4 research outputs found

    Never the less: a performance on networked art

    Get PDF
    Never The Less is a live audio-visual (A/V) networked performance, where participants are able to interact remotely and collaboratively. It adopts the newly-proposed web-based A/V Akson system, designed for an internet infrastructure, which allows both musical and visual content generation and interaction across multiple devices in remote locations. The system was built with great emphasis on live-performance and human collaboration, where experts and non-experts (i.e., artists and public) exist at the same level.info:eu-repo/semantics/publishedVersio

    Medical Data Visual Synchronization and Information interaction Using Internet-based Graphics Rendering and Message-oriented Streaming

    Get PDF
    The rapid technology advances in medical devices make possible the generation of vast amounts of data, which contain massive quantities of diagnostic information. Interactively accessing and sharing the acquired data on the Internet is critically important in telemedicine. However, due to the lack of efficient algorithms and high computational cost, collaborative medical data exploration on the Internet is still a challenging task in clinical settings. Therefore, we develop a web-based medical image rendering and visual synchronization software platform, in which novel algorithms are created for parallel data computing and image feature enhancement, where Node.js and Socket.IO libraries are utilized to establish bidirectional connections between server and clients in real time. In addition, we design a new methodology to stream medical information among all connected users, whose identities and input messages can be automatically stored in database and extracted in web browsers. The presented software framework will provide multiple medical practitioners with immediate visual feedback and interactive information in applications such as collaborative therapy planning, distributed treatment, and remote clinical health care

    Improving Collaborative Drawing using HTML5

    Get PDF
    This research looks into improving online web-based collaborative drawing using HTML5. Although many systems have been developed over a number of years, none of the applications released have been satisfactory for many artists; the core drawing experience was too different from a stand-alone drawing applications. Stand-alone drawing applications have better freedom of control with functions like undo and allow artists to work efficiently with hotkeys. The advent of the HTML5 Canvas Element and Websockets in recent browsers has provided new opportunities for collaborative online interaction. This research used an incremental development approach to build a prototype HTML5 drawing application providing new functionality for online collaborative drawing. The project was supported by two experienced artists throughout investigation, design, implementation and testing. The project artists helped validate design decisions and evaluate the implementation. As a result, a robust HTML5 collaborative drawing application was built. The prototype contains core drawing functionality that existing applications did not. Features include: undo and redo, free canvas transformation, complex hotkey interaction, custom canvas size support, colour wheel, and layers. All these features work smoothly in a fully synchronized network environment under a client-server model. The collaboration system uses an authoritative server structure with local prediction and re-synchronization to hide latency. Although the result is only a prototype, the evaluations from the project artists were very positive. Once more functionality targeted towards social interaction is built, the prototype will be ready for mass public testing. Although there are some issues caused by the immaturity of HTML5 technology, this project affirms its capability for collaborative web applications

    SKR1BL

    Get PDF
    corecore