5 research outputs found

    Collaborative telemedicine for interactive multiuser segmentation of volumetric medical images

    Get PDF
    Telemedicine has evolved rapidly in recent years to enable unprecedented access to digital medical data, such as with networked image distribution/sharing and online (distant) collaborative diagnosis, largely due to the advances in telecommunication and multimedia technologies. However, interactive collaboration systems which control editing of an object among multiple users are often limited to a simple "locking” mechanism based on a conventional client/server architecture, where only one user edits the object which is located in a specific server, while all other users become viewers. Such systems fail to provide the needs of a modern day telemedicine applications that demand simultaneous editing of the medical data distributed in diverse local sites. In this study, we introduce a novel system for telemedicine applications, with its application to an interactive segmentation of volumetric medical images. We innovate by proposing a collaborative mechanism with a scalable data sharing architecture which makes users interactively edit on a single shared image scattered in local sites, thus enabling collaborative editing for, e.g., collaborative diagnosis, teaching, and training. We demonstrate our collaborative telemedicine mechanism with a prototype image editing system developed and evaluated with a user case study. Our result suggests that the ability for collaborative editing in a telemedicine context can be of great benefit and hold promising potential for further researc

    Down-Scaled 3D Medical Image Transfer System Using Instant Messenger

    Get PDF
    Objective: We have developed an instant messenger system that supports transmitting 3D medical image objects for telediagnostic use. Methods: We used thresholding and down-scaling technique to build down-scaled 3D object with 80 sliced Digital Imaging and Communication in Medicine(DICOM) images. And, we also construct instant messenger for medical data transfer and general communication. We measured total image size and transmission time which were decreased when applied peer to peer connection using instant messenger for medicine. Results: Our study showed that total DICOM image size was decreased around 1% and transmission time was also decreased by 1.59% when we use proposed system. Conclusion: Proposed methods have a potential to be a useful tool in ubiquitous health network system. Also, we expect the synergy effect is increased by developing 3D object technique and security solutions.ope

    Group-Slicer: A collaborative extension of 3D-Slicer

    Get PDF
    AbstractIn this paper, we describe a first step towards a collaborative extension of the well-known 3D-Slicer; this platform is nowadays used as a standalone tool for both surgical planning and medical intervention. We show how this tool can be easily modified to make it collaborative so that it may constitute an integrated environment for expertise exchange as well as a useful tool for academic purposes

    Specialist to non-specialist teleconsultations in chronic respiratory disease management:A systematic review

    Get PDF
    BACKGROUND: Chronic respiratory diseases (CRD), are common public health problems with high prevalence, disability and mortality rates worldwide. Further uneven distribution of the health workforce is a major barrier to the effective diagnosis and treatment of CRDs. Teleconsultation between a specialist and non-specialist could possibly bridge the gap in access to health care and decrease CRD burden in remote areas. This review investigates the evidence for the effective use of specialist to non-specialist teleconsultation in the management of CRDs in remote areas and identifies instances of good practice and knowledge gaps. METHODS: We searched for articles till November 2020, which focused on specialist to non-specialist teleconsultations for CRD diagnosis or management. Two independent reviewers conducted the title and abstract screening and extracted data from the selected papers and the quality was assessed by Joanna Briggs Institute’s (JBI) tool. A descriptive and narrative approach was used due to the heterogeneous nature of the selected studies. RESULTS: We found 1715, articles that met the initial search criteria, but after excluding duplicates and non-eligible articles, we included 10 research articles of moderate quality. These articles were from nine different studies, all of which, except one, were conducted in high-income countries. The studies reported results in terms of impact on the patients, and the health care providers including primary care physicians (PCP) and specialists. The teleconsulting systems used in all the selected papers primarily used audio modes in addition to other modes like the audio-video medium. The included studies reported primarily non-clinical outcomes including effectiveness, feasibility, acceptability and usability of the teleconsultation systems and only three described the clinical outcomes. The teleconsultation was predominantly conducted in the PCP’s office with the specialist located remotely. CONCLUSIONS: We found relatively few, papers which explored specialist to non-specialist teleconsultation in management of CRDs, and no controlled trials. Two of the included papers described systems, which were used for other diseases in addition to the CRD. The available literature although not generalisable, encourages the use of specialist to non-specialist teleconsultation for diagnosis and management of CRDs

    Sistemas interativos e distribuídos para telemedicina

    Get PDF
    doutoramento Ciências da ComputaçãoDurante as últimas décadas, as organizações de saúde têm vindo a adotar continuadamente as tecnologias de informação para melhorar o funcionamento dos seus serviços. Recentemente, em parte devido à crise financeira, algumas reformas no sector de saúde incentivaram o aparecimento de novas soluções de telemedicina para otimizar a utilização de recursos humanos e de equipamentos. Algumas tecnologias como a computação em nuvem, a computação móvel e os sistemas Web, têm sido importantes para o sucesso destas novas aplicações de telemedicina. As funcionalidades emergentes de computação distribuída facilitam a ligação de comunidades médicas, promovem serviços de telemedicina e a colaboração em tempo real. Também são evidentes algumas vantagens que os dispositivos móveis podem introduzir, tais como facilitar o trabalho remoto a qualquer hora e em qualquer lugar. Por outro lado, muitas funcionalidades que se tornaram comuns nas redes sociais, tais como a partilha de dados, a troca de mensagens, os fóruns de discussão e a videoconferência, têm o potencial para promover a colaboração no sector da saúde. Esta tese teve como objetivo principal investigar soluções computacionais mais ágeis que permitam promover a partilha de dados clínicos e facilitar a criação de fluxos de trabalho colaborativos em radiologia. Através da exploração das atuais tecnologias Web e de computação móvel, concebemos uma solução ubíqua para a visualização de imagens médicas e desenvolvemos um sistema colaborativo para a área de radiologia, baseado na tecnologia da computação em nuvem. Neste percurso, foram investigadas metodologias de mineração de texto, de representação semântica e de recuperação de informação baseada no conteúdo da imagem. Para garantir a privacidade dos pacientes e agilizar o processo de partilha de dados em ambientes colaborativos, propomos ainda uma metodologia que usa aprendizagem automática para anonimizar as imagens médicasDuring the last decades, healthcare organizations have been increasingly relying on information technologies to improve their services. At the same time, the optimization of resources, both professionals and equipment, have promoted the emergence of telemedicine solutions. Some technologies including cloud computing, mobile computing, web systems and distributed computing can be used to facilitate the creation of medical communities, and the promotion of telemedicine services and real-time collaboration. On the other hand, many features that have become commonplace in social networks, such as data sharing, message exchange, discussion forums, and a videoconference, have also the potential to foster collaboration in the health sector. The main objective of this research work was to investigate computational solutions that allow us to promote the sharing of clinical data and to facilitate the creation of collaborative workflows in radiology. By exploring computing and mobile computing technologies, we have designed a solution for medical imaging visualization, and developed a collaborative system for radiology, based on cloud computing technology. To extract more information from data, we investigated several methodologies such as text mining, semantic representation, content-based information retrieval. Finally, to ensure patient privacy and to streamline the data sharing in collaborative environments, we propose a machine learning methodology to anonymize medical images
    corecore