1,747 research outputs found

    Control of an anthropomorphic manipulator involved in physical human-robot interaction

    Get PDF
    Dissertação de mestrado em Engenharia MecânicaThe objective of the dissertation is to flexibly control the end effector velocity of a redundant 7-DOF manipulator by using a differential kinematics approach, while ensuring the safety of the robotic arm from exceeding the physical limits of joints in terms of position, velocity and acceleration. The thesis also contributes with a real-time obstacle avoidance strategy for controlling anthropomorphic robotic arms in dynamic obstacle environments, taking account of sudden appearances or disappearances of mobile obstacles. A method for compensating force errors due to changes in the orientation of end effectors, independent from structures of force sensors, is developed to achieve high accuracy in force control applications. A novel method, the Virtual Elastic System, is proposed to control mobile manipulators for physical Human-Robot Interaction (pHRI) tasks in dynamic environments, which enables the combination of an Inverse Differential Kinematics for redundant robotic arms and a Dynamical Systems approach for nonholonomic mobile platforms. Experiments with a 7-DOF robotic arm, side-mounted on a nonholonomic mobile platform, are presented with the whole robot obstacle avoidance, proving the efficiency of the developed method in pHRI scenarios, more specifically, cooperative human-robot object transportation tasks in dynamic environments. Extensions of the method for other mobile manipulators with holonomic mobile platforms or higher degrees of freedom manipulators are also demonstrated through simulations

    Safety-related Tasks within the Set-Based Task-Priority Inverse Kinematics Framework

    Full text link
    In this paper we present a framework that allows the motion control of a robotic arm automatically handling different kinds of safety-related tasks. The developed controller is based on a Task-Priority Inverse Kinematics algorithm that allows the manipulator's motion while respecting constraints defined either in the joint or in the operational space in the form of equality-based or set-based tasks. This gives the possibility to define, among the others, tasks as joint-limits, obstacle avoidance or limiting the workspace in the operational space. Additionally, an algorithm for the real-time computation of the minimum distance between the manipulator and other objects in the environment using depth measurements has been implemented, effectively allowing obstacle avoidance tasks. Experiments with a Jaco2^2 manipulator, operating in an environment where an RGB-D sensor is used for the obstacles detection, show the effectiveness of the developed system

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Reflexive obstacle avoidance for kinematically-redundant manipulators

    Get PDF
    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration

    An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator

    Get PDF
    A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs

    A Nonlinear Model Predictive Control Scheme for Cooperative Manipulation with Singularity and Collision Avoidance

    Full text link
    This paper addresses the problem of cooperative transportation of an object rigidly grasped by NN robotic agents. In particular, we propose a Nonlinear Model Predictive Control (NMPC) scheme that guarantees the navigation of the object to a desired pose in a bounded workspace with obstacles, while complying with certain input saturations of the agents. Moreover, the proposed methodology ensures that the agents do not collide with each other or with the workspace obstacles as well as that they do not pass through singular configurations. The feasibility and convergence analysis of the NMPC are explicitly provided. Finally, simulation results illustrate the validity and efficiency of the proposed method.Comment: Simulation results with 3 agents adde

    Redundancy analysis of cooperative dual-arm manipulators

    Get PDF
    This paper presents the redundancy analysis of two cooperative manipulators, showing how they can be considered as a single redundant manipulator through the use of the relative Jacobian matrix. In this way, the kinematic redundancy can be resolved by applying the principal local optimization techniques used in the single manipulator case. We resolve the redundancy by using the Jacobian null space technique, which permits us to perform several tasks with different execution priority levels at the same time; this is a useful feature, especially when the manipulators are to be mounted on and cooperate with a mobile platform. As an illustrative example, we present a case study consisting of two planar manipulators mounted on a smart wheelchair, whose degrees of redundancy are employed to move an object along a pre-defined path, while avoiding an obstacle in the manipulator's workspace at the same time
    corecore