectral images we would be able
to directly use the theoretical XYZ tristimulus values to
map the spectra into the XYZ colorspace. However, hav-
ing sparsely sampled spectra this is not an option, and
as an alternative to reconstructing spectra using any ex-
isting method, the smooth regularization shown in Fig-
ure 3 shows that we are able to create sensible substitu-
tion weighting curves to the theoretical XYZ tristimulus
curves. Thus, these curves are able to map sparsely sam-
pled multispectral images into XYZ space in the same
way the theoretical curves maps densly sampled spectra
using Equation 1.

V. CONCLUSION

The focus of this paper has been to develop an alterna-
tive method to map a multispectral image into the inde-
pendent colorimetric colorspace, CIE XYZ . The method
is built to support a multispectral image of arbitrary
spectral dimensionality, above 3 and specifically tested
on a multispectral system with 11 wave bands in the vis-
ible area. To create a projection vector, a regularized
regression technique was utilized and evaluated on the
x-rite ColorChecker Chart containing 24 different color
patches using leave one out cross validation. The cross
validation enabled us to assess the generalization ability
in spite of the few color samples available. The colori-
metric prediction ability was reported in ∆E ,RMS and
∆XY Z and yielded good and interpretable color repro-
duction results. A drawback of this method is that in
order to calculate proper weights of the projection vec-
tor, β, it is necessary to do the regression on reflection
spectre from a training image with the same light setup
as the target image. By light setup for the used mul-
tispectral system, is meant the amount of power going
through the light emitting diodes, as well as the strob-
ing time which is optimized for best dynamic range in
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a local area of a given surface chemistry. However, for
any other multispectral system, the training and target
image would have to be recorded under the same lighting
conditions, which usually is possible.
For correct light setups, the reported results, all with
∆E values below 3, indicates a hardly perceptible error
between the real colorchecker values and the estimation
provided by the mapping method. Plots of the estimated
regularized models motivated a regularization approach

to achieve higher interpretability, while colorimetric mea-
sures showed that Ordinary Least Square better predic-
tions performed slightly better.
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Abstract. Quantification of specific compounds in a food-matrix is a
very important factor for an overall quantification of the quality. Near
infrared (NIR) hyperspectral imaging is a powerful technique to quan-
tify specific constituents as well as its spatial distribution of the food-
matrix. Hyperspectral imaging is however very expensive. We propose a
way to design a simple measurement system consisting of a NIR sensi-
tive monochrome camera together with a small set of optical filters to
estimate and visualize a specific food compound without requiring a full
hyperspectral device. Based on a set of hyperspectral measurements of
beef and physical and chemical analysis of the fat within the beef, we
propose a method to design a set of ideal Band Pass Filters (BPF), as
small as possible while still maintaining predictability of fat content. The
results show that 2 filters is a suitable amount of filters for prediction.

Keywords: NIR hyperspectral imaging, Optical filter, Beef, Content

1 Introduction
Traditionally quality evaluation of food has been done using visual inspection,
chemical measurements or sensory testing. These methods are destructive, time-
consuming and/or subjective, which calls for other quantification methods. Re-
cently non-destructive methods for evaluation of food quality as well as visualiza-
tion of the spatial distribution of constituents, by using (NIR) hyperspectral in-
formation have emerged [1]. Although hyperspectral image data is very versatile
and contains much information, the measurement system is extremely expensive
to install in a food factory. As another approach based on hyperspectral data,
a method designing the optical transmission for the optical filter to modulate a
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RGB camera’s spectral sensitivity and to highlight an object’s spectral features
is proposed [2][3].

We propose a simple measurement system consisting of a NIR monochrome
camera together with a small set of optical filters to estimate and visualize a
specific food compound without use of a hyperspectral device. We use the fat
content in raw beef as the target. Currently in Japan, the quality evaluation of
beef carcasses is performed manually by a grader. In this grading, only visual
inspection is used. Marbling, which is the amount and distribution of fat in the
meat is the most important factor. Based on a set of hyperspectral measurements
and physical and chemical analysis of fat within the beef, we propose a method
to design a set of optical Filters, which accurately is able to predict the amount
and distribution of this fat.

2 Materials and methods
2.1 Samples and measurements

A total of 126 meat samples consisting of various parts from three 25-month-old
Japanese black cattle were collected. After about 60 days of ageing at 0 − 5◦C,
the beef carcasses were kept at −25◦C to maintain the fat properties during
storage and transportation.

The fat content used for reference values was analyzed by physical and chem-
ical method. Automated Soxhlet extraction equipment (Soxtherm416, Gerhardt,
Germany) was used to obtain the fat percentage.

The hyperspectral measurements were performed by a NIR hyperspectral
imaging system consisting of a linear image sensor (Spectral Camera SWIR;
SPECIM Spectral Imaging Ltd, Finland), a linear slide table and halogen light
sources (MH-M15, 150 W; Hataya Ltd, Japan). The hyperspectral camera works
in the wavelength range of 970-2500 nm with a bandwidth of 6.3 nm at a resolu-
tion of 320 pixels (X-axis). We acquired samples at a resolution of 380µm/pixel
over a rectangular region of 120×130mm by moving the slide table. The exposure
time was 3.0 ms.

2.2 Calculation of filter transmission intensity
The MATLAB 7.5 (R2007b; The MathWorks Inc., Natick, MA, USA) software
package was used to analyze the hyperspectral image data. Optical filters were
designed as ideal (rectangle-shaped) BPF and an assumption was made that
a measurement using an optical filter consists of three images; a dark current
image (IDark), a white standard image (IWhite) and a sample image (ISample).
To remove the effects of dark current, spectral features produced by the light
source, and flat field inhomogeneities, we use IR as a model parameter calculated
from measured images or hyperspectral images by

IR =
ISample − IDark

IW hite − IDark

=

∫ λlong

λshort

ISample(λ) − IDark

IW hite(λ) − IDark

dλ

Where {IDark, IWhite(λ), ISample(λ)} is hyperspectral data, λshort and λlong

are the wavelength edges of the BPF. When calculating IR , the spectra {
ISample(λ), IWhite(λ) } were interpolated by cubic spline to 1,000 wavelength
points between λshort and λlong .
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2.3 Design of optical filter property

The filter properties were modeled by using the center wavelength (λc) and the
half-bandwidth (wh). We limited the minimum bandwidth of BPF to 50 nm,
because too narrow BPFs cannot obtain enough luminance, which will cause
reduction of the signal-to-noise ratio. The maximum bandwidth was limited to
1,000 nm, because very wide BPFs are hard to implement as a real optical fil-
ter. The wavelength range was also limited from 1,000 nm to 2,300 nm, because
shorter/longer wavelength ranges of hyperspectral data could not provide suf-
ficient intensity. With a spectral resolution of about 6.3 nm, meaning a total
number of wavelength-points of 206. Even if the edges of BPFs are limited to
these wavelength-points, every possible combination of n BPFs is ≃ 104n. There-
fore “brute-force search” is not suitable for more than 2 or 3 filters in terms of
searching time.

Multiple Linear Regression (MLR) was used to estimate parameters for linear
models using filter transmission intensities as variables. To create and evaluate
the estimation models, samples were divided into calibration and validation sets.
Calibration samples were selected randomly (Nc = 84) and remainder were used
as validation samples (Nv = 42). These sample sets were fixed to compare the
results of different feature selection method.

Filter feature selections were done using leave-one-out cross validation, to
minimize the root mean square error of cross-validation (RMSECV ) given by

RMSECV =

√∑
(yc − ỹc)2

Nc

where yc is the reference value, and ỹc is the predicted value of the calibration-
set in cross validation. Furthermore the standard error of calibration (SEC) ,
the root mean square error of calibration (RMSEc) and the standard error of
prediction (SEP ) were calculated as

SEC =

√∑
(yc − ŷc)2

Nc − n − 1
, RMSEc =

√∑
(yc − ŷc)2

Nc

, SEP =

√∑
(yv − ŷv)2

Nv

where ŷc is the predicted value of the calibration-set using the model, n is the
number of filters, yv is the reference value of the validation-set, and ŷv is the
predicted value of the validation-set using the model.

We compared the following three feature selection methods.

Stepwise random selection In this method one needs to define the number
of filters. A scoremap and a countmap is maintained for each filter which is used
for deciding the final properties for the corresponding filter:

1. Generate the {m, (m + 1), (m + 2), ..., n}-th filters randomly.
2. Calculate n filter outputs of each calibration sample.
3. Make a MLR model by using the calculated filter outputs and the corresponding

reference values of the calibration-set.
4. Calculate the RMSECV for the calibration-set.
5. Add the RMSECV value to the n points in the scoremap. Also add 1 to the n

points in the countmap.
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6. Repeat step 1 to 5 sufficiently many times.

The scoremaps and the countmaps are made for each m-th filter individually,
and have coordinate points corresponding to every filter feature (λc, wh).

7. Remove 0-count points both in the m-th countmap and the m-th scoremaps. Then
make a mean scoremap by dividing the m-th scoremap by the m-th countmap.

8. Choose a point that minimizes the mean scoremap. This is then fixed as the m-th
filter (λcm , whm)

9. Repeat steps 1 to 8 n times with the {1, 2, ..., (m − 1)}-th fixed filters.

Finally, local optimization (constrained nonlinear optimization) is performed
using the result as a starting guess, minimizes

min

√∑Nc
i (yi −∑n

j f(λshort(j), λlong(j), xi))2

Nc

 , f(λshort, λlong, x) =

∫ λlong

λshort

xdλ

s.t. (1000 ≤ λshort, λlong ≤ 2300), (50 ≤ λlong − λshort ≤ 1000)

where x is reflectance (hyperspectral data) of a sample. In this method, a
filter feature which has small average error in many trials of various feature
combinations, is assumed to contain useful information for estimation.

Forward selection method Inspired by the classic variable selection technique
also known as forward selection [4], the forward selection method calculates
RMSECV for all possible filters and selects the filter (λC1 , wh1) which minimizes
this metric. This filter (λC1 , wh1) is fixed at the found feature and the procedure
is then repeated for next filter (λC2 , wh2) . The m-th filter (λCm , whm) is chosen
with (m − 1) fixed filters. The wavelength of the BPF edges are discrete values.

At the m-th filter selection step, this method consider the combination of
(m−1) filters already fixed and m-th filter. Contrary to this the stepwise random
selection method considers the combination of n filters at every step.

Forward selection with local optimization After each forward selection
step, local optimization (same to stepwise random selection method) is per-
formed using the result of the forward selection method as a starting guess.

3 Results and discussion
Table 1 shows the statistics of results for the calibration and validation samples
found by the physical and chemical analyses. The samples have a rather wide
distribution.

Table 1. Statistics for reference values in each data set

Number Mean[%] SD[%] Min[%] Max[%]

Entire set 126 30.92 14.66 5.25 71.23

Calibration set 84 30.36 13.99 5.25 63.50
Validation set 42 32.04 16.03 8.98 71.23

Figure 1 shows an example of the result of stepwise random selection for n=6
with the area-averaged reflectance spectra from all 126 samples. The number of
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repetitions for each selection step is 105. Figure 3 shows the mean scoremaps.
The minimum point (the selected condition) is indicated by a magenta mark in
each of the maps. Figure 2 shows an example of the plot of the evaluation values
for n= 1 to 10. In this result, local optimization decreases the RMSECV , and
increases the SEP .

Figure 4 shows the result of the forward selection method, while figure 5
shows a plot of the evaluation values. Although the RMSEc continues to de-
crease at least until 10 filters, the SEP begin to increase after 6 filters, and the
RMSECV is not improved after 3 filters. Also the 4-7th filter is exactly similar,
it’s impractical to implement a real optical filter individually.

Figure 6 shows the modifications achieved by local optimization after each
forward selection step. It appears that there are few or no modifications. Fig-
ure 7 shows a plot of the evaluation values. Local optimization decreases the
RMSECV slightly, however the SEP is increased. This might indicate that the
local optimization causes overfitting.

In summary, local optimization decreases the RMSECV , however, it does
not necessarily mean the model’s accuracy improves. In this case, 2 filters might
be enough for prediction.

In previous work [1], which uses hyperspectral data and PLS1 regression, the
SEP is 4.81. In that study, spectral correction (multiplicative scatter correction)
was used. Because the purpose is to implement a real optical filter, we use raw
reflectance spectra without any spectral correction. We achieve a minimum SEP
around 5.0. This could indicate that our results demonstrate sufficient accuracy.

In this study, similar RMSECV curves but different SEP curves are ob-
tained. Accuracy has not improved even we increase the number of filters to
more than 2. This might mean that the prediction of the fat content is rather
easy, because it was high in fat.

In future work, we will apply these methods to the estimation of fatty acid
content, which is more difficult to predict than fat content because the content
is much lower. Also, we will apply imaging to visualize the food composition. To
improve the accuracy, we will add a combination of filter output values to the
estimation model, and perform selection of them.
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Fig. 1. An example of the result of step-
wise random selection (n = 6)

Fig. 2. An example of individual error
measures (for n=1-10) for stepwise random
selection
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Fig. 3. An example of an evaluation map of stepwise random selection (n = 6)

Fig. 4. The result of forward selection
(n=10)

Fig. 5. Error measures for forward selec-
tion

Fig. 6. Modifications of the BPFs found
by local optimization after each forward
selection step (n=1-10)

Fig. 7. Error measures for forward selec-
tion with local optimization
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