
Illinois State University Illinois State University

ISU ReD: Research and eData ISU ReD: Research and eData

Faculty Publications - Information Technology Information Technology

2019

Medical Data Visual Synchronization and Information interaction Medical Data Visual Synchronization and Information interaction

Using Internet-based Graphics Rendering and Message-oriented Using Internet-based Graphics Rendering and Message-oriented

Streaming Streaming

Qi Zhang
Illinois State University, qzhan10@ilstu.edu

Follow this and additional works at: https://ir.library.illinoisstate.edu/fpitech

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Qi, "Medical Data Visual Synchronization and Information interaction Using Internet-based
Graphics Rendering and Message-oriented Streaming" (2019). Faculty Publications - Information
Technology. 9.
https://ir.library.illinoisstate.edu/fpitech/9

This Article is brought to you for free and open access by the Information Technology at ISU ReD: Research and
eData. It has been accepted for inclusion in Faculty Publications - Information Technology by an authorized
administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

https://ir.library.illinoisstate.edu/
https://ir.library.illinoisstate.edu/fpitech
https://ir.library.illinoisstate.edu/itech
https://ir.library.illinoisstate.edu/fpitech?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/fpitech/9?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

Informatics in Medicine Unlocked 17 (2019) 100253

Available online 8 October 2019
2352-9148/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Medical data visual synchronization and information interaction using
Internet-based graphics rendering and message-oriented streaming

Qi Zhang
School of Information Technology, Illinois State University, 100 North University Street, Normal, IL, 61761, United States

A R T I C L E I N F O

Keywords:
Medical information
Graphics rendering
Visual synchronization
Collaborative diagnosis
Bidirectional internet connection
Message streaming

A B S T R A C T

The rapid technology advances in medical devices make possible the generation of vast amounts of data, which
contain massive quantities of diagnostic information. Interactively accessing and sharing the acquired data on
the Internet is critically important in telemedicine. However, due to the lack of efficient algorithms and high
computational cost, collaborative medical data exploration on the Internet is still a challenging task in clinical
settings. Therefore, we develop a web-based medical image rendering and visual synchronization software
platform, in which novel algorithms are created for parallel data computing and image feature enhancement,
where Node.js and Socket.IO libraries are utilized to establish bidirectional connections between server and
clients in real time. In addition, we design a new methodology to stream medical information among all con-
nected users, whose identities and input messages can be automatically stored in database and extracted in web
browsers. The presented software framework will provide multiple medical practitioners with immediate visual
feedback and interactive information in applications such as collaborative therapy planning, distributed treat-
ment, and remote clinical health care.

1. Introduction

Medical data and information visualization has wide clinical appli-
cations [1], and software platforms that reside on web engines present
advantages over local applications [2]. When compared with utilizing
stand-alone software platforms, the use of Internet-based solutions can
lead to better performance in diagnostic information collaborative
analysis and treatment decision-making [3]. The advancement of
Internet technologies has made it possible to establish a “common
ground” for medical practitioners to collaboratively explore medical
data and share diagnostic information across the globe [4,5]. When a
software application is developed for the web, it can be directly accessed
and executed by any users around the world with Internet connection
and web browser [6]. Internet-based medical information systems at all
levels can expand doctors’ capacities and capabilities to meet the
growing demand for delivering clinical services across wide geographic
areas [7,8], and can also allow medical practitioners to interact each
other at remote locations and effectively share medical resources [9].

Some interesting network-based medical information platforms have
been developed, such as streaming medical data [10] or images [11] on
Internet, transporting data between web server and clients for medical
image sharing and analysis [12]. A medical data viewer is reported in

Ref. [13] to process and visualize body surface potential maps in web
browsers, where Description Extensible Markup Language (XML) is used
to process data storage. For the purpose of providing web-based he-
reditary disease information to medical personals, the authors in
Ref. [14] present an Android mobile platform, where Java and XML are
integrated into the web framework to handle data rendering. To display
and analyze 3D microscopy data on Internet, a web-based software
package is developed in Ref. [15], where a Java applet and an interface
that interacts with the applet inside HTML browsers are utilized for
rendering medical data at a desired contour level. A similar Java applet
technology is used by Salavert-Torres et al. [16] to interactively display
2D slice images extracted from 3D microscopy data in web browsers.
The following development of this technology used WebGL [17] and
HTML5 to build a platform for rendering medical images in web
browsers, where VTK [18] is employed for slicing volumetric medical
data [19]. All the outlined software platforms are constructed on a
client-server structure, which is based on a request-response scheme to
access web page and medical data information [20].

Furthermore, web technologies, third-party libraries and software
frameworks have been developed for applications of interactive
browser-based custom visualization [21] or presenting 3D graphics on
the web [22]. Kitware releases a JavaScript library, ParaViewWeb [23],

E-mail address: qzhan10@ilstu.edu.

Contents lists available at ScienceDirect

Informatics in Medicine Unlocked

journal homepage: http://www.elsevier.com/locate/imu

https://doi.org/10.1016/j.imu.2019.100253
Received 6 August 2019; Received in revised form 20 September 2019; Accepted 25 September 2019

mailto:qzhan10@ilstu.edu
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2019.100253
https://doi.org/10.1016/j.imu.2019.100253
https://doi.org/10.1016/j.imu.2019.100253
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2019.100253&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Informatics in Medicine Unlocked 17 (2019) 100253

2

which is used as a web tool for scientific data visualization inside web
browsers. At the same time, a number of researchers explore medical
images on the Internet using graphics rendering in web browsers [24].
For example, the authors in Ref. [25] deploy a single-pass data rendering
pipeline on mobile devices, where 2D texture in WebGL is used to
simulate 3D texture for volume rendering. The same rendering tech-
nique is applied to interactively process 2D/3D medical images [26] and
is combined with WebSocket for remote collaborative data exploration
[27]. Later, Jim�enez et al. further developed the presented algorithm
and put forward an advanced platform to interactively display and
analyze 3D fractal dimension of Magnetic resonance imaging (MRI) data
in web browsers [28]. Additional applications include developing open
source libraries and software packages to show neurological data [29],
protein structure [30] and molecular data [31,32] on the web. Some
authors also designed web-based rendering interfaces for advanced
medical applications such as personalizing the management of athero-
sclerotic patients and assisting the diagnostic process by retrieving
similar past cases through the Internet [33], exploring multivariate
vascular data by visualizing spatial and temporal relationships among
the hemodynamic parameters of interest [34].

Recently, to share medical data and research results among clinical
and research institutions, the authors in Ref. [35] present a GIFT-Cloud
Server to store anonymized data and use a Representational State
Transfer Application Programming Interface (REST API) to integrate
with external software on Internet. Instead of building server on cloud, a
master-slave mode is introduced in Ref. [36] to allow users to access and
display remote medical images using volume and surface rendering,
where a message-responding mechanism is designed on server to listen
to interactive requests from clients. To facilitate radiological practi-
tioners manipulate and interpret cross-sectional volumetric medical
data, Borgbjerg [37] integrates a browser-based Picture Archiving and
Communication System (PACS) and a imaging viewer into the
master-slave based Internet connection structure, and the authors in
Ref. [38] create their master computer using an open-source web server
software, i.e. Apache HTTP Server [39], then connect the master server
with slave clients using the reported networking technology [36,37],
where PHP Programming Language [40] is employed to link the server
to a MySQL [41] database management system for data storage and

extraction. Later, a similar strategy of using PHP to communicate with
MySQL database server is reported in Ref. [42], where the authors use a
server-client connection protocol to collect data of electronic
patient-reported outcome registry.

2. Current work

To the best of our knowledge, current published software packages
are generally created on isolated server and clients, which lack the ca-
pabilities of streaming messages in the network and data exploration
cannot be synchronized among multiple users [2–9]. In addition, Java
applets or other external plug-ins are usually required in client com-
puters to handle data transmission and rendering in web browsers
[14–16], and the applet connections relay on HTTP Protocol for data
transmission, which lacks the capability of full-duplex communication.
In addition, most reported software platforms are based on event
request-response pipeline instead of automatic bidirectional connection
[10–12,19,20]. Some web applications are centralized in cloud [23,35],
while others are created on an Apache HTTP Server [39] to maintain
data communication [21,22,36–38], both of which cannot stream data
in the network and cannot link the explored data with database auto-
matically [41,42].

Master-slave interaction mode is also commonly presented, which
uses server as master to organize network connections [36–38] or em-
ploys clients to manage data transformation [27]. However, both of the
two schemes cannot synchronize data exploration between server and
clients. Furthermore, the cross-browser interface three.js [43] is gener-
ally employed to manage WebGL-based data visualization, which lacks
the ability of flexibly manipulating images and integrating diagnostic
information into medical data exploration [27–29]. In addition, surface
rendering is also used to display medical data at a contour level,
resulting in loss of inner data information [13,31,32]. Finally, due to the
limited graphics support of WebGL, 2D texture is usually exploited to
simulate 3D texture for trilinear interpolation in volume rendering
process, which delivers inferior image quality and limited data visuali-
zation speed [24–26].

To address the above described limitations, we build a web-based
software platform [44], in which Apache HTTP Server is applied to

Fig. 1. The flowchart of our system architecture, whose components include Internet-based message streaming, data management, information sharing, 3D medical
data real-time rendering and enhancement, as well as bi-directional network connection and medical data visual synchronization. The shared web worker is
employed to optimize multi-thread based data loading and medical data exploration.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

3

construct server-client connections, MySQL and PHP are exploited for
data storage management, and a WebGL2 [45] based algorithm is
developed to display 3D medical data in real time. This paper presents
our further efforts on technology development of our previous work,
whose major contributions include developing new algorithms that use
Node.js [46] and Socket.IO [47] to build a server and create real-time
bidirectional connections with clients, designing a novel method for
information sharing and message streaming, and linking input infor-
mation with MySQL database automatically. Furthermore, we imple-
ment a shared web worker and include it into our software framework to
optimize medical data multi-thread handling and web connections.
Finally, new data lighting and enhancement algorithms are designed
and integrated into our volume rendering pipeline to emphasize medical
data visualization and image features of interest.

The paper is organized as follows. First, we describe the full-duplex
web communication architecture of our application. Then some con-
crete implementation details regarding data and information synchro-
nization are illustrated. Afterwards, we present the working pipeline of
the shared web worker [48]. In Section 5, algorithms of medical data
visualization and image feature enhancement are outlined. The results
of the experiments are explained and analyzed in Section 6. Finally, our
work is summarized in the conclusions section.

3. System architecture

The developed software system is a web-based framework, which is
based on a client/server architecture. One of the main features of the
web-based application presented in this paper is the synchronization of
feature-enhanced medical data rendering and user input message
streaming among server, clients and database. Thus, in this section we
describe the system architecture, basic algorithms and the theoretical
basis of our software platform.

Fig. 1 outlines the system architecture of the server side program-
ming and the opening of a two-way interactive communication between
server and client computer’s browser. Our software platform is based on
an event-driven scheme that is able to synchronize web-based medical
data visualization and message streaming, where all the users can share
the same dynamically updated medical data exploration view and in-
formation over the Internet.

3.1. Node.js server

In this project, Node.js [46] is employed to build server for syn-
chronizing medical data visualization and information communication,
while JavaScript [49] is used to write programs for server-side scripting.
As described in the Listing 1, first, Express.js (Express) [50] is required
and used to build Node.js server. Express is a minimal and flexible Node.
js web application framework that provides a set of features for web and
mobile applications, while Node.js is an open-source, cross-platform
run-time environment that executes JavaScript code outside a browser.
The node package manager (npm) is applied to install the Express and
create a new file called package JSON [51] to store information of the
developed project. The Node.js server hosts the HTML and JavaScript
files for data visualization and exploration, which is set to listen to all
message events on port 4000.

The left side of Fig. 1 shows the main graphics rendering program,
which is hosted on the Node.js server running on Express framework. We
develop algorithms using WebGL2 [45] to visualize medical data in the
web browsers, where OpenGL Shading Language (GLSL) [52] is utilized
for graphics processing unit (GPU) based parallel data computing,
rendering and image feature enhancement, which is illustrated in Sec-
tion 5. All the connected clients are granted privilege to acquire and
launch the web-based program hosted on the Node.js server using al-
gorithms built on WebSocket protocol and Socket.IO library.

3.2. Socket.IO connection

To build bidirectional connections between Node.js server and all of
the connected clients, JavaScript library Socket.IO [47] is required and
utilized for real-time event-based communication: one component is
running on Node.js server and the other is based on JavaScript client
library that is executing on client web browsers. The Listing 1 shows the
server side configuration, where io is employed to build socket con-
nections using event callback function io:sockets:on.

In our software platform, all clients are connected to the server using
algorithms that are based on WebSocket protocol and Socket.IO library
[53], which can provide a mechanism for fast, secure, two-way message
communication and data exchange between client and server over
Internet without need of pulling or making request/response for each
message. WebSocket protocol uses an HTTP like handshake to offer a
persistent connection between server and client while keeping the
connection open. The working pipeline of the described Socket.IO based
two-way connection algorithm is demonstrated on the left side of Fig. 1.

Listing 1: Algorithm for creating Node.js server using Express.js,
communicating with MySQL database, linking to public directory for
HTML and JavaScript code integration, and building connections
between Node.js server and clients.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

4

4. Data and information synchronization

In this section some implementation details regarding the develop-
ment and optimization of the multi-user collaborative platform are
outlined. In addition, shared web worker is presented for improving data
transformation and web loading. As illustrated in Fig. 1, we develop
algorithms to run Socket.IO on both server and clients at the same time.
All of the data exploration and visualization have been synchronized on
client computers that are connected with the Node.js server.

4.1. Server side programming

As described in Listing 1, on the server, we develop code in lines 1–3
to listen to all new client connections. When a client connects to the
server and emits a message event with name message name, the server
will send the received message to all connected clients using code in
lines 13–17, in which callback function functionMsg will broadcast the
message using Socket.IO function in lines 15–16. The functions of
generated events are mainly for medical data rendering and exploration,
such as updating viewport and mouse, menu selection, optical mapping,
data navigation, and rendering parameter adjustment. The server is
listening to all events on port 4000 using code in lines 1–3. We access the
Socket.IO library using the variable io created with inputting an object of
the Express API server as illustrated in lines 4–5, which will be used to
keep track of the server’s input and output messages.

Listings 1 outlines two examples of listening mouse down and
movement events in the function newConnectionðsocketÞ, from which we
can see that after having received either of these two events, the server
will emit the received one to all of the connected clients in the frame-
work using methods described in lines 13–22. In addition, our program
creates a link to the “public” folder using a method call in line 9. Inside
the “public” directory, there are JavaScript programs, whose main
functions are managing clients, rendering medical data, enhancing
image features of interest, exploring displayed medical data, as well as
sending and receiving messages to and from the server. Fig. 1 describes
the flowchart of the server side architecture and the message commu-
nication with connected clients, where Node.js and its web application
framework Express are exploited to host the actual graphics rendering
and information management programs stored in the “public” folder.

4.2. Client side programming

As illustrated in Listing 2, we develop code on the client side to
connect the server. The socket:io library is first integrated into our client
code through linking to the JavaScript library socket:io:js in the index.
html file, and then the client side Socket.IO program is connected to the
server whose IP address is 192.168.0.11 using code in line 1. The client
is listening to events coming from the server on port 4000, and a unique
client socket id is created for each of the new connections to the server,
so that the server can track the connections over time.

Listing 2: Algorithm for creating client side network connection
using Socket.IO and event-based synchronization. The mouse
movement event is used as an example.

For the client side programming, first, the event listening functions
are added to the client side Socket.IO component, which will monitor
and react to all events such as operations of mouse, keyboard, menu,
color mapping, data loading, and medical data rendering parameter
adjustment, etc. When the event is user input operation, they will be
packaged in a message and emitted to the server, including the name of
the message and the data inside the message as described in line 12 with
message name mousemove ws. If the event comes from the connected
server, the client will conduct the operations programmed in the event
using the Socket.IO callback function and the transferred data described
in lines 14–15, in which the mouse movement event is listed as an
example.

Listings 2 also describes an example of client side programming for
handling a mouse movement event. Add an event listener to monitor
mouse movement, if the received event comes from a local user input,
the client sends the triggered event and corresponding mouse position
data to the server using code in lines 14–15. On the other hand, if the
event is broadcasted by the connected server, the client will accept event
using the same code as the event that is received from user input. The
client that has received the event will conduct operations according to
the callback function, i.e., functionðdataÞ and the transferred data inside
the callback function.

4.3. Message streaming

In our software platform, we develop a message streaming scheme
for processing information real-time sharing. As demonstrated by the
right side of Fig. 1 and Listings 1, Node.js server uses body-parser and

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

5

mysql libraries to connect MySQL database and post/get data informa-
tion to/from the database table. On the client side, as illustrated in Fig. 2
and Listings 2, users can input information such as name, unique id,
email address and phone number in our platform’s graphics user inter-
face. The users can also input diagnostic comments and data exploration
messages that are streamed with all the connected clients in real time.

As shown in lines [17–19], a “submit” button is designed to monitor
“clicking” event. Inside the callback function in lines [21–28], user in-
formation and input messages are sent to the server using Socket.IO emit
function in line 28. As outlined in Listings 1, on the server side, a Socket.
IO function is designed to listen client events using code in line 23. When
the server has received the user input messages, it broadcasts them with
the integrated data to all the connected clients in real time using code in
line 25.

Our web-based software platform uses the MySQL database server to
store and process user messages and information, which are automati-
cally stored in database tables and can be extracted by any connected
clients and displayed in web browsers, where Fig. 3 describes the mes-
sage streaming working pipeline. The MySQL database is running on an
Apache HTTP server, which shares the same hardware computer as the
Node.js server. Data input and output operations are controlled by Node.
js, mysql and body-parser libraries. The Express API is employed to
handle data communication between Node.js server and MySQL data-
base using functions in lines [29–36] of Listings 1, while the HTML user
interface is the top layer of the message streaming operations. The
manager of the system can access and visualize all the stored data and
information for the purpose of information mining and data analysis.

4.4. Shared web worker

A WebSocket connection can only persist as long as the page is open,
and cannot conduct across loading of new pages from the same domain.

Therefore, when a thread spends a long time trying to complete a certain
task, such as data loading and information transmission, the application
will appear to be frozen. To address this issue, we design a new algo-
rithm that takes advantage of shared web worker to enhance web
connection, in which the main thread and the worker communicate via
messages and the shared web workers are not reliant on any particular
page. Therefore, our JavaScript web connection code can be executed in
a separate thread from the page’s main thread.

In our application, the shared web worker uses WebSocket protocol
to communicate with the server, and once it gets data from the server, it
posts them to the main thread for rendering. One shared web worker
thread can be used by multiple pages from the same domain, and the
web worker is spawned to load in data from the server progressively
while the main thread deals with the user interaction, so the data
loading will not freeze the applications such as medical data rendering,
exploration, and information sharing. The right part of the center rect-
angle in Fig. 1 illustrates the procedure of using shared web worker to
optimize data loading and establish the WebSocket connection with the
Apache HTTP Server. The following items describe the working pipeline:

– Initialize the shared web worker and establish connections with
Apache server using WebSocket protocol.

– The initialized web worker loads data from server for volume visu-
alization. Every time the worker receives a data file, it parses the file
and then sends it to the main thread.

– When the main thread receives the data from the worker, it adds
them to a volume and creates a 3D texture.

– Data rendering engine loads the 3D texture for volume rendering and
visual exploration.

Fig. 2. The working pipeline of our software platform’s message streaming and information sharing component. In the graphics user interface, users can input their
unique identities and comments regarding medical data exploration that can be shared among all the connected clients. All the information and input messages can
be stored in a database table and can be extracted and displayed in web browsers.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

6

5. Data rendering and enhancement

In this section we describe the major technologies used and algo-
rithms developed to visualize and enhance 3D medical data acquired
from medical devices such as magnetic resonance imaging (MRI) and
computed tomography (CT). In addition to the general structure of the
rendering engine, we highlight the aspects and novelty that are useful
for increasing algorithm performance and medical data rendering result,
such as using graphics hardware to calculate voxel normal, trilinear
interpolation, optical value dynamic adjustment, and integrating light-
ing into the rendered medical image in real time.

5.1. WebGl2 and GPU pipeline

WebGL (Web-based Graphics Library) [17] is a cross-platform web
standard developed by the Khronos Group. WebGL programs consist of
control code written in JavaScript and special effects code, i.e., shader
code written in OpenGL Shading Language (GLSL) [52], that is executed
on a computer’s Graphics Processing Unit (GPU) to access lower level
graphics hardware. WebGL 2.0 (WebGL2) [45] enables web content to
use an API based on OpenGL ES 3.0 to perform 3D rendering in HTML
<canvas> without using plug-ins. Thanks to the HTML5 canvas
element, WebGL2 objects are shown in web browsers and their related
data are accessible through the Document Object Model (DOM) inter-
face. Therefore, WebGL elements can be mixed with other HTML

elements and composited with other parts of the page background in
web browsers.

In the described software platform, we have developed medical data
parallel processing and rendering programs using WebGL2’s special
effects code, i.e., GLSL shaders running on GPU. Vertex shader is first
designed and applied to create a 3D data graphics rendering engine. The
WebGL2-based medical data rendering pipeline is a process in which 3D
images are prepared and output onto the 2D screen: first, take the 3D
objects built from primitives using vertices, next, apply vertex process-
ing and calculation in the fragment shaders, finally, render the

Fig. 3. The workflow of inputting information and messages from graphics user interface, which are automatically streamed into a database and synchronized among
all the connected clients. As demonstrated by the right side web-based table, all the connected clients can extract the stored data from the database and display them
in web browsers.

Fig. 4. Web-based graphics rendering pipeline of 3D texture loading and pro-
cessing in vertex and fragment shaders inside graphics processing unit (GPU)
using WebGL2 and OpenGL Shading Language (GLSL).

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

7

calculated results on the 2D screen as image pixels.
As described in Fig. 4, vertex processing is a process of integrating

individual vertex information into primitives and setting their co-
ordinates in the 3D space for display. Projection transformation then
defines the camera settings and sets up what can be seen by the camera,
which includes the field of view, aspect ratio and the near and far
clipping planes. Rasterization is a procedure of converting primitives
into a set of fragments. Fragment processing focuses on textures and
lighting, which is a process of calculating the final colors based on the
given parameters. During the output merging stage, all the fragments of
the primitives from the 3D space are transformed into a 2D grid of pixels
that are then printed out on the display screen.

5.2. Voxel normal calculation

Shading is an important technique to add realistic lighting effect to
the volume rendered 3D medical data. In our application, we design an
algorithm to integrate a real-time lighting model into the ray casting
computing process on graphics hardware unit.

The following Eq. (1) is the calculation of a voxel normal at the
location (x, y, z) inside a 3D volume with dimension M� N� K, where
0 � x �M, 0 �y �N, and 0 � z � K, and we assume that the voxel value
at the location ðx, y, zÞ is Iðx, y, zÞ.

▽Iðx; y; zÞ¼ ð∂Iðx; y; zÞ = ∂x; ∂Iðx; y; zÞ = ∂y; ∂Iðx; y; zÞ = ∂zÞ (1)

where for each element factor of ∂Iðx; y; zÞ=∂x, ∂Iðx; y; zÞ= ∂y, and ∂
Iðx; y; zÞ=∂z is calculated by the following Eqs. (2)–(4):

∂Iðx; y; zÞ = ∂x¼ ½Iðxþ 1; y; zÞ � Iðx � 1; y; zÞ� = 2þ λ (2)

∂Iðx; y; zÞ = ∂y¼ ½Iðx; yþ 1; zÞ � Iðx; y � 1; zÞ� = 2þ λ (3)

∂Iðx; y; zÞ = ∂z¼ ½Iðx; y; zþ 1Þ � Iðx; y; z � 1Þ� = 2þ λ (4)

The variable λ is used for boundary adjustment. We can set different
values to λ to get a little bit different shading result. Using experimental
evaluation, we find that choosing 128 can generate better shading result
than using other values, so λ is set to 128 in the above Eqs. (2)–(4).

At the volume boundary, for example x ¼M, the voxel Iðxþ1; y; zÞ is
invalid, we set it to a large number Ω, i.e., Iðxþ1; y; zÞ ¼ Ω. The same
Iðx � 1; y; zÞ ¼ Ω when x ¼ 0. In the above two cases, we assume ∂I= ∂x
¼ λ. The same rule is used for normal calculations in the y and z di-
rections. Then load the calculated normal n!ðx, y, zÞ ¼ ▽Iðx; y; zÞ into
the GPU fragment shader as a global shader variable uniform sampler3D.

5.3. Data visualization and enhancement

Taking advantage of the new features of WebGL2, we develop a new
algorithm for 3D texture based raycasting calculation on GPU with real-
time lighting and image feature enhancement. The following items
describe our algorithm’s procedure of rendering 3D scalar fields into 2D
images, which is outlined in Fig. 5.

� Load the volumetric medical data into GPU fragment shader as a 3D
texture, at the same time, texture coordinates are loaded to vertex
shader for processing, such as adjusting aspect ratio to fix the various
z direction sampling distance during 3D texture generation process,
then the adjusted 3D texture coordinates are transformed to the
fragment shader for texture sampling.
� The normal for every voxel in the 3D texture volume calculated in

subsection 5.2 is loaded to fragment shader as a 3D texture for
lighting computation using the variable uniform sampler3D. In addi-
tion, the lighting enhancement factor Fb is also loaded to the frag-
ment shader as an uniform float variable.
� Use the model view matrix to transform 3D texture from texture

space to world space and then to view space, which can be processed
in the fragment shader for final display that can be seen by viewers.
� As shown in Fig. 6, inside the view space, based on the viewpoint

(camera position from which rays are cast) pv
! and view direction v!d,

from each pixel p on the final image plane, cast a ray rðtÞ into the data
volume in 3D texture space. At each regular sampling point rðtiÞ
(i ¼ 0, 1, ⋅⋅⋅, K, we assume that there are in total K sampling points
along the casting ray rðtÞ), acquire the voxel’s intensity value vðrðtiÞÞ
using trilinear interpolation [54].
� The post color attenuated voxel classification algorithm [55] is used

to create a transfer function, which is employed to map each sampled
intensity value pi ¼ rðtiÞ (i ¼ 0, 1, ⋅⋅⋅, K) along the casting ray rðtÞ in
the previous step into color Ci ¼ CðpiÞ ¼ CðrðtiÞÞ and opacity αi ¼

αðpiÞ ¼ αðrðtiÞÞ.
� The ambient light is l

!
a, light vector, i.e., we assume that there is far

away light with the same direction casting rays, l
!

v, and the diffuse

light is l
!

d. At each sampling point rðtiÞ, the extracted voxel normal is
n!i calculated with trilinear-based interpolation on GPU fragment
shader. The reflection light is computed with Eq. (5):

l
!i

r ¼maxðminð l
!

d ⋅ n!i; 0:0Þ; 1:0Þ (5)

Fig. 5. The outline of the new web-based medical data visualization and
enhancement algorithm: data loading, texture translation, texture space trans-
formation, casting ray into texture volume, texture sampling, optical mapping,
lighting calculation, and image generation and shading.

Fig. 6. Pipeline of raycasting calculation on GPU graphics hardware: setting
camera and image plane, casting ray into 3D texture volume, adding light
source, and conducting trilinear interpolation based texture sampling.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

8

Ci ¼ð l
!

aþ l
!

ri� l
!

dÞ � Ci (6)

� The updated Ci using Eq. (6) is used with the flowing ray casting
integral Eq. (10) for adding shading to the rendered 3D data without
specular lighting.
� To add specular shading, we set specular color Cs and casting ray

direction is d
!

, the specular item at the voxel rðtiÞ is computed with
Eqs. (7) and (8).

l
!

ri¼ � l
!

v þ 2� n!i � ½ n!i ⋅ l
!

v� (7)

s!i ¼maxð d
! ⋅ l
!

ri; 0:0Þ (8)

Ci ¼ð l
!

aþ l
!

ri� l
!

dÞ�Ci þαi� s!i � Cφ
s (9)

where l
!

ri is the reflection of l
!

v using normal n!i. The updated Ci using
Eq. (9) is employed with the flowing ray casting integral Eq. (10) for

adding shading to the rendered 3D data with specular effect with power
φ ¼ 5.

� Volume rendering integral Eq. (10) is exploited to compute the
accumulated color and opacity IðtiÞ ¼ Iða;biÞ, i.e., IðtiÞ ¼ IðrðtiÞÞ is
the ray casting integral value at the ith sampling point along each
casting ray starting from p0 ¼ a, and stop the ray casting calculation
when the calculated opacity is greater than the preset threshold λ
(λ ¼ 0.95 is used in our algorithm) or the ray passed the volume, i.e.,
rðtnÞ ¼ b.

Iða; biÞ ¼ Fb

Z bi

a
CðsÞτðsÞρðsÞds

¼ Fb

"
Xn

i¼1
Ci

Yn

j¼i¼1

�
1 � aj

�
(10)

where αj is opacity of the jth segment, and the samples are evaluated
from the sampling point rðtiÞ to the eye on the casting ray rðtÞ. Loaded

normals at each voxel’s position is used with light source position l
!

p

and direction l
!

d to add shading effect to the final rendered image using
Phong optical model [56]. Fb is lighting enhancement factor and can be
interactively adjusted through graphics user interface to change the
brightness of the rendered 3D medical image.

� When the viewpoint and view direction changes, the casting ray
direction and the texture transformation matrix will be updated
automatically, and the algorithm will resample the casting ray and
recompute the volume rendering integral Eq. (10) to get the updated
image.

6. Results and evaluation

In this section, we describe the experimental results using the med-
ical data sets listed in Table 1. We illustrate the user interface (UI) and
major functions of our software platform. We also show the medical data
visualization results using our new web-based volume rendering, spec-
ular lighting and feature enhancement algorithms. Finally, we evaluate
the performance of the developed web-based software platform.

6.1. User interface and functionality

The user interface is the communication point between the user and
the software platform. The bottom right of Fig. 1 shows a snapshot of the
major interface of our web-based platform, which includes a major
display area showing the volume rendered 3D medical data and a con-
trol panel for medical image exploration and sharing information. The
main function of our graphics user interface is collaborative medical
data rendering, information visual synchronization, and message
streaming. It allows all users to share the same medical data rendering
view and to efficiently communicate during the data exploration
process.

Fig. 7 shows the console panel for adjusting color, opacity, shading
and image enhancement. Our previous work [44] includes only color
and opacity adjustment. Using our new volume rendering algorithm, we
can effectively enhance the brightness and feature of interest of the
visualized image in real time, and we can also add specular lighting to
the displayed 3D medical data. In the data rendering control panel, data
exploration can be synchronized among all the connected clients in real
time, including data set loading and update, zooming in and out,
lighting selection, feature enhancement, rotating and panning.

Fig. 3 illustrates the message streaming interface, where the user can
first input name, unique id, email address and phone number, then
inputting comments on the displayed 3D medical data, and the message
is streamed and shared with all the connected clients. As shown in the

Table 1
Medical data used in the experiment, including data number, image illustration,
number of slices, original raw data size in megabyte (MB), and the extracted data
size in MB, which can be loaded and displayed in HTML web browsers.

Data
number

Image description Number
of slices

Original
data size

Extracted
data size

1 MR brain with strokes (a
part of the brain is
interrupted due to a blocked
blood vessel)

172 30.45 2.03

2 Cardiac CT phase 8 with
fainting (syncope,
associated with high rates of
morbidity)

84 30.26 1.78

3 MR heart data with
surrounding bones with
issues of heart pumping
oxygen and blood

280 21.26 1.52

4 CT Heart with coronary
atherosclerosis, evaluation
is necessary for the risk of
heart attack

100 24.32 3.43

5 Normal MR brain image for
demonstration purpose

176 23.41 1.70

6 MR brain review to check
concussions

122 21.42 2.80

7 Skull tooth data with
impacted wisdom teeth that
is incompletely embedded
in the jawbone

100 18.27 0.87

8 MR brain with problems
with concentration

109 1.84 0.08

9 Head phantom data cut the
brain into half for teaching
anatomical demonstration

320 33.41 2.57

10 MR brain has problems of
concentration with vessel
high cholesterol

160 39.27 2.31

11 Lang data with chronic
bronchitis and emphysema
with a decline in lung
function

42 1.62 0.06

12 Brain data with vessel high
cholesterol, which is a
building block of steroid
hormones

60 23.76 1.32

13 CT data for heart with
shortness of breath

49 21.4 4.67

14 Wrist CT data with carpal
tunnel syndrome from
sudden injuries with
scaphoid fractures

160 60.18 3.54

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

9

top of Fig. 2, there are four clients that are using the message streaming
interface, all the clients share the same dynamically updated informa-
tion panel and know the user who is typing comments. All the user in-
formation and input messages are automatically stored in MySQL
database, and can be extracted and displayed in the web page as illus-
trated in the right table of Fig. 3. In the user interface, all the connected
users share the same view, data navigation and message display panel in
real time using our new information and data visual synchronization
methodologies.

6.2. Data visualization

In this subsection, we will demonstrate medical data visualization
results using our new data volume rendering and enhancement algo-
rithm. Fig. 7 (a) and (d) show the original volume rendered images
without lighting and enhancement, (b) and (e) are images with bright-
ness enhancement, while (c) and (f) demonstrate images rendered with
both specular lighting and enhancement. Data sets listed in Table 1 are
used to generate the described images: (a)-(c) are rendered using data
number 12, while (d)-(f) are generated with data number 3.

More rendering examples are shown in Fig. 8, where the top row are
images generated with our basic visualization algorithm. Eqs. (5) and
(6) are used to calculate ambient lighting value in the raycasting
computing process, which work with the adjustment factor Fb in the

volume rendering function Eq. (10) to integrate lighting enhancement to
images (b) and (e), and the second row of Fig. 8. To add specular shading
to the rendered images, Eqs. (7)–(9) are used to calculate the specular
shading factors and add shading to the final visualized images in (c) and
(f) and the bottom row. Fig. 9 shows the enlarged part of the images in
Fig. 8, from which we can see the details of the rendered images.

When compared with the medical images generated with our visu-
alization algorithm running on a stand-alone computer with graphics
hardware [57], the 3D medical images rendered with our new
web-based raycasting algorithm can deliver the same or even better
image quality and additional dynamical brightness and enhancing fea-
tures. As demonstrated in Figs. 7, 8 and 8, our algorithms can generate
high-quality volumetric images with realistic shading effects and
various colors, which means that the developed raycasting algorithm
with the integrated techniques such as lighting, image feature increase,
trilinear interpolation and post color attention classification can effec-
tively eliminate image noise and improve the image rendering result.

The visual demonstration in our experiment shows that the new data
rendering algorithm can effectively deliver high-quality feature-
enhanced medical images. The developed algorithm can show the
required details and keep all the data information during the whole
image exploration procedure. The imaging enhancement implemented
in our web-based platform can increase the reality of the images dis-
played in web browsers, which is useful in the applications such as

Fig. 7. Demonstration of medical data visual synchronization, including data rendering, opacity adjustment, feature enhancement, and specular lighting. (a)–(c) and
(d)–(f) are generated using data number 12 and 3 in Table 1 respectively.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

10

virtual reality based imaging guidance and medical teaching demos on
the Internet.

6.3. Performance evaluation

Three hardware systems listed in Table 2 are used to evaluate the
performance of our web-based software platform. Table 1 describes the
data set used in the experiment. Node.js and Apache servers are
currently running on a hardware system 1, and we run the clients on all
of these three hardware systems. The servers and clients are connected
with Internet and WebSocket protocol.

Five persons with basic medical imaging training and networking
knowledge evaluate our software platform using data listed in Table 1.
All of the participants give positive or very positive feedback on the
system’s performance regarding the rendering quality and enhanced
features. They report that the rendering is smooth and they cannot
detect synchronization delay in the process of medical data exploration
and information sharing. The evaluators can communicate using our
message panel as illustrated in Fig. 3. From the collected feedback, we
can confirm that all the messages are streamed in real time and can be
extracted from database, and the same medical data view and dynamic
message information are shared by all participants in various locations
with Internet connection as described in Fig. 2.

As demonstrated in Table 3 and Fig. 10, the first 5 data sets listed in
Table 1 are used in the rendering performance experiment. When using

Firefox version 68 web browser and system 1, we can detect e140 frame
per second (fps) rendering speed with standard deviation (SD) 5.1 on a
high-frequency monitor. The platform’s rendering speed on the other
hardware systems can achieve e115�7.8 fps and e76�7.5 fps respec-
tively. When using Chrome version 75 web browser to visualize the same
data sets on the same hardware systems, the display speed is around 5%
lower than that of using Firefox. The calculated SD of the rendering
speed on Firefox is around 10% smaller than the corresponding
rendering speed’s SD on Chrome, which means that when rendering 3D
data on the Firefox browser, the system’s performance is more uniform
than that of Chrome.

The top bar image in Fig. 10 visually shows our system’s perfor-
mance on rendering and enhancing the above described medical data
sets using the hardware configurations and web browsers listed in
Table 3. When using Firefox or Chrome to show the above illustrated five
data sets, the average speed is faster than 68 fps with SD less than 10,
which means the performance of both browsers are uniform and our
algorithm can achieve real time volume rendering for normal size
medical data.

We have tested the bidirectional connection time between Node.js
server and clients using an Internet with e25 Mbps download and e3
Mbps upload speed, including initial connection for server response and
shader connection for loading shaders to visualize medical data in web
browsers. Table 3 shows the time consumed when using the listed three
hardware configurations and two web browsers. Thanks to the newest

Fig. 8. The rendered 3D medical images using our
new WebGL2-based raycasting, image enhancement
and specular lighting algorithms. The top row images
are rendered without lighting or enhancement, the
second row are images visualized with ambient
lighting and enhancement, while the images in the
bottom row are generated with feature enhancement
and specular lighting. (a)–(c) are visualized with data
number 4 in Table 1, while (d)–(f) and (g)–(i) are
generated with data number 10 and 13 respectively.

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

11

hardware technologies, the connection time with system 1 is shortest in
the three systems, which is around 30% faster than the other two
hardware configurations. When using Firefox, the initial connection
time is 0.21 ms (ms) - 0.42 ms, while the corresponding time needed is
0.35 ms–0.53 ms when using the Chrome web browser. The shader
connection (both vertex and fragment shaders) is around 5 times the
corresponding initial connection time. The SD for all these connections
is less than 0.62, which means that the connection speed is relative
uniform and the users can get smooth system performance. The bottom
bars in Fig. 10 visually show the connection speed of our software
platform including the average connection time needed with corre-
sponding SD, from which we can see that the connection speed is
millisecond level, so the final users cannot detect any delay when using
our system for Internet based medical data exploration and visual
synchronization.

In our web-based software platform, the extension in shared web

workers allows data upload from web workers, which frees the main
thread and we can use it to handle data rendering and user interactions.
Thanks to the efficient use of web workers, data loading in our platform
can be conducted smoothly without disturbing other operations on
client computers. We also notice that using different hardware systems
as Node.js server does not affect the performance of duplex information
communication and data rendering speed on client computers. Howev-
er, the web workers can only solve the problem partly, given their
memory overhead and communication model, the use of many workers
in a single application may offset the performance gain.

Our experiment demonstrates that all the client computers and the
Node.js server can share the same volume rendering and data navigation
view in the image display window and the related messages can be
streamed in real time using our system’s information panel, making the
developed web-based software platform useful in collaborative diag-
nosis, virtual reality based medical training and treatment planning
through Internet.

7. Conclusion

In this paper, we present a web-based software platform to visually
synchronize medical data exploration on Internet. Taking advantage of
Node.js and Socket.IO, we develop algorithms to bidirectionally connect
server and clients, where parameter settings for volumetric medical
image rendering and manipulation can be interactively updated and
shared among all connected clients. We also design an information
sharing pipeline for streaming messages among all the connected clients
and linking their input to MySQL database directly, where authorized

Fig. 9. Zoomed in part of the displayed 3D medical images in Fig. 8. The corresponding images in both figures share the same image label (a)–(i).

Table 2
Hardware configurations used in the experiment: system number, central pro-
cessing unit (CPU), memory size in Megabytes (MB) and graphics processing unit
(GPU). Three systems, i.e., sys. i (i ¼ 1, 2, 3), are employed to evaluate the
platform’s performance.

Sys. CPU Memory GPU

1 Intel i9-9900KF 64 GTX 1080
2 Intel i7-3770K 32 GTX 680
3 Intel i7-8750H 32 GTX 1070Q

Q. Zhang

Informatics in Medicine Unlocked 17 (2019) 100253

12

users are able to store and retrieve medical data and their associated
information.

In the developed system, shared web workers are implemented and
integrated into our data synchronization algorithm to optimize multi-
thread network connections and web page interactions, and novel
graphics lighting and specular shading algorithms are designed to
enhance features of interest of the 3D medical images rendered in web
browsers. Our software platform can display normal size medical data in
real time and deliver high-quality tissue structure enhanced images,
which allows clinical users and medical researchers at arbitrary loca-
tions to concurrently visualize and analyze the same medical data view
in real time. The presented algorithms and web-based software platform
will benefit medical applications such as distributed diagnosis, medical
collaboration and training on Internet, telemedicine, and remote
treatment.

In the future work, we will consider designing some advanced
interpolation techniques to handle the missing voxels outside the vol-
ume as described in subsection 5.2, and then use the interpolation result
to calculate the boundary voxel derivatives. We also plan to improve
user interactions, allowing users to dynamically change φ in Eq. (9) from
user interface, so the shading effect of the specular volume lighting can
be updated accordingly in real time. Furthermore, we will integrate new
web technologies such as WebCL (Web Computing Language) [58] into
our current WebGL based data rendering pipeline to take advantage of

the combined computing features of both central processing unit (CPU)
and graphics processing unit (GPU) for high-performance parallel
medical data computing and visualization in web browsers. Finally, we
plan to apply our software to a large cloud framework in hospitals or
medical institutes to validate its real-world performance in
Internet-based clinical diagnosis, treatment planning, and collaborative
therapy.

Ethical statement

The author has no ethical conflicts, financial or personal or other-
wise, related to the presented research.

Declaration of competing interest

The author declares no conflicts of interest.

Acknowledgment

The author would like to thank the Faculty Startup Grant of the
School of Information Technology at Illinois State University. The
author also thanks the support of the College of Arts and Sciences (CAST)
Publication Incentive Program Award and the CAST University Research
Grant (URG). As an adjunct faculty, the author would appreciate the
support of the Department of Medical Biophysics at the Western Uni-
versity for providing digital library access and research collaborations.
Finally, the author would like to extend his appreciation to the re-
viewer’s suggestions and comments as well as Dr. Ciaccio’s recom-
mendation and proofreading this paper.

References

[1] Carroll LN, Au AP, Detwiler LT, chieh Fu T, Painter IS, Abernethy NF. Visualization
and analytics tools for infectious disease epidemiology: a systematic review.
J Biomed Inform 2014;51:287–98. https://doi.org/10.1016/j.jbi.2014.04.006.

Table 3
Performance evaluation of data rendering and server-client connection using
five medical datasets in Table 1, three hardware configurations listed in Table 2
and Firefox (F) and Chrome (C) web browsers (Br.). The rendering speed is
frames per second (fps), while the time cost in both the initial and shader con-
nections is millisecond (ms). The listed numbers are the average of ten tests and
standard deviation (SD) is also calculated.

Sys. Br. Data
Num.

Rendering
Speed�SD

Initial Conn.�
SD

Shader Conn.�
SD

1 F 1 142�5.1 0.21�0.02 1.35�0.25
2 132�4.8
3 145�4.5
4 142�4.2
5 131�3.8

C 1 136�5.8 0.35�0.04 1.56�0.38
2 116�5.2
3 143�5.6
4 140�4.7
5 128�4.5

2 F 1 115�7.8 0.32�0.06 1.62�0.38
2 102�6.9
3 118�6.6
4 112�7.3
5 108�7.5

C 1 113�8.4 0.39�0.07 1.85�0.41
2 98 �7.2
3 115�7.5
4 107�8.1
5 100�8.8

3 F 1 76�7.5 0.42�0.08 1.95�0.46
2 74�6.6
3 82�5.4
4 78�7.3
5 73�5.9

C 1 74�8.5 0.53�0.09 2.12�0.62
2 72�7.3
3 78�6.4
4 73�8.1
5 68�6.2

Fig. 10. Demonstration of volume rendering and system connection speed, i.e.,
time used to launch the required connection, using the listed three systems and
five data sets in Table 3. Top: data visualization speed in frames per second.
Bottom: connection speed between clients and Node.js server in milli-
second (ms).

Q. Zhang

https://doi.org/10.1016/j.jbi.2014.04.006

Informatics in Medicine Unlocked 17 (2019) 100253

13

[2] Glover T. Using web applications for data visualisation. In: Proceedings of the
european conference on cognitive ergonomics, ECCE ’16. New York, NY, USA:
ACM; 2016. 31:1–31:2.

[3] Kooper R, Shirk A, Lee S-C, Lin A, Folberg R, Bajcsy P. 3d medical volume
reconstruction using web services. Comput Biol Med 2008;38(4):490–500. https://
doi.org/10.1016/j.compbiomed.2008.01.015.

[4] Min Q, Wang Z, Liu N. An evaluation of html5 and webgl for medical imaging
applications. Journal of Healthcare Engineering 2018;2018:11. https://doi.org/
10.1155/2018/1592821.

[5] Qiao L, Li Y, Chen X, Yang S, Gao P, Liu H, Feng Z, Nian Y, Qiu M. Medical high-
resolution image sharing and electronic whiteboard system: a pure-web-based
system for accessing and discussing lossless original images in telemedicine.
Comput Methods Progr Biomed 2015;121(2):77–91. https://doi.org/10.1016/j.
cmpb.2015.05.010.

[6] Ku W-Y, Nfor ON, Liu W-H, Tantoh DM, Hsu S-Y, Wang L, Chou T-Y, Liaw Y-P.
Online community collaborative map: a geospatial and data visualization tool for
cancer data. Medicine 2019;98:89. https://10.1097/MD.0000000000015521.

[7] Elhoseny M, Bian G-B, Lakshmanaprabu S, Shankar K, Singh AK, Wu W. Effective
features to classify ovarian cancer data in internet of medical things. Comput
Network 2019;159:147–56. https://doi.org/10.1016/j.comnet.2019.04.016.

[8] Woo J, Lee MJ, Ku Y, Chen H. Modeling the dynamics of medical information
through web forums in medical industry. Technol Forecast Soc Chang 2015;97:
77–90. https://doi.org/10.1016/j.techfore.2013.12.006.

[9] Fonzo GA, Fine NB, Wright RN, Achituv M, Zaiko YV, Merin O, Shalev AY, Etkin A.
Internet-delivered computerized cognitive & affective remediation training for the
treatment of acute and chronic posttraumatic stress disorder: two randomized
clinical trials. J Psychiatr Res 2019;115:82–9. https://doi.org/10.1016/j.
jpsychires.2019.05.007.

[10] Al-Shammari A, Zhou R, Naseriparsaa M, Liu C. An effective density-based
clustering and dynamic maintenance framework for evolving medical data streams.
Int J Med Inform 2019;126:176–86.

[11] Shen H, Ma D, Zhao Y, Sun H, Sun S, Ye R, Huang L, Lang B, Sun Y. Miaps: a web-
based system for remotely accessing and presenting medical images. Comput
Methods Progr Biomed 2014;113(1):266–83. https://doi.org/10.1016/j.
cmpb.2013.09.008.

[12] Koulouzis S, Zudilova-Seinstra E, Belloum A. Data transport between visualization
web services for medical image analysis. Procedia Computer Science 2010;1(1):
1727–36. https://doi.org/10.1016/j.procs.2010.04.194. iCCS 2010. URL.

[13] Bond RR, Finlay DD, Nugent CD, Moore G. A web-based tool for processing and
visualizing body surface potential maps. J Electrocardiol 2010;43(6):560–5.
https://doi.org/10.1016/j.jelectrocard.2010.05.010.

[14] Oluwagbemi O, Oluwagbemi F, Ughamadu C. Android mobile informatics
application for some hereditary diseases and disorders (amahd): a complementary
framework for medical practitioners and patients. Informatics in Medicine
Unlocked 2016;2:38–69. https://doi.org/10.1016/j.imu.2016.03.001.

[15] Lagerstedt I, Moore WJ, Patwardhan A, Sanz-García E, Best C, Swedlow JR,
Kleywegt GJ. Web-based visualisation and analysis of 3d electron-microscopy data
from emdb and pdb. J Struct Biol 2013;184(2):173–81. https://doi.org/10.1016/j.
jsb.2013.09.021.

[16] Salavert-Torres J, Iudin A, Lagerstedt I, Sanz-García E, Kleywegt GJ,
Patwardhan A. Web-based volume slicer for 3d electron-microscopy data from
emdb. J Struct Biol 2016;194(2):164–70. https://doi.org/10.1016/j.
jsb.2016.02.012.

[17] The Khronos Group, WebGL. OpenGL ES for the web. URL, https://www.khronos.
org/webgl/; 2019.

[18] Schroeder W, Martin K, Lorensen B. The visualization toolkit–an object-oriented
approach to 3D graphics. fourth ed. Kitware, Inc.; 2006.

[19] Tiwari M, Kumar P, Agrawal A. Web-based volume visualization of 3d medical data
using slice streaming method. In: Proceedings of the sixth international conference
on computer and communication technology 2015, ICCCT ’15. New York, NY,
USA: ACM; 2015. p. 194–8.

[20] Min Q, Liu N, Chen Y. A web-based medical image viewer for 2d and 3d
visualization. In: Proceedings of the 2018 2Nd international conference on
management engineering, software engineering and service Sciences, ICMSS 2018.
New York, NY, USA: ACM; 2018. p. 261–4.

[21] Shahzad F, Sheltami TR, Shakshuki EM, Shaikh O. A review of latest web tools and
libraries for state-of-the-art visualization. Procedia Computer Science 2016;98:
100–6. https://doi.org/10.1016/j.procs.2016.09.017. the 7th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN
2016)/The 6th International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare (ICTH-2016)/
Affiliated Workshops. URL.

[22] Evans A, Romeo M, Bahrehmand A, Agenjo J, Blat J. 3d graphics on the web: a
survey. Comput Graph 2014;41:43–61. https://doi.org/10.1016/j.
cag.2014.02.002.

[23] Jomier J, Jourdain S, Ayachit U, Marion C. Remote visualization of large datasets
with midas and paraviewweb. In: Proceedings of the 16th international conference
on 3D web technology, Web3D ’11. New York, NY, USA: ACM; 2011. p. 147–50.

[24] Noguera JM, Jim�enez JR. Mobile volume rendering: past, present and future. IEEE
Trans Vis Comput Graph 2016;22(2):1164–78. https://doi.org/10.1109/
TVCG.2015.2430343.

[25] Mobeen MM, Feng L. High-performance volume rendering on the ubiquitous webgl
platform. In: IEEE 14th international conference on high performance computing
and communication 2012 IEEE 9th international conference on embedded software
and systems, 2012; 2012. p. 381–8. https://10.1109/HPCC.2012.58.

[26] Mahmoudi SE, Akhondi-Asl A, Rahmani R, Faghih-Roohi S, Taimouri V, Sabouri A,
Soltanian-Zadeh H. Web-based interactive 2d/3d medical image processing and
visualization software. Comput Methods Progr Biomed 2010;98(2):172–82.
https://doi.org/10.1016/j.cmpb.2009.11.012.

[27] Marion C, Jomier J. Real-time collaborative scientific webgl visualization with
websocket. In: Proceedings of the 17th international conference on 3D web
technology, Web3D ’12; 2012. p. 47–50.

[28] Jim�enez J, L�opez A, Cruz J, Esteban F, Navas J, Villoslada P, de Miras JR. A web
platform for the interactive visualization and analysis of the 3d fractal dimension
of mri data. J Biomed Inform 2014;51:176–90. https://doi.org/10.1016/j.
jbi.2014.05.011.

[29] Sherif T, Kassis N, Rousseau M-t, Adalat R, Evans AC. Brainbrowser: distributed,
web-based neurological data visualization. Front Neuroinf 2015;8:89. https://doi.
org/10.3389/fninf.2014.00089. https://www.frontiersin.org/article/10.33
89/fninf.2014.00089.

[30] Shi M, Gao J, Zhang MQ. Web3DMol: interactive protein structure visualization
based on WebGL. Nucleic Acids Res 2017;45(W1):W523–7.

[31] Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics
2014;31(8):1322–4.

[32] Marion C, Pouderoux J, Jomier J, Jourdain S, Hanwell M, Ayachit U. A hybrid
visualization system for molecular models. In: Proceedings of the 18th
international conference on 3D web technology, Web3D ’13. New York, NY, USA:
ACM; 2013. p. 117–20.

[33] Gastounioti A, Kolias V, Golemati S, Tsiaparas NN, Matsakou A, Stoitsis JS,
Kadoglou NP, Gkekas C, Kakisis JD, Liapis CD, Karakitsos P, Sarafis I, Angelidis P,
Nikita KS. Carotid – a web-based platform for optimal personalized management of
atherosclerotic patients. Comput Methods Progr Biomed 2014;114(2):183–93.
https://doi.org/10.1016/j.cmpb.2014.02.006.

[34] Tao J, Huang X, Qiu F, Wang C, Jiang J, Shene C-K, Zhao Y, Yu D. Vesselmap: a
web interface to explore multivariate vascular data. Comput Graph 2016;59:79–92.
https://doi.org/10.1016/j.cag.2016.05.024.

[35] Doel T, Shakir DI, Pratt R, Aertsen M, Moggridge J, Bellon E, David AL, Deprest J,
Vercauteren T, Ourselin S. Gift-cloud: a data sharing and collaboration platform for
medical imaging research. Comput Methods Progr Biomed 2017;139:181–90.
https://doi.org/10.1016/j.cmpb.2016.11.004.

[36] Qiao L, Chen X, Zhang Y, Zhang J-N, Wu Y, Li Y, Mo X, Chen W, Xie B, Qiu M. An
html5-based pure website solution for rapidly viewing and processing large-scale
3d medical volume reconstruction on mobile internet. International Journal of
Telemedicine and Applications 2017;2017:1–13. https://doi.org/10.1155/2017/
4074137.

[37] Borgbjerg J. Mulrecon: a web-based imaging viewer for visualization of volumetric
images. Curr. Probl. Diagn. Radiol. 2019;48(6):531–4. https://doi.org/10.1067/j.
cpradiol.2018.09.001.

[38] Huang Q, Huang X, Liu L, Lin Y, Long X, Li X. A case-oriented web-based training
system for breast cancer diagnosis. Comput Methods Progr Biomed 2018;156:
73–83. https://doi.org/10.1016/j.cmpb.2017.12.028.

[39] Bloom RB. Apache server 2.0: the complete reference. New York, NY, USA:
McGraw-Hill, Inc.; 2002.

[40] Atkinson L, Suraski Z. Core PHP programming. third ed. Prentice Hall Professional
Technical Reference; 2003. third ed.

[41] Widenius M, Axmark D. Mysql reference manual. first ed. Sebastopol, CA, USA:
O’Reilly & Associates, Inc.; 2002.

[42] Lizzio VA, Gulledge CM, Meta F, Franovic S, Makhni EC. Using a web-based data
collection platform to implement an effective electronic patient-reported outcome
registry. Arthroscopy Techniques 2019;8(6):e535–9. https://doi.org/10.1016/j.
eats.2019.01.012.

[43] Dirksen J. Learning Three.js – the JavaScript 3D library for WebGL. second ed.
Packt Publishing - ebooks Account; 2015. second ed. https://threejs.org.

[44] Zhang Q. Web-based medical data visualization and information sharing towards
application in distributed diagnosis. Informatics in Medicine Unlocked 2019;14:
69–81. https://doi.org/10.1016/j.imu.2018.10.010.

[45] The Khronos Group. WebGL 2.0 specification. https://www.khronos.org/registry/
webgl/specs/latest/2.0/; 2019.

[46] Teixeira P. Professional Node.Js: building javascript based scalable software. first
ed. Birmingham, UK, UK: Wrox Press Ltd.; 2012.

[47] Rauch G. Socket.io 2.0 is here: featuring the fastest and most reliable real-time
engine. https://socket.io; 2019.

[48] The Web Hypertext Application Technology Working Group (WHATWG). HTML
living standard. https://html.spec.whatwg.org/multipage/workers.html; 2019.

[49] Ready to try javascript?. https://www.javascript.com/. [Accessed 16 July 2019].
[50] Holmes S. Getting MEAN with mongo, express, angular, and node. first ed.

Greenwich, CT, USA: Manning Publications Co.; 2015.
[51] Contributing packages to the registry: creating a package.json file. https://docs.

npmjs.com/creating-a-package-json-file. [Accessed 16 July 2019].
[52] Wolff D. OpenGL 4 Shading Language cookbook: build high-quality, real-time 3D

graphics with OpenGL 4.6, GLSL 4.6 and Cþþ17. third ed. Packt Publishing; 2018.
[53] Fette I, Melnikov A. Relationship to TCP and HTTP. In: RFC 6455 the WebSocket

protocol. first ed. Chichester: IETF; 2011.
[54] Hill S. Graphics gems iv. Ch. Tri-linear Interpolation. San Diego, CA, USA:

Academic Press Professional, Inc.; 1994. p. 521–5. http://dl.acm.org/citation.cfm?
id¼180895.180944.

[55] Zhang Q, Eagleson R, Peters TM. Rapid scalar value classification and volume
clipping for interactive 3d medical image visualization. Vis Comput 2011;27(1):
3–19. https://doi.org/10.1007/s00371-010-0509-z.

Q. Zhang

http://refhub.elsevier.com/S2352-9148(19)30206-0/sref2
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref2
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref2
https://doi.org/10.1016/j.compbiomed.2008.01.015
https://doi.org/10.1016/j.compbiomed.2008.01.015
https://doi.org/10.1155/2018/1592821
https://doi.org/10.1155/2018/1592821
https://doi.org/10.1016/j.cmpb.2015.05.010
https://doi.org/10.1016/j.cmpb.2015.05.010
https://10.1097/MD.0000000000015521
https://doi.org/10.1016/j.comnet.2019.04.016
https://doi.org/10.1016/j.techfore.2013.12.006
https://doi.org/10.1016/j.jpsychires.2019.05.007
https://doi.org/10.1016/j.jpsychires.2019.05.007
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref10
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref10
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref10
https://doi.org/10.1016/j.cmpb.2013.09.008
https://doi.org/10.1016/j.cmpb.2013.09.008
https://doi.org/10.1016/j.procs.2010.04.194
https://doi.org/10.1016/j.jelectrocard.2010.05.010
https://doi.org/10.1016/j.imu.2016.03.001
https://doi.org/10.1016/j.jsb.2013.09.021
https://doi.org/10.1016/j.jsb.2013.09.021
https://doi.org/10.1016/j.jsb.2016.02.012
https://doi.org/10.1016/j.jsb.2016.02.012
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref18
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref18
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref19
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref19
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref19
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref19
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref20
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref20
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref20
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref20
https://doi.org/10.1016/j.procs.2016.09.017
https://doi.org/10.1016/j.cag.2014.02.002
https://doi.org/10.1016/j.cag.2014.02.002
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref23
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref23
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref23
https://doi.org/10.1109/TVCG.2015.2430343
https://doi.org/10.1109/TVCG.2015.2430343
https://10.1109/HPCC.2012.58
https://doi.org/10.1016/j.cmpb.2009.11.012
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref27
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref27
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref27
https://doi.org/10.1016/j.jbi.2014.05.011
https://doi.org/10.1016/j.jbi.2014.05.011
https://doi.org/10.3389/fninf.2014.00089
https://doi.org/10.3389/fninf.2014.00089
https://www.frontiersin.org/article/10.3389/fninf.2014.00089
https://www.frontiersin.org/article/10.3389/fninf.2014.00089
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref30
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref30
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref31
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref31
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref32
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref32
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref32
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref32
https://doi.org/10.1016/j.cmpb.2014.02.006
https://doi.org/10.1016/j.cag.2016.05.024
https://doi.org/10.1016/j.cmpb.2016.11.004
https://doi.org/10.1155/2017/4074137
https://doi.org/10.1155/2017/4074137
https://doi.org/10.1067/j.cpradiol.2018.09.001
https://doi.org/10.1067/j.cpradiol.2018.09.001
https://doi.org/10.1016/j.cmpb.2017.12.028
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref39
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref39
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref40
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref40
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref41
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref41
https://doi.org/10.1016/j.eats.2019.01.012
https://doi.org/10.1016/j.eats.2019.01.012
https://threejs.org
https://doi.org/10.1016/j.imu.2018.10.010
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref46
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref46
https://socket.io
https://html.spec.whatwg.org/multipage/workers.html
https://www.javascript.com/
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref50
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref50
https://docs.npmjs.com/creating-a-package-json-file
https://docs.npmjs.com/creating-a-package-json-file
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref52
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref52
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref53
http://refhub.elsevier.com/S2352-9148(19)30206-0/sref53
http://dl.acm.org/citation.cfm?id=180895.180944
http://dl.acm.org/citation.cfm?id=180895.180944
https://doi.org/10.1007/s00371-010-0509-z

Informatics in Medicine Unlocked 17 (2019) 100253

14

[56] Phong BT. Illumination for computer generated pictures, Commun. ACM 1975;18
(6):311–7. https://doi.org/10.1145/360825.360839.

[57] Zhang Q, Eagleson R, Peters TM. Dynamic real-time 4d cardiac mdct image display
using gpu-accelerated volume rendering. Comput Med Imag Graph 2009;33(6):
461–76. https://doi.org/10.1016/j.compmedimag.2009.04.002.

[58] The Khronos Group. Webcl overview: heterogeneous parallel computing in html5
web browsers. https://www.khronos.org/webcl/; 2019.

Q. Zhang

https://doi.org/10.1145/360825.360839
https://doi.org/10.1016/j.compmedimag.2009.04.002
https://www.khronos.org/webcl/

	Medical Data Visual Synchronization and Information interaction Using Internet-based Graphics Rendering and Message-oriented Streaming
	Recommended Citation

	Medical data visual synchronization and information interaction using Internet-based graphics rendering and message-oriente ...
	1 Introduction
	2 Current work
	3 System architecture
	3.1 Node.js server
	3.2 Socket.IO connection

	4 Data and information synchronization
	4.1 Server side programming
	4.2 Client side programming
	4.3 Message streaming
	4.4 Shared web worker

	5 Data rendering and enhancement
	5.1 WebGl2 and GPU pipeline
	5.2 Voxel normal calculation
	5.3 Data visualization and enhancement

	6 Results and evaluation
	6.1 User interface and functionality
	6.2 Data visualization
	6.3 Performance evaluation

	7 Conclusion
	Ethical statement
	Declaration of competing interest
	Acknowledgment
	References

