7,257 research outputs found

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Design, implementation, and performance analysis of the WorldFIP/ATM local bridge

    Get PDF
    World factory instrumentation protocol (WorldFIP) is a fieldbus network protocol that provides a link between level zero (sensors/actuators) and level one (field controllers such as programmable logic controllers, etc.) in industrial automation systems. Accessing and connecting the WorldFIP remotely is important for monitoring, maintaining, and controlling devices in a factory in which asynchronous transfer mode (ATM) is used as a backbone network. In this study, a transparent WorldPIP/ATM bridge was designed and implemented in order to access devices on WorldFIP via an ATM network. This designed bridge may also provide control of the devices over wide area networks. The bridge's performance was investigated using network simulation software under various message traffic conditions. The results obtained from the simulations showed that the bridge provides real-time communications between WorldFIP and ATM

    A Distributed IoT Air Quality Measurement System for High-Risk Workplace Safety Enhancement

    Get PDF
    The safety of an operator working in a hazardous environment is a recurring topic in the technical literature of recent years, especially for high-risk environments such as oil and gas plants, refineries, gas depots, or chemical industries. One of the highest risk factors is constituted by the presence of gaseous substances such as toxic compounds such as carbon monoxide and nitric oxides, particulate matter or indoors, in closed spaces, low oxygen concentration atmospheres, and high concentrations of CO2 that can represent a risk for human health. In this context, there exist many monitoring systems for lots of specific applications where gas detection is required. In this paper, the authors present a distributed sensing system based on commercial sensors aimed at monitoring the presence of toxic compounds generated by a melting furnace with the aim of reliably detecting the insurgence of dangerous conditions for workers. The system is composed of two different sensor nodes and a gas analyzer, and it exploits commercial low-cost commercially available sensors

    Drivers and Barriers to Adoption of Multivendor ATM Technology in India: Synthesis of Three Empirical Studies

    Get PDF
    As an incremental change to single vendor ATM Technology, multivendor (MVS) ATM technology has already penetrated into Indian Market. However, its growth in Indian market may depend on several factors. Understanding the drivers and barriers from the point of view of all the stakeholders of this technology can provide a preliminary understanding about its growth in India. This paper attempts to compile the empirical findings from three studies on three stakeholders and provides a synthesized finding on the possible drivers and barriers of this technology implementation in India

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Adoption of New Technology

    Get PDF
    The contribution of new technology to economic growth can only be realized when and if the new technology is widely diffused and used. Diffusion itself results from a series of individual decisions to begin using the new technology, decisions which are often the result of a comparison of the uncertain benefits of the new invention with the uncertain costs of adopting it. An understanding of the factors affecting this choice is essential both for economists studying the determinants of growth and for the creators and producers of such technologies. Section II of this article discusses the modeling of diffusion and Sections III to V explore the determinants of diffusion and the evidence for their importance.

    Air Traffic Complexity as a Source of Risk in ATM

    Get PDF
    In this chapter the connection between air traffic complexity and risks in air traffic management system will be explored. Air traffic complexity is often defined as difficulty of controlling a traffic situation, and it is therefore one of the drivers for air traffic controller’s workload. With more workload, the probability of air traffic controller committing an error increases, so it is necessary to be able to assess and manage air traffic complexity. Here, we will give a brief overview of air traffic complexity assessment methods, and we will put the traffic complexity assessment problem into a broader context of decision complexity. Human reliability assessment methods relevant to air traffic management will be presented and used to assess the risk of loss of separation in traffic situations with different levels of complexity. To determine the validity of the human reliability assessment method, an analysis of conflict risk will be made based on the real-time human-in-the-loop (HITL) simulations

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified
    • …
    corecore