57 research outputs found

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Toward autonomous exploration in confined underwater environments

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 33 (2016): 994-1012, doi:10.1002/rob.21640.In this field note we detail the operations and discuss the results of an experiment conducted in the unstructured environment of an underwater cave complex, using an autonomous underwater vehicle (AUV). For this experiment the AUV was equipped with two acoustic sonar to simultaneously map the caves’ horizontal and vertical surfaces. Although the caves’ spatial complexity required AUV guidance by a diver, this field deployment successfully demonstrates a scan matching algorithm in a simultaneous localization and mapping (SLAM) framework that significantly reduces and bounds the localization error for fully autonomous navigation. These methods are generalizable for AUV exploration in confined underwater environments where surfacing or pre-deployment of localization equipment are not feasible and may provide a useful step toward AUV utilization as a response tool in confined underwater disaster areas.This research work was partially sponsored by the EU FP7-Projects: Tecniospring- Marie Curie (TECSPR13-1-0052), MORPH (FP7-ICT-2011-7-288704), Eurofleets2 (FP7-INF-2012-312762), and the National Science Foundation (OCE-0955674)

    Underwater intervention robotics: An outline of the Italian national project Maris

    Get PDF
    The Italian national project MARIS (Marine Robotics for Interventions) pursues the strategic objective of studying, developing, and integrating technologies and methodologies to enable the development of autonomous underwater robotic systems employable for intervention activities. These activities are becoming progressively more typical for the underwater offshore industry, for search-and-rescue operations, and for underwater scientific missions. Within such an ambitious objective, the project consortium also intends to demonstrate the achievable operational capabilities at a proof-of-concept level by integrating the results with prototype experimental systems

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    A Combined EM and Visual Tracking Probabilistic Model for Robust Mosaicking: Application to Fetoscopy

    Get PDF
    Twin-to-Twin Transfusion Syndrome (TTTS) is a progressive pregnancy complication in which inter-twin vascular connections in the shared placenta result in a blood flow imbalance between the twins. The most effective therapy is to sever these connections by laser photo-coagulation. However, the limited field of view of the fetoscope hinders their identification. A potential solution is to augment the surgeon’s view by creating a mosaic image of the placenta. State-of-the-art mosaicking methods use feature-based ap- proaches, which have three main limitations: (i) they are not robust against corrupt data e.g. blurred frames, (ii) tem- poral information is not used, (iii) the resulting mosaic suf- fers from drift. We introduce a probabilistic temporal model that incorporates electromagnetic and visual tracking data to achieve a robust mosaic with reduced drift. By assuming planarity of the imaged object, the nRT decomposition can be used to parametrize the state vector. Finally, we tackle the non-linear nature of the problem in a numerically stable manner by using the Square Root Unscented Kalman Filter. We show an improvement in performance in terms of robustness as well as a reduction of the drift in comparison to state-of-the-art methods in synthetic, phantom and ex vivo datasets

    Pose Estimation for Omni-directional Cameras using Sinusoid Fitting

    Full text link
    We propose a novel pose estimation method for geometric vision of omni-directional cameras. On the basis of the regularity of the pixel movement after camera pose changes, we formulate and prove the sinusoidal relationship between pixels movement and camera motion. We use the improved Fourier-Mellin invariant (iFMI) algorithm to find the motion of pixels, which was shown to be more accurate and robust than the feature-based methods. While iFMI works only on pin-hole model images and estimates 4 parameters (x, y, yaw, scaling), our method works on panoramic images and estimates the full 6 DoF 3D transform, up to an unknown scale factor. For that we fit the motion of the pixels in the panoramic images, as determined by iFMI, to two sinusoidal functions. The offsets, amplitudes and phase-shifts of the two functions then represent the 3D rotation and translation of the camera between the two images. We perform experiments for 3D rotation, which show that our algorithm outperforms the feature-based methods in accuracy and robustness. We leave the more complex 3D translation experiments for future work.Comment: 8 pages, 5 figures, 1 tabl

    Toward AUV Survey Design for Optimal Coverage and Localization Using the Cramer Rao Lower Bound

    Full text link
    This paper discusses an approach to using the Cramer Rao Lower Bound (CRLB) as a trajectory design tool for autonomous underwater vehicle (AUV) visual navigation. We begin with a discussion of Fisher Information as a measure of the lower bound of uncertainty in a simultaneous localization and mapping (SLAM) pose-graph. Treating the AUV trajectory as an non-random parameter, the Fisher information is calculated from the CRLB derivation, and depends only upon path geometry and sensor noise. The effect of the trajectory design parameters are evaluated by calculating the CRLB with different parameter sets. Next, optimal survey parameters are selected to improve the overall coverage rate while maintaining an acceptable level of localization precision for a fixed number of pose samples. The utility of the CRLB as a design tool in pre-planning an AUV survey is demonstrated using a synthetic data set for a boustrophedon survey. In this demonstration, we compare the CRLB of the improved survey plan with that of an actual previous hull-inspection survey plan of the USS Saratoga. Survey optimality is evaluated by measuring the overall coverage area and CRLB localization precision for a fixed number of nodes in the graph. We also examine how to exploit prior knowledge of environmental feature distribution in the survey plan.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86049/1/akim-10.pd
    • …
    corecore