6,295 research outputs found

    Environmental Sensing by Wearable Device for Indoor Activity and Location Estimation

    Full text link
    We present results from a set of experiments in this pilot study to investigate the causal influence of user activity on various environmental parameters monitored by occupant carried multi-purpose sensors. Hypotheses with respect to each type of measurements are verified, including temperature, humidity, and light level collected during eight typical activities: sitting in lab / cubicle, indoor walking / running, resting after physical activity, climbing stairs, taking elevators, and outdoor walking. Our main contribution is the development of features for activity and location recognition based on environmental measurements, which exploit location- and activity-specific characteristics and capture the trends resulted from the underlying physiological process. The features are statistically shown to have good separability and are also information-rich. Fusing environmental sensing together with acceleration is shown to achieve classification accuracy as high as 99.13%. For building applications, this study motivates a sensor fusion paradigm for learning individualized activity, location, and environmental preferences for energy management and user comfort.Comment: submitted to the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON

    Novel proposal for prediction of CO2 course and occupancy recognition in Intelligent Buildings within IoT

    Get PDF
    Many direct and indirect methods, processes, and sensors available on the market today are used to monitor the occupancy of selected Intelligent Building (IB) premises and the living activities of IB residents. By recognizing the occupancy of individual spaces in IB, IB can be optimally automated in conjunction with energy savings. This article proposes a novel method of indirect occupancy monitoring using CO2, temperature, and relative humidity measured by means of standard operating measurements using the KNX (Konnex (standard EN 50090, ISO/IEC 14543)) technology to monitor laboratory room occupancy in an intelligent building within the Internet of Things (IoT). The article further describes the design and creation of a Software (SW) tool for ensuring connectivity of the KNX technology and the IoT IBM Watson platform in real-time for storing and visualization of the values measured using a Message Queuing Telemetry Transport (MQTT) protocol and data storage into a CouchDB type database. As part of the proposed occupancy determination method, the prediction of the course of CO2 concentration from the measured temperature and relative humidity values were performed using mathematical methods of Linear Regression, Neural Networks, and Random Tree (using IBM SPSS Modeler) with an accuracy higher than 90%. To increase the accuracy of the prediction, the application of suppression of additive noise from the CO2 signal predicted by CO2 using the Least mean squares (LMS) algorithm in adaptive filtering (AF) method was used within the newly designed method. In selected experiments, the prediction accuracy with LMS adaptive filtration was better than 95%.Web of Science1223art. no. 454

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio
    • …
    corecore