

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the

Degree of Master of Science at the University of Waikato.

April 2014

© 2014 Yu-Hsin (Amigo) Huang

Improving

Collaborative Drawing

using HTML5

Yu-Hsin (Amigo) Huang

i

Abstract

This research looks into improving online web-based collaborative drawing using

HTML5. Although many systems have been developed over a number of years,

none of the applications released have been satisfactory for many artists; the core

drawing experience was too different from a stand-alone drawing applications.

Stand-alone drawing applications have better freedom of control with functions

like undo and allow artists to work efficiently with hotkeys. The advent of the

HTML5 Canvas Element and Websockets in recent browsers has provided new

opportunities for collaborative online interaction.

This research used an incremental development approach to build a prototype

HTML5 drawing application providing new functionality for online collaborative

drawing. The project was supported by two experienced artists throughout

investigation, design, implementation and testing. The project artists helped

validate design decisions and evaluate the implementation.

As a result, a robust HTML5 collaborative drawing application was built. The

prototype contains core drawing functionality that existing applications did not.

Features include: undo and redo, free canvas transformation, complex hotkey

interaction, custom canvas size support, colour wheel, and layers. All these

features work smoothly in a fully synchronized network environment under a

client-server model. The collaboration system uses an authoritative server

structure with local prediction and re-synchronization to hide latency.

Although the result is only a prototype, the evaluations from the project artists

were very positive. Once more functionality targeted towards social interaction is

built, the prototype will be ready for mass public testing. Although there are some

issues caused by the immaturity of HTML5 technology, this project affirms its

capability for collaborative web applications.

ii

Acknowledgement

I would like to thank my supervisor, Bill Rogers, for making this research

possible. Thank you Bill for being supportive of this research and fixing up my

bad English. Your wisdom and contribution to this research was valuable and

deserves my highest respect. I would like to thank the two project artists‟ for their

participation and effort put in to this research. This research would not have been

this successful without the knowledge and opinion of the project artists. The two

project artists will remain anonymous in this thesis due to the agreement under the

Ethics Consent, but they will be named in the prototype application website.

Doing this research from an incremental methodology with end-users perspective

was fun and interactive; I hope more academic research in the future could have

similar approaches.

iii

Contents

Chapter 1: Introduction ... 1

Chapter 2: Background ... 3

Chapter 3: Project Approach ... 5

Chapter 4: Technology .. 10

4.1 HTML5 .. 10

4.2 Node.js ... 12

4.3 Open Shift .. 13

4.4 Browsers .. 14

Chapter 5: Existing Applications .. 15

5.1 Pixiv Chat (Pixiv, 2009) .. 15

5.1.1 Notable features of Pixiv Chat .. 16

5.1.2 Notable drawbacks of Pixiv Chat ... 20

5.2 DoodleToo (WDF, 2010) .. 22

5.3 iScribble (iScribble, 2014)... 23

5.3.1 Notable features of iScribble .. 24

5.3.2 Notable drawbacks in iScribble .. 25

5.4 Sky Cow‟s /f/lockdraw (Skycow, 2011) ... 25

5.4.1 Notable features of /f/lockdraw .. 26

5.4.2 Notable drawbacks of /f/lockdraw .. 28

5.5 Rate My Drawings‟ Draw Chat (Mixart New Media LLC, 2010) 29

5.5.1 Notable features in Draw Chat.. 30

5.5.2 Notable drawbacks of Draw Chat ... 30

5.6 Niko‟s Paint Chat (Niko, 2009) ... 31

5.6.1 Notable features in Paint Chat .. 31

5.6.2 Notable Drawbacks of Paint Chat ... 35

5.7 Queeky‟s Multi Draw (Queeky, 2010) .. 35

5.8 CoSketch (CoSketch, 2014) .. 36

5.8.1 Notable features of CoSketch ... 37

5.9 Chrome Experiments (Google, 2014) ... 38

5.9.1 Multiuser Sketchpad (Mr.doob, 2010) .. 38

5.9.2 Paint With Me (Jones, 2011) .. 39

Chapter 6: Requirements ... 41

iv

6.1 No Plug-ins Required .. 41

6.2 Online Collaborative Drawing .. 41

6.3 Undo and Redo .. 41

6.4 Layers .. 42

6.5 Basic Tools and Colour selection .. 42

6.6 Large canvas, Mini-map, and View transformation 43

6.7 Hotkeys .. 44

6.7.1 Hotkeys for view transformation .. 45

6.7.2 Hotkey for a colour wheel .. 45

6.7.3 Hotkey for major tools and setting ... 46

6.8 Prevention of negative behaviour .. 46

6.9 History playback and publish structure ... 47

Chapter 7: Related Academic Researches... 48

Chapter 8: Implementing Core Structure and Design ... 51

8.1 Basic drawing synchronization ... 51

8.2 Undo and Redo .. 54

8.3 Structure Modifications ... 58

8.4 Eraser and Layers .. 59

8.5 Server authoritative structure .. 64

8.6 Client Prediction .. 66

8.7 Final Technical Structure .. 68

Chapter 9: Client Side and User Interface... 70

9.1 Overall structure .. 70

9.2 Mini-map and Layers UI ... 74

9.3 Tools .. 77

9.4 Hotkeys .. 83

9.5 Social Functions .. 93

Chapter 10: Final Testing Sessions and Evaluations .. 97

Chapter 11: Future Considerations ... 110

Chapter 12: Conclusion ... 112

References ... 114

Appendix A ... 116

1

Chapter 1: Introduction

Online web-based collaborative drawing has become a popular service in art

communities in recent years. A collaborative drawing application is an application

where people can draw and chat together in a shared environment. A web-based

application, or web application, is an application that runs inside a web browser;

as long as the necessary plug-ins are installed, any web application can run from a

modern browser without further installation or updating.

Web-based collaborative drawing is popular among artists because it can be used

for social interaction, education or exposure between artists over the internet. But

more than 5 years have passed since the release of the currently popular

applications, and little attempt has been made to improve the core drawing

experience of these applications. The difference in drawing experience between

stand-alone drawing software and web-based collaborative drawing applications is

still too great. Collaborative drawing applications still lack basic functions such as

undo or free canvas transformations. This clearly raise a burning curiosity in many

end-users; why is it not possible to have a better collaborative drawing experience.

Conveniently HTML5, the new standard for providing web interactivity, have

gained strong support by web browser developer since its announcement in 2008.

With improved performance of modern computers over time, web browsers also

became much powerful at running complex web applications. One of the most

notable improvements of HTML5 from HTML4 was the ability to display

dynamic graphic content without the need of any plug-ins. With all the advantages

of being a web application and no need of plug-ins, HTML5 is a plausible

candidate as a base technology solution to this research. Therefore, the purpose of

this research is to evaluate and improve the quality of web-based collaborative

drawing experience through the use of HTML5 technology.

With help and guidance from experienced artists, an HTML5 prototype was built

2

addressing the requirements to improve the web-based collaborative drawing

experience. The development followed a methodology of expert guided

incremental development; frequent consulting and testing sessions are held with

artists who have good experience in this topic. The artists provided expert

knowledge and advice on the requirements and give evaluations of

implementations throughout the research.

This thesis explains how identified issues were solved with HTML5 and various

other pieces of technology, then evaluated against experienced end-users. Notable

technology used is: HTML5 Canvas element, Websockets, Node.js, Javascript,

and CSS. Some of the main challenges addressed are: network synchronization,

network prediction, undo, canvas transformation, layers, web browser

performance, hotkey interactions, and user interface control features.

This thesis is divided into 12 chapters. Chapter 2 describes the background of how

this topic was identified and why this is an important area of work. Chapter 3

describes how this research was approached and conducted over time. Chapter 4

explains the technology used in developing a prototype system. Chapter 5 is a

study of notable existing web-based collaborative drawing applications. Chapter 6

is where the requirements for the prototype are define with help from the project

artists. Chapter 7 looks into previous related academic research relevant to the

development of the prototype. Chapter 8 describes the implementation of the main

system and back-end of the prototype. Chapter 9 describes the implementation for

user controls and front-end interaction. Chapter 10 is about the final evaluations of

the prototype. Chapter 11 discusses considerations of additional work to build on

the prototype in order to make a more complete drawing system. Chapter 12

presents conclusions drawn from this research.

3

Chapter 2: Background

With increase in connectivity between people through the internet, the desire for

highly expressive means of interaction have arisen. Chat rooms or instant

messaging over internet are a very common technology and many people use

them every day. It is natural for people to start looking for a more visual

interaction rather than just text. Ever since the introduction of plug-ins to web

browsers, interactive web applications have grown in study and use. The most

notable features of a web applications compared to native software are that they

are often cross-platform and have low pre-installation requirements. Single-user

drawing tools amongst other web applications were developed and became

popular tools for some people. Studies of web-based collaborative drawing

applications was released as early as 2004 (AlRamahi & Gramoll, 2004). Most

studies of collaborative web applications were focused on usage in education,

communication, rapid prototyping, or basic sketching (Sangiogi, Beuvens, &

Vanderdonckt, 2012) (AlRamahi & Gramoll, 2004). Rarely did early studies focus

on providing a better drawing experience for collaborative artwork. Interestingly

that work was embraced by art websites with releases of web-based collaborative

drawing applications around 2009 (Pixiv, 2009). In recent years, web-based

collaborative drawing applications have risen in popularity. Art communities use

collaborative drawing applications as a mean of social, exposure, or mentoring

service. Due to the popularity of the early applications, many new collaborative

drawing applications were released later.

An artist, who uses collaborative drawing applications regularly, approached the

researcher and raised the question; 5 years have passed since the release of ,what

he considered, the most popular collaborative drawing tool: Pixiv Chat. The base

technologies and interactions still have not changed much over time; many new

collaborative drawing applications came out during those 5 years, but important

issues related to the basic drawing experiences were still not properly addressed.

4

Commercial stand-alone drawing software packages all have functions like undo,

canvas transformations, and complex hotkey interactions; these functions help to

give the user freedom of control, convenience, and efficiency in their drawing

experience. In contrast online collaborative drawing tools are still nowhere near

this level of interaction. The artists claims it is the lack of these functions that is

preventing the technology from becoming even more popular. The artist feel it is

because developers were unaware of this problem, so many new applications

release only providing more tools than others. There are other minor of issues in

existing applications such as the requirement for plug-ins, cluttered user interfaces,

small canvases…etc. These minor issues does eventually add up to a poor drawing

experience.

With the announcements of HTML5 in 2008 (W3C, 2008), new opportunities for

interactive web applications became a popular topic. One of the major

opportunities offered by HTML5 was to provide interactive web experience

through any modern web browser without the need for plug-ins. However, at that

time, most specifications in HTML5 were still in early draft and adoption in web

browsers were slow and few. Two of the first introduced specifications of HTML5

were the Canvas element and the Websockets. The Canvas element allows

dynamic scriptable graphics content on a webpage and the Websockets allows low

latency, bi-direction TCP communication between server and client through port

80. Over the years, both specifications have become fully supported by all modern

browsers. With this knowledge, the researcher proposed to address the questions

asked by the artist using HTML5 technology.

5

Chapter 3: Project Approach

The goal is to build a HTML5 collaborative drawing application prototype with

functions considered important to common stand-alone drawing software that

current existing collaborative applications lack. The artist who suggested this

research idea, along with another artist friend, have agreed help this project as

expertise consultants. Both artists are professional digital artists and have

experience in using online collaborative drawing applications. Throughout this

research they will be referred as “project artists” and are expected to help this

research from a end-user point of view. Many small casual consultation sessions

will be held between the researcher and the project artists to discuss decisions or

comments on this research. The focus is to implement drawing related

functionality that the project artists have identified as the most apparent problems

with existing applications. Social interaction, or social oriented functions will

mostly be a secondary scope of this project. The reason for this focus is because

the project artists feels the biggest problem with existing applications is the

drawing experience, not the social experience. Collaborative drawing applications

already have achieved a good social experience by their nature; people can draw

and chat in a shared environment. However there are still some important issues in

social experiences that should be considered, in the view of the project artists.

The researcher will study notable web based collaborative drawing applications;

some will be identified and commented on by the project artists. A set of

requirements for the HTML5 prototype will then be constructed with the

knowledge gained from the study and aid of project artists. As parts of the

prototype are being developed, small testing sessions will be held to get feedback

and comments from the project artists. These testing sessions are mostly very

casual; sometimes it is only done with one artist within few minutes. Once the

prototype is complete, larger testing sessions will be held. The larger testing

sessions consisted of the project artists collaborating on one drawing for roughly

20 minutes. Multiple larger testing sessions will be held to get an accurate

6

evaluation of the final prototype.

This research has the approval of University of Waikato Ethics Committee in

conducting testing/consultation session with targeted artist. The project artists will

remain anonymous and have the right to disassociate from this research at any

time. The project artists own all the rights to their published drawings in this

research. Only comments and/or screens will be recorded during any testing

session.

Example works of project artists on stand-alone drawing software:

7

8

Example works of project artists on online collaborative drawings

9

10

Chapter 4: Technology

This chapter describes the main technologies that was used in this research.

4.1 HTML5

Hyper Text Mark-up Language(HTML) is the base technology of web pages. It is

the standard that defines the contents of a web page. HTML5 is the base

technology for this project. Ten years had passed since HTML4‟s release,

HTML5‟s release in 2008 was a significant contribution to web technology

advancement. HTML5 is often compared to Adobe Flash due to both having their

goal of improving web interactivity and multimedia support. However the two

technologies have completely different nature in structure and behaviour. Flash is

compiled and proprietary, and HTML is interpreted and open. There is no access

or interaction available for other web objects in a Flash application, this can be

problematic to other web services, preventing the extraction of meta data from

Flash content in a website. Flash software is owned by a company. Licenses and

plug-ins are required in order to develop or run in Flash. The future of Flash is

solely in control of one company. HTML5, on the other hand, is just a new

standard, improved from HTML4. HTML specifications are developed by the

World Wide Web Consortium(W3C), the process is more community driven with

less commercial constraint. Because HTML is just a set of rules and descriptions,

it is the web browser developers‟ responsibility to comply with the standard.

Hardware is never likely to be an issue with HTML while Flash requires both

compatible browser and plug-in to work on each kind of computer hardware. One

obvious issue with HTML5 is that it is still under development. The specifications

are still evolving and not finalised. Browsers are updating and developing

different parts of HTML5 in their own pace. Different browsers have different

display and code for the new specifications.

11

The HTML5 Canvas element and the Websockets were in the first specifications

introduced. The Canvas element had already existed in Safari and Opera browsers

prior to first draft of HTML5, so it was also one of the earliest specifications

adopted by other browsers. The Websockets, however, was only later added and

fully standardized in all browsers until late 2011. This project will focus on

combining the Canvas element and Websockets as its base technology. Both

features are available in modern web browsers at time of development and are

accessed in Javascript. The Canvas element allows dynamic scriptable graphics in

a web browser. It is stored in a bitmap structure, hence it is raster-based. The

HTML5 SVG element is an alternate structure to graphics in HTML5. The SVG

element supports vector-based graphics. This project focuses more on raster-based

drawing experience than vector-base, so the Canvas element was chosen as the

base technology. An additional graphics technology built on top of HTML5

Canvas is WebGL(Web Graphics Library) (Khronos Group, 2011). WebGL uses

the HTML5 Canvas element as a display portal but has a separate API and

structure similar to Open GL ES 2.0. WebGL uses Javascript to run GPU

accelerated content. However the biggest limitation of WebGL is its graphics card

dependencies. Not all graphics cards, especially mobile graphics cards, support

WebGL (Moelker & Wijbrandi, 2012). This project hopes to reduce software and

hardware dependencies to only having installing a modern browser, so WebGL

was not considered as a base technology. Another reason why WebGL is not

suitable for this project is because WebGL is mainly targeted towards rendering

3D graphics. Its back-end structure relies on Javascript feeding vertices, shaders,

and textures into the GPU. There may be a work-around to achieve a drawing

canvas application in WebGL, but the HTML5 Canvas element providses many

drawing and pixel manipulation functions by default, so is much suited for a 2D

drawing application.

The Websockets is a new protocol that allows clients to communicate with servers

over sockets, much like stand-alone software. The connection is full-duplex and

uses TCP over port 80. Because Websockets is a protocol, it requires both server

side software and the client side browser to both support the specification. Prior to

Websockets, communication between server and client was only available through

client side requests. This means the server was always passive and could not

12

actively send information to the client. In early Internet, communication between

client and server only contained request of full web pages. After the introduction

of iframes in 1996 by Internet Explorer, a new technique was developed with it

that allowed clients to asynchronously request partial content from a server

without the need to refresh the web page. This allowed more dynamic

communication between the client and server. This technique was later

popularised by Google in 2004 and now referred to as AJAX. However even with

AJAX and its variations, the server is still passive and all requests still contains

HTTP header overhead per-request. AJAX is incapable of achieving low-latency

and bi-directional communication. An alternative method to achieve socket-based

communication was using FlashSockets in Flash. However the availability of

services from web hosting services are limited because it require servers to be

specially setup to allow FlashSockets and also require a license purchase of Flash

Server (AlRamahi & Gramoll, 2004). Another method to achieve to socket-based

communication was through Java Applets. But, like Flash, a plug-in is needed to

be installed and activated upon usage. A study released in 2011 (Gutwin, Lippold,

& Graham, 2011) clearly showed that Websockets have the best performance

compared to all other alternatives for achieving real-time web-based networking

from web pages. However Websockets, at time of this project, are still slowly

being integrated into common server side software and services.

4.2 Node.js

One of the early Websockets adoptions in a server application is Node.js,

sometimes referred just as Node. Node.js is an asynchronous Javascript server

application released in 2009 (Joynet, 2009). The first major difference to other

server applications is that Node.js uses Javascript as a programming language.

People may have misconceptions of the network handling power of Node.js due to

the slower processing nature of Javascript. While the server runs Javascript, the

application itself is written in C; this means it is completely capable of handling

heavy networking needs. Javascript also has more supporting resources available

compared to C due to the larger number of web developers than server

13

programmers. Node.js therefore lowers the bar-of-entry to server programming by

not requiring a knowledge of C language. The front-end of this project will be

written in Javascript too, so having both ends developed in same language is a

great convenience. The second major difference of Node.js to other server

applications is that it uses an event-driven architecture. Node.js is single threaded

and handles all requests and connections with events and call-back functions. This

means requests can be handled concurrently and only use resources when needed.

The asynchronous architecture also allows non-blocking I/O, so the server does

not have to worry about preventing deadlocks and thread synchronization.

Traditional server applications are commonly multi-threaded; each connection and

request would have a larger process overhead and resource allocation than Node.js.

The Node.js structure also allows the system to scale well for different number of

connections and handles smaller requests well. All above behaviours makes

Node.js a well suited server for a collaborative drawing application. The most

obvious disadvantage of Node.js is its computational power. Javascript is still an

interpreted language, so server computation process will always be slower than

those written in traditional compiled languages. For this project, the server

machine will not be running a client. This means that no graphics computation

will be run server side. The server will only need to act as a message relaying

machine and authenticator. This should not impose too heavy of a processing

requirement.

4.3 Open Shift

Performance in networking is a major factor to this project. In order to simulate

and address realistic network latency, the experimental server of this project

should be remote. Network latency is an obvious issue in all network applications.

Running experiments on localhost or with a LAN setup will give an inaccurate

impression of the user experience. At the time of the project, finding a remote web

hosting service with Node.js support was not difficult. But finding a Websockets

supporting services with low cost was more difficult. Websockets was still quite

new and experimental, many web hosting services only allowed it as a premium

14

service. Fortunately, Open Shift provides both Node.js and Websockets support

with their Free Plan. Open Shift (Red Hat Enterprise, 2013) is a PaaS(Platform as

a Service) by Red Hat Enterprise. It is a Linux cloud computing service that

provides the user with a computing platform that automatically scales to its

service needs. This means the user does not need to manage the underlying

hardware or software as it is all automatically managed and scaled by the web

hosting service. It allows users the convenience of focusing on their own website

or service to be run on the platform. All servers are located in US at the time of

project. This provides a good latency test from New Zealand. The Free Plan

provides up to 1.5GB memory, up to 3GB storage, and no bandwidth limit. These

specifications are well sufficient for testing among small groups. Note, mass

public test is not within the scope of this project. The Open Shift service provided

excellent conditions for this project at no cost.

4.4 Browsers

A modern browser is theoretically all that is needed to run HTML5. But as

previously mentioned; not all specifications are finalised; not all browsers are up

to date; some browsers went ahead and created their own syntax/implementation;

and different browsers handle tasks using their own methods in the background.

Constant testing on different browsers will be very time consuming, so this

project will only mainly focus on testing with Mozilla Firefox as the main

platform. Testing on other browsers will only be occasional. There are no

particular reasons for the choice of browser, the researcher happens to be most

familiar with it for development. At time of this project, Firefox (version: 28)

supports all the technologies needed for this project.

15

Chapter 5: Existing Applications

Web-based collaborative drawing is not a new concept. Studies of such ideas

implemented with Flash exists as early as 2004 (AlRamahi & Gramoll, 2004).

Most popular web-based collaborative drawing applications to this date are still

built with Flash. Many applications existed, but have been taken down from the

web for to various reasons. One common reason for those taken down was

because the bandwidth usage was too large and expensive to maintain. With

availability of Open Shift‟s services, maintenance is not a concern in this project

for now. Below is a analysis of popular existing web-based collaborative drawing

applications. Note, online collaborative applications uses the term “room” or

“session” to describe one collaboration environment; the two terms may be used

interchangeably at times.

5.1 Pixiv Chat (Pixiv, 2009)

Pixiv is the largest online art community website. First launched on 2007, now

has over 5 million members and 3.3 billion monthly page views. Pixiv is a website

where users can submit and share their art work. In 2009, Pixiv launched a Flash

chat room service with drawing collaboration called “Pixiv Chat”. Pixiv Chat has

become a popular social ground for artists to meet, learn and collaborate. It allows

more dynamic interaction than traditional chat rooms. All Pixiv members can

create and participate in public or private rooms. Non-members can still join a

public room as spectators. Pixiv Chat only has three tools: pen, eraser, and colour

sampler. The pen and eraser both have options: binary edge and soft edge option,

radius control, opacity control, and colour control. There are three view controls:

zoom-in, zoom-out, and pan view. The zoom function has three levels of zoom:

50%, 100%, and 200%. The canvas size is a fixed 1600x1200 with two layers

available. The project artist state it is one of the best collaborative drawing tools

that exists.

16

Example view of Pixiv Chat.

5.1.1 Notable features of Pixiv Chat

Canvas Mini-Map and View Transformations

There is a small thumbnail image that displays the current state of the canvas as a

whole. This helps the user be aware of the whole canvas while focusing on a

smaller section. Most collaborative drawing applications do not have a canvas

thumbnail because of smaller canvas size or lack of view control. The user can

pan and zoom the view of the canvas. The thumbnail can be clicked to move the

pan position.

17

Canvas mini-map on the bottom left hand side.

Two layers

Having two layers allows more complex drawings. Most other collaborative

drawing applications do not have layers. If a drawing application only has one

layer the method of drawing will only allow a paint-like approach. This means

new strokes are merged onto earlier strokes. Having another layer allows the more

common digital approach where the user can draft on the bottom layer and then do

clean artwork on the top layer.

Ticket System

Pixiv Chat implemented a “Ticket System” to control the length of each room.

Because all members can create a room, server load would be difficult to manage.

All rooms are given a life time and they will shut down when the time ends. To

extend the time of a room, Tickets need to be added. Each member gets two

Tickets a day; more tickets can be obtained by a room owner if participation level

in that room is high. This system allows the lifetime of each room to be supported

by the participants, which is a fair way of controlling to the large number of

rooms that can exist. This system also helps control the size of the drawing log so

it does not put excessive demands on the memory of the server.

18

Room playback

Because a log is remembered for every room, each room can be played back in a

player. This is a very good feature allowing users to watch other people draw.

Some other drawing applications have this feature too, but Pixiv Chat has more

control of speed of execution and timeline.

Room playback video built in Pixiv Chat.

User Interface and chat system

Pixiv Chat‟s approach to its user interface and chat system has the best design in

collaborative drawing applications according to project artists. The control

interface can be hidden as a whole leaving only the canvas visible. The user can

interact with the all tools of the canvas purely with hotkeys. When pen size or

colour change is needed, the user just needs to hold the hotkey; a control panel

will appear at the cursor and the user can quickly change settings without moving

the cursor. This feature is a very important factor for drawing efficiency and user

friendliness. To help users keep up to date with chats in Pixiv Chat while the

interface is hidden, a separate temporary chat popup will appear when a message

is received. This popup will appear for a short period of time before disappearing.

This is extremely helpful for people who just want to “listen” to a conversation. If

the user wants to reply, a send message option can be popped up with the press of

a hotkey, without the need to show the whole control interface. The use of space

19

and hotkeys makes Pixiv Chat very user friendly and efficient to work with.

The main control interface can be hidden.

Chat messages can still feed through as little pop-ups.

20

Control interface pops up where the cursor is from a press of a hotkey.

Large canvas size

Pixiv Chat have one of the largest canvas sizes of all collaborative drawing

applications. This allows more people to participate and also makes people more

willing participate because of the extra space.

Free Spectate

Pixiv Chat does need registered account to draw, but users can spectate on any

public rooms without registering. This is a convenient feature for people who just

to want to watch. This feature also introduces the application to interested new-

comers without the trouble of signing up.

5.1.2 Notable drawbacks of Pixiv Chat

The project artist feel that Pixiv Chat has provided all the most important features

required to draw collaboratively. Most other collaborative applications have more

tools, for example: shape tools, stamps...etc. But those additional tools do not

contribute much to the core experience of drawing. One minor issue with Pixiv

Chat is that the colour selection tool does not provide accurate colour selection,

21

there are no options for numerically entering a pricise colour. This can be a issue

as some artists have very specific colour preferences and in Pixiv Chat can only

estimate. With all the great features provided by Pixiv Chat, the most desirable

addition would be Undo. Mistakes and accidents always happen. If a stroke went

through the wrong section on the same layer, the only way to fix it is to re-paint

over the mistake. The social impact of these mistakes can be magnified if the user

drew over another user‟s artwork. The lack of Undo also causes people to be less

willing to participate. This is because people are too used to commercial drawing

software that all has Undo functions, so the drawing style and mind set change can

be too great. With any public social platform, there is a risk of negative social

behaviours. Even though many online collaborative drawing application use a log

in system like Pixiv Chat, there will still be people that intentionally ruin other

people‟s drawings. Hours of work can easily be destroyed by one person

intentionally drawing over another person‟s work.

22

An recorded example of someone who joined, then intentionally cleared the

project artist‟s session.

5.2 DoodleToo (WDF, 2010)

A simple Flash collaborative drawing application. It is one of the few where

membership is not needed to participate. The public board never closes, but will

only send a fixed number of previous actions back to new connecting users. This

means most of time everyone is seeing different things because everyone connects

at different times. All drawn lines will slowly fade out over a period of time,

which means users cannot really draw anything complicated or detailed. The

experience DoodleToo provides is a very limited set of tools and colours. Like

many casual collaborative drawing applications DoodleToo has a stamp tool for

common solid shapes. DoodleToo rooms have an interesting dynamic compare to

other drawing applications. Because no large or complicated drawings can be

done, people communicate and draw at a very fast pace. Interaction between users

can vary between everyone minding their own business and everyone quickly

drawing and responding to someone else‟s drawing or chat. However, often

everyone is just doodling in their own space with no interaction with other. The

experience DoodleToo provides is very casual and social centric, it focuses on

23

quick visual communication rather than collaborative drawing. This type of

experience is not what this project aims to achieve, but it demonstrates other type

of experience available through online collaborative drawing.

Example image of DoodleToo application.

5.3 iScribble (iScribble, 2014)

A very popular Flash based collaborative drawing application. There are over

500,000 registered users. The community is highly active, and there are events

with prizes at times. iScribble is one of the most popular collaborative drawing

application for English language users.

24

Example image of iScribble application.

5.3.1 Notable features of iScribble

Different Account Types

iScribble has 3 levels of accounts: Guest, Restricted, and Regular. New registered

users are under Restricted and not allowed to run certain functions like publishing

to their Gallery. To get to the full functionality, a user must participate enough in

drawings, have a Regular user to publish their work, and get enough positive

votes on that published work.

3 Layers

iScribble, at time of this project, is the only online collaborative drawing

application that provides three layers to its users. This feature really boost the type

of drawing people can create. The layers can be individually hidden and shown.

To prevent users from accidentally drawing on the wrong layer, a coloured border

around the canvas is drawn to remind the layer the user is on. This is considered a

nice feature by artists. The layer system is overall better than Pixiv Chat‟s.

Submitted work gallery and playback

25

iScribble has a public Gallery where collaborations can be submitted. When a

drawing is viewed, a playback of the drawing process to the room can be

requested. There are buttons for controlling play speed, but no streaming controls.

While Pixiv Chat does have records of rooms, they are more linked to individual

profiles and there is no one gallery where all collaborations are shown.

5.3.2 Notable drawbacks in iScribble

The canvas size is still quite small at 700 x 376 pixels. This heavily limits the

number of users that can participate. The most common number of collaborators

in a room is 3, which is really low. One interesting point about iScribble‟s tools

are that there is no transparency colour control on the colour selection tool.

However there is a “Blur” tool that puts blurs pixels together, which helps create

some effects that are often created with a transparency brushes. Even though any

drawing can be created without transparency control, it still limits the draw style

and behaviour of an artist. While iScribble does provide some functions better

than Pixiv Chat, the overall experience is still lacking due to the small canvas,

basic hotkeys, and basic interface support.

5.4 Sky Cow’s /f/lockdraw (Skycow, 2011)

/f/lockdraw is a a modified version of Flockdraw (Flockdraw, 2009). Flockdraw is

a Flash based application that provided fairly primitive tools and functions.

Spacecow.us managed to create an alternate improved version called /f/lockdraw.

/f/lockdraw also does not need an account to participate. There is a good set of

tools and options for creating complex digital drawings. All tools are given a

hotkey. Colour and other tool settings can only be interacted with at the bottom of

the canvas. There are additional hotkeys available but the information is only

available through a “Help” wiki website.

26

Example of image of /f/lockdraw application.

5.4.1 Notable features of /f/lockdraw

Tools

There are total of 9 tools available in /f/lockdraw; 3 type of brushes/pens that use

different algorithms to stroke, eraser, colour sampler, paint bucket, line tool, and

text tool. The project artists have mixed opinions on the importance of the

available tools. The paint bucket, line tool and text tool are all very situational

tools. The fear of destroying a drawing with the paint bucket is too high for most

artists to really want to use. The line tool and text tool are situational. There are

rooms where the line tool is used to segment out user draw spaces. There are

rooms where the text tool is used like a banner for informing new users of custom

rules or information. Those two tools have been useful for keeping social order at

times.

Tool settings

/f/lockdraw provides good number of options for its main brush tool. Two notable

options are a brush blurring value and 11 different brush “modes”. The blurring

value controls the size of the blur to solid edge in the brush stroke. Most online

27

collaborative drawing applications do not have this much freedom of option. Pixiv

only has one set “soft” brush edge that can be used. The various “Modes” give the

brush colouring method great flexibility and can achieve many complicated

effects that most applications cannot. To accommodate the great freedom of

setting brushes, /f/lockdraw provides a “save tool setting” feature where brush

colour and settings can be remembered in 10 available slots. Users can use

hotkeys to bind and call back from each slot.

Canvas zoom and panning

/f/lock draw is one of the few applications that has free zoom and panning.

However the canvas being locked at 800x480 pixel is quite small which reduces

the value of this feature.

Moderator Features

To maintain order in a room, a moderator system is used. The room moderator can

ban users which will kick them out of the room and send them to a “ban room”

where all banned users go. There are no moderators in that room. However

because an account is not needed to join rooms, people can still restart the

application and give themselves a unbanned user name to rejoin. One additional

feature to prevent bad behaviour is that moderators can undo the whole board

history. The board undo can go back a number of steps and there is a preview to

show what the board was like at that time. This is a great feature to reverse any

intentional or unintentional damage to the drawing.

28

Board undo function in /f/lockdraw.

User re-synchronizing

To help with potential de-synchronization, /f/lockdraw allows a function where

the user can “get board” of another user in the room. This function could act as a

safety check to make sure the user is synchronized properly with at least one user.

Room Playback

/f/lockdraw‟s method of providing room playback is providing a time-lapse video

every few days. This mpeg video is manually created and uploaded by the site

administrator, so the period and duration varies. /f/lockdraw‟s method of

providing room playback is crude and not very plausible.

5.4.2 Notable drawbacks of /f/lockdraw

Even though /f/lockdraw does provide a good set of brush settings and tools, it

still suffers many issues. The size of canvas is locked at 800x480 pixels, which

can be small for people to draw and share in. The lack of layers really limits the

painting approach and devalues the good set of settings for brushes. Lastly, the

user interface is really basic and slow to use. Even though there are hotkeys the

29

position is widely placed; tools uses F1 to F8, panning requires using the control

key and other setting requires using the arrow keys; all these keys are too widely

placed for one hand and not suitable as hotkeys. Many frequent interactions like

changing colour or chatting cannot be controlled with hotkeys, so the cursor needs

to constantly travel to the side of the window. This can cause operations to be

slow and can negatively affect the overall experience.

5.5 Rate My Drawings’ Draw Chat (Mixart New Media

LLC, 2010)

Rate My Drawings started out as a website that aimed to provide a powerful

single-user online drawing application. It has built many implementations of its

drawing application using Flash, Java and recently HTML5. The implementations

of their single-user drawing application contain many complex functions similar

to those provided in stand-alone commercial drawing software, especially in the

later implementations using Java and HTML5. There are over 60,000 registered

users at the time of this project. In 2010 Rate My Drawings modified its Flash

implementation to support online collaboration in a system called Draw Chat.

Draw Chat provides most of tools that existed in original Flash version but also

removed some features. Rate My Drawings is account based, like Pixiv. Any

drawings or works submitted are linked to users‟ profiles. Overall, Draw Chat is

primitive and left much to be desired compared to its own single-user applications

or other collaborative drawing applications.

30

Rate my drawings Flash implementation

5.5.1 Notable features in Draw Chat

Account system

Account based participation exists in some online collaborative drawings, but

Rate My Drawings have a rule whereby users cannot use Draw Chat until they

have been a member of the website for a period of time and have submitted work

with the single-user application. The reason for this rule is to ensure that users

have invested enough on their account and have been more involved in the

community, so they are less likely to behave badly in Draw Chat. This is likely a

good solution to keep bad people out of the application, but also created a strong

barrier of entry for new users.

5.5.2 Notable drawbacks of Draw Chat

The canvas is only 640x460 pixels in size which is small. There is an “ink limit”

that users cannot exceed. No more actions can be made if the limit is hit. Even

though the limit may be high for some drawings, it is still a limitation that may

affect the interaction and the final product. The layers function in the original

31

Flash implementation was removed. The Undo and Redo function has been

modified to only a “Room Undo” function. This function similar to /f/lockdraws

board undo function, where all actions are remembered in to one history list; if

undo is requested, the board steps back in that list regardless of which client made

the action. There are no hotkeys supported. The overall experience is not better

than most popular Flash based applications.

5.6 Niko’s Paint Chat (Niko, 2009)

Built with Java, Niko‟s Paint Chat, at the time of this project, is probably the most

drawing feature full online collaborative drawing application. The service requires

an account to participate and has accumulated over 29,000 registered accounts

since launch.

Example image of Niko‟s Paint Chat application under “standard” interface option.

5.6.1 Notable features in Paint Chat

Two Toolbar Interface Options

32

There are two types of interface the user can choose from before joining a room.

The Standard will collapse all tools and functions into one toolbar leaving only

the colour mask and layers control. The Professional toolbar will provide one

toolbar that pops all other tools panels individually.

Niko‟s Paint Chat under “advance” interface option.

Tools

Niko‟s Paint Chat has the greatest number of drawing tools available, compared to

all other applications surveyed. There are 6 types of brushes, 4 types of erasers,

dodge tool, burn tool, shapes, text tool, and many more. Brush tools have feely

adjustable radius size and some “modes” similar to /f/lockdraw‟s brush settings.

Paint Chat has one of the most complex brushes in comparison to other

collaborative drawing applications.

Large Canvas

Paint Chat have the largest canvas compared to all studied applications; 3400 x

1800 pixels in size. There are different level of zoom the user can choose. The

user can initiate pan by dragging on one of the scroll bars at the edges.

Layers

33

The application provides two layers. One unique function provided is that layers

have a transparency slider control. This allows the users to do overlay guides that

other applications do not support.

Example of layer alpha adjustment function in Paint Chat.

Floating Panel User Interface

All interface elements except for the chat system uses floating panel controls.

Users can freely position panels around to suit their own preferences.

Copy Tool

Brushes, shapes, or text tools are not unusual tools in other collaborative drawing

34

applications. But one tool that stood out in Paint Chat is the Copy Tool. This tool

allows the user to drag a rectangle selection over a section of the drawing, then as

soon as the user starts dragging the selected section, the area is copied and can be

pasted elsewhere in the canvas. This can be a very useful tool in a collaborative

environment. The idea and interaction for this tool have great potential, and

should be considered in all collaborative drawing applications.

Example use of the Copy tool in Paint Chat; an area was defined, when the mouse

drags it, the area is copied and pasted to where the mouse was released.

35

5.6.2 Notable Drawbacks of Paint Chat

While Niko‟s Paint Chat has the most functions and tools, it still has major issues

that prevent it from over taking any other popular applications. Although it has

over 29,000 registered users, room activity at the time of this project was very low

compared to other more popular applications. The major issue with the drawing

experience is the lack of hotkeys. All functions need to be controlled through the

cursor. This really makes the interaction slow and tedious at times. Another major

issue with Paint Chat is the lack of social oriented services such as a “Publish”

function, video playback, or galleries. The lack of these functions gives a new

visitor very little information about the applications and services; this makes it

hard to gather interest in new visitors. The requirement of installing and activating

a Java plug-in is another barrier of entry to the application. Another notable issue

in Niko‟s Paint Chat is that the community heavily discourages spectators. The

main reason is because their service is bandwidth capped. A user can be reported

and banned for joining a room and not participating in drawing. Discouraging

spectators can make the community less welcoming because everyone is forced to

participate. This could be the reason why, at time of research, room activity and

community activity was low.

5.7 Queeky’s Multi Draw (Queeky, 2010)

Queeky is a website created in 2005, with the aim of providing a powerful single-

user drawing tool that records the process of the artwork. All drawings submitted

contains a video playback of how the artwork was composed. Queeky‟s single

user paint tool is made in flash and, similar to Rate My Drawings, the tool

provides many complex functions otherwise found on commercial drawing

applications. In 2010, Queeky released a HTML5 collaborative drawing

application. The application provides three tools: pen, brush, and eraser. The

brush tool provides a good set of options such as different brush bitmaps and

brush angle. However not all tools work in every browser; for example, only the

Pen tool work in Firefox. The application has free zoom but no drag panning

36

function; users need to work with scroll bars on the sides. The application does

have record and playback functionality similar to other popular collaborative

drawing applications. One notable feature Multi Draw provides is that it has a

global Undo and Redo of 20 steps like Draw Chat. Another notable feature of

Multi Draw is that users can choose custom canvas sizes at room creation. The

maximum size is 1000x1000 pixels. However the lack of hotkeys make the view

hard to manipulate and interaction slow. The drawing experience and features

provided by Multi Draw are still lacking. Years have passed since the release of

Multi Draw and no improvement or fixes have been made.

Example image of Queeky‟s Multi Draw application.

5.8 CoSketch (CoSketch, 2014)

An HTML5 SVG based collaborative application. CoSketch displays the power of

HTML5 SVG as a collaborative drawing application. CoSketch provides infinite

steps of Undo. But this is also its major shortcoming. Once when enough strokes

have been made, a rendering performance problem starts to show. The problem of

performance becomes even more apparent when the eraser tool is used. CoSketch

have additional features like uploading images, under-layering an instance of

37

Google Maps, and providing a set of simple stamps. It is clear that CoSketch is

not targeted towards a drawing audience because it is not suitable for handling

large number of lines. CoSketch however would make a good communication or

interface prototyping tool.

Example image of CoSketch application.

5.8.1 Notable features of CoSketch

Stamp System

Aside from providing some simple stamps, it allows users to upload images to use

as stamps. This feature could be really useful in many situations. Group drawing

practice often needs a reference to draw from, and the stamp feature could be used

to show the referenced image. Collaborations may not want to start from a blank

canvas, the stamp feature can allow users to upload an image as a guide or start.

Stamping pictures may also be a conveniently quick and expressive way to

communicate than text or drawing. This feature can also be combined with the

idea from Niko‟s Paint Chat Crop tool where all cropped sections are remembered

as stamps and can be reused. This feature can be a good addition to the drawing

experience but is not really considered as a core drawing experience, so will only

be considered as an addition in this project if there is time.

38

Example use of the Stamp system in CoSketch; users could upload images as

stamps and modify them on the canvas.

5.9 Chrome Experiments (Google, 2014)

On announcement and support of HTML5 in Google Chrome, a website dedicated

to showing off creative use of HTML5 with Google Chrome was launched. Over

time many developer submitted experiments related to using HTML5 Canvas,

drawing, and Websocket. Below are some notable experiments that relate to this

project.

5.9.1 Multiuser Sketchpad (Mr.doob, 2010)

Released in 2010, this experiment demonstrated the capability of collaborative

sketching with Canvas, Websocket, and Node.js. This application only provides a

pen tool, a large canvas, pan function, and chat system. At the time of this project,

the server for the application is down and only drawings from the client side are

39

available.

Multiuser Sketchpad.

5.9.2 Paint With Me (Jones, 2011)

Released in 2011, this experiment is a collaborative drawing application with

more features than Multiuser Sketchpad. Unfortunately at the time of this

project(2013), the experiment is no longer available. The service has been

completely taken down. From the screenshot image, the application contains

various brush settings, colour, and a chat system. No further information

regarding this application could be found.

40

Paint With Me.

41

Chapter 6: Requirements

After studying the existing online collaborative drawing applications, and with

suggestions and understanding from the project artists. An idea of features and

tools as a goal for this project were developed. The project artists identified the

key components this project needed to rival the most popular applications. The

researcher than decided what is most likely to be achievable in the given project

time.

6.1 No Plug-ins Required

Most popular online collaborative drawing applications are made in Flash. As

previously mentioned, this projects wants to reduce software dependency to only a

modern web browser. There should be no issue of updating software or

installation requirements to use this application.

6.2 Online Collaborative Drawing

This is the target experience of the project. All online collaborative drawing

applications studied have the following features. Users need to be able to interact

with each other in real-time in a shared drawing environment. As basic functions,

users need to be able draw and view each other‟s lines as they are drawing. A

basic chat system needs to be implemented, using Pixiv Chat as a good example.

The chat system should be able to hide and only show pop-ups of new messages.

Users must be able to connect and disconnect at any point in time and get the

latest update of the state of the “room” when connected. Synchronization between

users should be maintained while users are still connected to the room.

6.3 Undo and Redo

The biggest missing component on many web-based collaborative drawing

application is the function of Undo and Redo. The project artist says that many

people do not participate because of lack of undo. Fully Committing to every

action is too high of pressure. Achieving Undo will be will a top focus of this

42

project. Many drawing applications that have Undo function have limited steps of

undo, this project may require such action when the Undo structure is confirmed.

The project artists said limiting steps of undo is not likely a concern. The project

artists claims that Undo is most often used as a quick fix to either most recent or

accidental mistakes, if large number of Undo is required to fix one large mistake,

people might as well cover or erase it over with another tool.

6.4 Layers

Although not many collaborative drawing application have layers, all the most

popular ones do. This clearly shows a preference of layers feature to digital artists.

This project will try to aim to achieve a structure capable of allowing layers.

Although due to the time of the project, complex layer controls such as merge

layers, colour adjustments, moving of layers, layer effects etc will most likely not

be attempted. The project artist suggests that layers should just be global and three

is enough. If layers could be freely created, people would just have layers

dedicated to each user; this would remove the purpose of communication and

collaboration. Setting the layers to global and at a set number will help reduce

resource cost and should benefit the overall experience.

6.5 Basic Tools and Colour selection

Many online collaborative tools have a wide range of tools available. The project

artists say that it is pointless to have lots of tools if the main interaction and

options are weak. The lack of Undo just makes many tool even more dangerous

and unappealing because they can easily destroy a painting for others. Much

inspired from Pixiv Chat: a basic pen, eraser and colour sampler is enough as a

starting point. Some necessary tool options are pen size, eraser size, and colour

selection with transparency control. This project needs to focus on improving the

main interactive experience of collaborative drawing rather than making more

tools that people will just rarely use.

The project artists stresses that having a good colour selection interface and in a

wheel format is crucial to the experience. No web-based collaborative drawing

43

applications has a good colour wheel for their colour selection. The project artists

a colour wheel makes a great difference in colour picking efficiency and user

friendliness. The colour wheel exists in some stand-alone drawing software but

still not as common. PhotoShop, one of the most popular and powerful drawing

tool, only has the colour wheel tool as a custom plug-in created by other users.

The project artist suggest the best example is a colour wheel like Clip Studio

(CELSYS Inc, 2014), a Japanese drawing tool. However the colour wheel is still

limited to picking general colours, another option to enter an exact colour is still

needed. So as requirements two colour controls function will be required. A

colour wheel for quick efficient colour picking and a colour selection interface for

precise colour picking.

Example of Clip Studio colour wheel; Colour Hue ring with Saturation and

Luminosity square.

6.6 Large canvas, Mini-map, and View transformation

One of the biggest reason for Pixiv Chat‟s success is the large canvas space it

provides. The project artists says that social interaction in an online collaborative

drawing environment is similar to interacting with people in real life; if users‟

relationships are not close, their draw-space should not overlap; it‟s like the idea

of giving each other their personal space. Claiming drawing space is often a

44

struggle for new users; most artists wants be humble to allow everyone to draw,

yet, they still need a space to draw. This is why having a large canvas space in the

application is important; because it allows and encourages more people to

participate. Often as a solution to draw-space claiming, draw-spaces will be

allocated out by the room owner or the first user when the session is started. This

interaction can often be seen in popular applications like iScribble and Pixiv Chat.

Example of draw space grid in Pixiv Chat.

With a larger canvas, the need for functions to control view and keep awareness

become more important. Pixiv Chat dealt with this matter by providing a

thumbnail as a canvas overview, along with a pan function and zoom function.

This project aims to achieve similar functions with HTML5 Canvas‟s Transform

functions but with greater freedom than most existing applications, such as free

zoom. As an additional challenge, canvas rotation will be supported, this helps

make canvas interaction similar to stand-alone drawing software and to drawing in

real life.

6.7 Hotkeys

The project artist says one of the most important factors in making an application

45

is how efficient one can make its use. This is also why the project artist feels that

Pixiv Chat did well and became popular. The project artist suggests focus adding

and improving hotkey experience on three major areas: view transformation,

colour wheel, and main tools.

6.7.1 Hotkeys for view transformation

One hotkey for each view transformation; pan, rotate, zoom. The interaction

required for the transformations are also just as important. Pan should work like

all common drawing applications where when the hotkey is held down, the user

can drag and pan the view with mouse. Rotate is more complicated: when the

rotate key is held, if the user “grabs” and drags the screen, the view should rotate

about the centre of the view depending on the amount of angle grabbed. It is

important to rotate about the centre of the view. If the rotation is about the centre

of the drawing canvas object, the further the point of rotation is to the view, the

more likely the user will be dis-oriented as to where the view was focused and

need to “find” where the user was originally looking. Zooming of view should

work by, when hotkey is held, if the mouse drags away from the centre of the

view, the view should zoom in and vice-versa. The metaphor for this interaction is

like expanding the size of the paper by dragging it out. The idea of these

suggested view interactions came from Clip Studio, drawing software that the

project artists uses. The project artists feel they are the most suitable interaction

for a drawing application.

6.7.2 Hotkey for a colour wheel

One hotkey for the colour wheel. This is basically the same as Pixiv Chat, where

as long as the hotkey is held, the controls will float in front where the mouse was

when the hotkey was pressed and allow colour to be changed. Once the hotkey is

released the colour wheel will hide away.

46

6.7.3 Hotkey for major tools and setting

A hotkey assigned to each tool is common in most tool applications, but the

project artist suggests a slight variation for interaction that was also available in

Clip Studio. When the hotkey of a tool is held down and not released, the

application will select and use that tool. However, once the hotkey is released, the

application will switch back to the previous tool that was used. The purpose of

this interaction is that the user can quickly use another tool such as the eraser, by

just holding down one key and releasing it. Comparing to traditional hotkey

conventions, where the user would be required to hit the hotkey of the eraser, use

it, then hit the hotkey of the brush before continuing painting. This interaction

would require twice the number of key presses and also learning and hitting two

separate keys. The project artists feel that Clip Studio‟s method of “quick hotkey”

really improves the experience and efficiency of the interaction. This type of

interaction is best applied to tools that are frequently used such as the Eraser tool

and the Sampler tool. Aside from switching tools, the project artists pointed out

that Clip Studio also has hotkeys for common tool settings such as brush size.

When holding the hotkey for brush size, the radius can be dragged out by the

mouse to make it bigger or smaller. This is another convenient interaction that

reduces the number of times the mouse needs to move away from the point of

work focus to the side menus.

6.8 Prevention of negative behaviour

With any social environment, the potential for people with unacceptable social

behaviour will always exist. Although previously stated that social oriented

functions will be a secondary scope of this project, problem of someone

intentionally scribbling over other people‟s work is too important to ignore. The

account based log-in requirement from popular sites like Pixiv Chat and iScribble

potentially reduces the risk of such behaviour. However as shown previously,

people can still create dummy accounts specifically for the purpose of bad

behaviour. Online video games and chat rooms often provide functions to restrain

a user from performing certain tasks or remove and ban them from the room.

These functions can be evoked from the room owner/administrator or

democratically voted from other users. For this project, the most important task to

47

prevent a bad user from performing irreversible task. Time is an important factor,

because there is no point in removing a user if the damage is already done, so an

administrative right system is preferred over voting systems. A quick “lock down”

function is proposed. The effect is to disable everyone from interacting with the

drawing but still allowing chat. This function basically suggest a structure that

supports enabling and disabling of individual user interactions with the canvas. In

conjunction with the undo system, the administrator should be able to lock down

the room and then undo any users actions. This feature should reduce the risk of

events like the a session the project artist experienced where a random user

connected then intentionally scribbled over everyone‟s work.

6.9 History playback and publish structure

Many online collaborative drawing sites have a “publish” option to show off work.

But few have the feature to watch playback of the drawing process. This feature is

really helpful for education, artist authenticity, and skill credibility. The project

artists say it is difficult to focus on other users when the they are drawing

something as well, so having a playback option gives them more opportunity to

learn from another people. No online collaborative drawing applications record

chat logs, most likely because of privacy risk in chat content. The project artists

say that not everyone will find history playback important, some people are just

there for a casual experience. Because features like publishing work and history

playback are more about providing additional service on top of the drawing

application, it is considered more social-oriented and falls outside the scope for

this project. However these features should be considered if the project is to be

taken to the mass public. Hence, even though these features are not within the

scope of this project, the overall design of the structure should have the capability

for these features to be implemented in the future. This means the history of all

strokes and actions will need to be recorded in the server and the application will

need to have an option to view the drawing canvas as a complete single image.

48

Chapter 7: Related Academic Researches

There is much related academic research that helped formulate decisions for the

implementation of this project.

In 2012, GAMBIT (Sangiogi, Beuvens, & Vanderdonckt, 2012) proposed a

solution to multi-platform collaborative sketching with HTML5. The focus of the

project was to create a tool to improve collaborative user interface design through

sketching. Because of this focus, the overall drawing experience is only limited to

use of a pen/pencil tool with limited colour and few set stroke sizes. One notable

structure in GAMBIT is that communication is established using AJAX but as

previously shown AJAX is not ideal for collaborative drawing. The project built

functions that focuses more on helping user interface design. One notable function

is “Wall Sharing”, where users can call back previously drawn pictures and

organize them around in a shared space. However functions like these are more

about quickly getting communication across and do not benefit the actual drawing

experience. In collaborative drawings, getting ideas/communications across only

account for the start, the majority of the process is still drawing.

GAMBIT.

49

GAMBIT‟s Wall Sharing feature.

Providing Undo/Redo facilities in a collaborative graphic editing environment has

been attempted before; however all attempts assume running as stand-alone

software. In 2001 the GRACE system (Chen & Sun, 2001) achieved undo using

by keeping multiple versions or re-creating versions of objects. The underlying

structure of GRACE is object(vector) based. The idea of hiding and re-showing of

objects is a suitable consideration for this project. However keeping multiple

versions of every single object would not be a suitable solution; this is because in

drawing, all drawn objects will become irrelevant over time as more actions are

made and remembering various versions of every object will use up unnecessary

resources. This project will need to run inside a browser which limits performance

and resources greatly. Re-rendering will also be a high consideration inside the

browser, so eventually a rasterization phase will most likely be required to reduce

the cost of managing a vector based structure.

In 2002, a bitmap(raster) based (Wang, Bu, & Chen, 2002) collaborative undo

solution was proposed. Wang‟s system can also achieve selective undo. The undo

function is achieved by calculating inverse functions of the action to be undone

through calculating Boolean relationships with other actions. However Wang‟s

50

method of undo is not suitable with this project because the proposed system

assumed that the colours of each pixel in the bitmap could only be determined by

one action as the “overlapped” result. Drawing software will have transparency in

colours, this means the colour of a pixel could be determined by combinations of

multiple actions. Under Wang‟s proposed undo system with colour transparency,

only the pixels influenced by the undoing action that are also not overlapped by

another action will be removed; any other pixels modified by the undo action but

also overlapped by another action will remain unchanged. This would make the

final bitmap inaccurate to the expected undo effect because the presence of the

“undone” action is not completely removed. With understanding of both object

based and bitmap based undo systems, the most suitable approach is a hybrid

system.

In 2012, a solution to collaborative WebGL visualisation through Websockets

(Marion & Jomier, 2012) was proposed. This project focused on displaying a

synchronized 3D scene over a Node.js Websocket server. The paper demonstrates

achieving network synchronization with Websocket using a client-server model.

The paper also gave an example benchmark test between Websocket and AJAX

on their system; AJAX had an average latency of 332.4ms and Websocket had an

average latency of 149.5ms; thus Websocket provided a higher synchronization

rate for their system. Given the knowledge provided by this paper, it is suggested

that Node.js and Websocket are suitable technologies for a real-time collaborative

environment.

51

Chapter 8: Implementing Core Structure and

Design

With the knowledge gained from studying existing applications and related

academic researches, solutions to the requirements were attempted. This chapter

describes the process of achieving the core networking and drawing structure of

the prototype. The basic synchronization for collaborative drawing was first

achieved, follow by attempt to support undo through a vector-raster hybrid system.

Once undo was achieved, further modifications and implementations were added

to support other tools. The networking was then improved by implementing

prediction and having a server authoritative structure.

8.1 Basic drawing synchronization

In order to allow real-time interaction between multiple applications over a

computer network, a real-time distributed computing architecture is required for

achieving synchronization. One common use of this type of synchronisation is in

multiplayer computer games; all game clients first initialise the same game

“scene”, then each client passes messages in real-time between each other to

synchronize events and work towards displaying a common state in the game. As

a result, this gives the illusion to players of co-existing in the same realm

experiencing the same situation. This method of synchronization can be achieve in

both peer-to-peer network model or client-server network model. For this project,

the same method of synchronization is implemented to achieve a collaborative

experience. This project uses a client-server model for synchronisation. There are

many advantages of the client-server over peer-to-peer network that makes it more

suitable for this project. One advantage is that all clients are free to connect and

disconnect with little affect on other clients. In peer-to-peer, if the main host

disconnects, other clients will be dropped or need to go through a re-hosting

52

process. Another advantage of client-server models is that clients only need to

communicate with the server, there is only one channel of communication. In

peer-to-peer, every client will need to have a communication channel to other

clients, this can drastically increase the number of message transfers and

bottleneck a network if the number of connected clients becomes too great. One of

the most important reason for choosing client-server model is because the order of

global events are important. If one stroke happens before another, the result can be

completely different; a peer-to-peer does not always guarantee the sequence of

events because messages can be sent and receive at different times depending on

individual client‟s network; a client-server model can guarantee sequence of

events because clients all listen from the same source. Client-server model can

guarantee synchronization, order of events, and reduce message transfer overall

compare to a peer-to-peer model. The biggest disadvantage of client-server model

is that because everything goes through the server, the amount of traffic and

processing have much higher demand. This means the cost of server maintenance

and traffic can be high and expensive. One method to reduce the server resource is

by making the server dedicated, this means the server provide synchronization

without running as a client itself. Dedicated servers have their own method of

organizing and keeping track of states compare to client-side software. The server

for this project is chosen to be dedicated. This means there is no server side

HTML5 execution and the server has its own separate data organisation. The

server mainly acts as message authenticator and message relay-er to clients.

Example of Client-Server model.

53

As an important requirement, users need to be able to connect or disconnect at any

point in time and still have the latest drawing state. This posed an requirement for

the server to record and the client to perform past events in order to synchronize

with connected clients. As an initial approach, same structure as used in some

existing web-based collaborative drawing applications was used. All the

communication packets were saved inside the server memory and then resent, in

order, to new connecting clients. This implementation poses a problem of server

memory overload if a session lasts for a long period of time. Many existing

applications overcome this potential issue by giving each session a life-time

duration or a button to clear its memory. After discussion with artists, it was

concluded that resetting sessions due to memory limitation is not an important

concern; this is because, according to their observations of these applications, it is

not common for a person to participate for more than 24 hours. Thus this project

ca achieve real-time synchronized interaction using a distributed computing

structure with functionality that allows new clients to connect, synchronize or re-

synchronize during a live session. For messaging exchange method, encoded

strings are sent between the client Javascript front-end and the Node.js server.

Security for the content of these messages is not currently important as

interactions aims to be open between connected clients and are not intended to

contain personal or sensitive information.

A drawing contains sequence of lines. Each line can be described as an action.

Each action may require multiple events to define, update, and finalise. An action

of a line contains the start point, end point, and points of the line segments in

between. To synchronize an action of drawing a line across the network, three

main events/messages are required to be sent through network: start drawing,

update drawing, and end drawing. “Start Drawing” message notifies the starting

co-ordinates of the line. “Update Drawing” message are the line segments points.

To reduce the size of the data sent, “off-sets” from the previous point is used

rather than the whole co-ordinate. When the user end the line, an “End Line”

message is sent, which finalises the action.

54

Example of basic drawing through network synchronization of one stroke.

8.2 Undo and Redo

One of the most difficult challenge in this project was achieving Undo and Redo

functionality. The idea of Undo and Redo requires the core structure of the

application to keep a list of action history for each client and a re-rendering

behaviour to display the correct state after on Undo/Redo on each client. To keep

track of which client an action belongs to, start action messages need to contain a

ID. Therefore a “New Client” message with its ID will be sent from the server at

start of new connections to tell all other connected clients to initialise a new action

55

history. Clients will also need to know their own ID, so the server will also send a

“Your ID” message to the new client. Due to the collaborative nature of the

project, a global list of action history is kept to ensure the correct action order of

all actions. This global action history is then used as the source for each render

call. The implementation of a render call is basically clearing the current Canvas

and re-executing all actions to present the current state.

Example of this projects action history structure.

Frequent re-execution of actions can pose a serious performance problem

especially due to Javascript and browser execution nature of a web application. If

ten users each performs one action per second, the system would need to re-

execute ten times per second all current and previous actions for previous users.

What makes this performance problem even more apparent, as a standard among

collaborative drawing applications, each client needs to see other clients‟ action

live. This means the execution calls can be as frequent as per-packet(e.g. line

segment) sent over network. The size of information inside one action is also an

important factor; the larger the number of points in a line, the more process and

56

rendering power will be used per execution. It is found that generally the biggest

performance sinks are the pixel manipulation functions such as executing a stroke.

Obviously enough, it is more efficient to draw one image of multiple strokes than

to execute those strokes individually. If strokes could be all stored in a raster

format, this would reduce the stroke execution calls to only once per action.

However if all strokes are stored in an individual Canvases/rasters, each user will,

either need to have multiple Canvas already dedicated to themselves, or the

system will constantly creating new Canvas elements per stroke. Both above

options are not suitable because, if large Canvases are to be supported in this

project, each pre-constructed Canvases will need be the same size which will risk

great amount of memory used to even support one user. The second method of

creating Canvases only when a stroke is created will risk heavily affecting the

performance of the browser because constant add and removal of html elements

are not common and browsers may not be optimized to handle it. Also the same

memory issue still exist if large area strokes exist. Another notable risk in storing

strokes in raster is that if the stroke must be modified, the stroke will need to be

re-executed either way. Storing actions in vector format provides the most

flexibility but run the most risk of hitting a performance barrier. For web

applications, trying achieve a balanced use of memory and processing is important.

Considering that multiple Canvases will be used later for view Transformation,

mini-map and other functions, having additional Canvases bind to individual users

can easily risk memory overload. It is decided that storing actions in vector format

and keeping Canvas elements shared is more suitable for this project.

With the above knowledge, a triple-buffer, vector-raster hybrid structure is

implemented to help control performance. The final displayed image is composed

from three separate HTML5 Canvas elements referred to in this project as Buffers.

The three Buffers reduces the rate of draw calls and executing actions to only

when necessary which is how it benefits overall performance. The first Buffer

renders most frequently, it render depends on a timer function. The first Buffer is

time-base to keep the system perform consistently without worrying the surges of

action data packets. The tick time of the timer function is roughly 24 frames per

second, a common rate for animations. This frame count could be modified later

to suit performance need. The first Buffer only contains only the current action of

57

all users. This Buffer allows users to see other users‟ action as they perform live

because of the render rate. The second buffer is where all previously made actions

are rendered. The second Buffer renders at end of every action. When the action

on the first Buffer finishes, it gets pushed down to the second Buffer. The second

Buffer is what allows undo and redo of actions. When an Undo is requested, the

latest visible action will be flagged as hidden, and will be skipped on the next

rendering call. Redo will un-flag the latest hidden action. When a new action has

been pushed down from the first Buffer, and there are previously hidden actions,

all the those hidden actions will be deleted. These behaviours matches common

Undo/Redo functions. The last of the three Buffers is the raster Buffer; it appends

old actions on to the Canvas Element and does not get re-drawn like the previous

two Buffers. The third Buffer acts like most web-based drawings all actions are

executed upon the Canvas once and cannot be modified anymore. The third Buffer

avoid the performance penalty needed to render old actions but with the sacrifice

of only allowing limited steps of undo. When it comes to final displaying of it all,

an additional “View Canvas” is used as base, then the three Buffers Canvases are

rendered on it in reverse order. The View Canvas is what the user will see. The

size of the second Buffer is fairly flexible as it is dependent on the number of

users and performance of browser, however it is recommended to have a fixed

size so the experience for all users is more unified. Further experiments with

larger group of users are required to find a reasonable size. The second Buffer

action history size is set to five at the time of this project, hence five steps of

Undo is supported.

58

Buffer system; allows limited steps of Undo and Redo.

8.3 Structure Modifications

An issue discussed with project artists was the relationship between the size and

performance cost of each action. Each line segment sent will increase the number

of stroke segments to be drawn. Because this variable can fluctuate greatly, this

means one large action can affect the performance on all clients due to the

increased number of line segments to draw. We concluded it is safest to put a

“limit” on the size of actions to prevent one user ruining the experience for all. So

a limit on the number of points in a line has been put in. Also, the project artist

said most people do not often draw long lines; many artist draw/sketch by using

many short lines, so this limit will not be a concern for most. The line segment

cap at time of project is set to 200 points, the project artists said the current cap

does not affect their drawing. The line segments(points) were originally sent upon

the DOM Mouse Move Event inside the browser, however it was later found that

due to different input hardware performance, the capped length of a drawn line

59

can drastically differ. So a mouse with higher dpi and polling rate will trigger

more segments per second than a mouse with lower spec. This can cause the

experience for users to be inconsistent. To fix this issue, a setInterval() function

was used to make the point sampling rate time based. This gives the line segment

response a more consistent behaviour that was less hardware dependent. As an

additional feature by making use of the multiple Buffers; if an Undo is requested

while an action is still in progress, that current action will be “Cancelled” or

removed from the first buffer instead. This allows an additional step of Undo as

long as the action still exists inside the first buffer. The feature can be further

expanded upon in the future like an action that can be previewed to all clients such

as cropping or stamping images. With the above modifications and limitations,

stable networked drawing of lines was achieved.

8.4 Eraser and Layers

Another important issue addressed was trying to provide an eraser tool that works

with the three-Buffer structure and supports multiple layers. If the project only

had one layer, the eraser effect can be imitated by using a stroke effect that paints

with the background colour. However this project aims to achieve multiple layers,

so the eraser needs to properly remove the pixels rather than covering pixels up.

Removing pixels can be achieved using the “globalCompositionMode=

„destination-out‟” setting provided by Canvas which removes all intersecting

pixels between Canvas and the next executed stroke. The main issue with the

three-Buffer structure is that each Canvas inside the Buffers do not interact;

actions naturally do not cross interact until they are inside the same Buffer. This

caused a problem in the visual representation because the eraser effect will only

be visible in the Buffer the action is in. The action history, undo behaviour, and

the final rasterization is all still accurate because it will all eventually be applied

onto one Canvas, but the separated rendering of other Buffers‟ Canvas is not. To

solve this issue, all actions that visually affect multiple Buffers like the erase

action will need to be additionally previewed and applied on a separate temporary

Canvas before being draw on the actual View Canvas. These actions are referred

60

as “Cross Actions”, where they will re-apply on other Buffers‟ Canvas as preview.

Therefore when eraser action is made on the first Buffer, the rendering order is as

follows: The third Buffer‟s Canvas will render on at the bottom of a temporary

Canvas, but before second Buffer‟s Canvas is rendered on, all Cross Actions from

the first and second Buffer will be “applied” on the temporary Canvas, then as the

second Buffer‟s Canvas is applied, the Cross Actions in the first Buffer is applied

following by the first Buffer‟s Canvas. This makes the rendering of eraser actions

accurate but with some decrease in performance.

61

Below is an example showing the structure of rendering for one layer and

including previewing Cross Actions.

62

63

As a requirement to allow complex digital drawings, a layer system is

implemented. With the eraser tool working and displaying correctly a layer

system can be implemented by multiplying the Canvases inside each Buffer and

render the corresponding Canvases in correct order. An additional temporary

Canvas is used to allow the mini-map and Show Image function to render in one

drawImage() Call. As suggested, all three supported layers are global; users

cannot create or remove layers but layers can be moved globally and hide or view

locally. Each actions now have an additional “layer” information attached. The

three Buffers now, instead of containing one hidden HTML Canvas per Buffer,

contains three Canvases per Buffer. Each Canvas represents each layer and

actions in the buffer are drawn to their corresponding layers when render function

is called. Buffer can render actions of only one layer, or all layers depending on

the update need. This structure means, when rendering to the View Canvas, the

bottom-most layer Canvases in the three Buffers are rendered first then repeat

upwards. By having this structure to achieve layers, the Undo behaviour is

unchanged.

64

The complete overall Canvas structure to allow undo, redo and layers.

8.5 Server authoritative structure

In many networked applications, server security and packet authenticity are

important factors. Users always have potential to spoof bad information to attack

the server. The server needs to protect itself from bad information that may break

the system. If the server‟s data structure breaks or crashes, all clients will be

65

affected. This is an issue in multiplayer games; where usually an authoritative

client-server architecture is used to validate messages and determine on order of

events. A drawing application has a similar need to validate and precisely define

the order of events. In order to achieve this structure, all messages going through

the server will need to be validated before being relayed out to all other clients to

display. This also means all clients need to “request” permission of any action

from the server before they are executed. In effect, this behaviour results in an

obvious network latency that will be discussed later.

To achieve a server authoritative structure in this project, the server will validate

all incoming requests and can modify the result freely before notifying all clients

to execute. The server will check situations like; user can not request a “start

drawing” action while a line is still being drawn, have the 200 line segments been

used up, has the user run out of Undo steps…etc. Depending on the action, if its

validation fails, the action could be disregarded or modified before relaying out; a

“drawing” request can be modified to an “end drawing” request because the user

has used too many points in a line. In this project, some users can also request

actions to be performed on behalf of another client. This means the server will

also need to check whether the requested action and the originating user have the

right to do so. As an experimental feature, the server can also request and save

Canvas images from a client and can send images to clients to replace their Buffer

Canvas element images. This feature has been tried to see if possible to replace or

reduce the sending of history logs on a new connection. This improvement can

reduce the memory load on the server, reduce initialising time on clients, and

66

remove the need to reset packet history on the server. However due to the

instability in synchronization and time for development this feature was put on

hold and not completed in this project.

8.6 Client Prediction

Any networked applications need to address the issue of network latency. Any

information requires time to be packaged, sent, received, and processed before

reaching to an actual display. Even local area networks will have a delay in

communication. Among existing web-based collaborative drawing applications,

there are still visual delays between mouse movement and a stroke appearing on

screen. This delay is caused by the roundtrip time between client‟s request of

action and server‟s feedback. Because such exchange time will always exist, client

feedback are always latency dependent. As in online games, delays of response

can negatively affect a user‟s experience with the application. In order to hide the

latency, online games may use techniques often referred as “extrapolation” and

“interpolation”. Extrapolation is the idea of predicting and displaying results as

the server request is made; this will make feedback to actions appear instant but in

result desynchronize from the server state and all other clients. During this time,

the client will continue to work on its own while the server receives and sends a

reply of the true state. Interpolation is the idea where, once the server feedback is

received, the application then gradually re-synchronizes its state to reflect the

feedback while minimizing visual difference of two states. Example: If the local

position of a moving object is different from the server‟s replied position, the

object will try to interpolate towards the server‟s given position while trying to

continue its original movement. Sometimes interpolation is not always preferable

to an instant re-synchronization. Sometimes further extrapolation is made after

receiving the feedback to account for the latency from server to client. For this

project, a similar idea and structure is implemented to hide latency. Extrapolation

is achieved by creating an additional local “preview client”. The preview client

will execute all requested actions as if there are no server. It has a reserved ID of 0,

which the server will never use as an ID and all clients will use it as their own

67

preview client. The preview client is set to “ignore” on the third Buffer. This

means that the preview client will never rasterize when its actions get to the third

Buffer and the third Buffer will always be synchronized with the true state. The

real local client is then set to “ignore” rendering on the first and second Buffer.

This makes the preview client the main visual display for the local client‟s own

actions. As a result, the user will see fast feedback from any action including

modifying existing actions such as Undo. The technique of interpolation was not

suitable for this project mainly because the process that would be required to

access, check, and re-write on every incoming packet would be too complex and

might impact performance. The rate of incoming messages is high but the

processing ability of the system is limited. Instead of interpolated synchronization,

a instant overwritten synchronization is used. This is achieved by using an action

ID tag attached to every action. The action ID is generated by the local client and

sent with the “Start Action” request to the server. The server remembers this ID

and then replies with it to acknowledge or modify an action. So when an “end

action” for the local client message is received, the application will over-write or

change any information that is different from the preview client‟s action to update

to the server‟s response. The actions in the preview client will only be removed

when the actual host actions in the local client are rasterized to the third layer.

Structure to hide latency in the Buffer system.

68

8.7 Final Technical Structure

With all of above implementations combined, the core collaborative drawing

mechanism is completed. It has the ability to undo, redo, hide latency, is server

authoritative, all while maintaining synchronization.

After all the core mechanics combined the server to client initialisation handshake

is as follows: When a new client fully loads the web page, an automatic request to

make a Websocket connection with the server is made. When successful, the

server will first send all the existing history stored and will continue sending any

other messages currently being exchanged with other clients after it to maintain

synchronization. If this client is the first client, the user will also be set as the

administrator and a “Set Admin” message will also be broadcast. Once all the

history is sent, the server will broadcast to all clients an “initialise new user”

message along with its unique ID number. This message allows all the clients to

create space and structure for the new client, ready to interact. The server will also

send a direct “You ID” message to the new client. Note this message is direct and

is not saved in the server history because its only sent to one client. “You ID”

message tells the new client to bind the reserved preview client to this ID,

allowing the prediction to work as intended.

The system synchronization process for a general action on the client side is as

follows: The user initiates a “Start Action” request containing the user ID, action

ID, tool, layer and any additional info like cursor position, pen size…etc.

Messages in this project are sent using strings, so actions are identified using the

starting character e.g. “s,3,2…” means to start drawing a line, for user 3, and

action ID is 2. The size of the message could be further compressed in the future

with encoded strings but the current implementation is easier to debug. The user

ID is to help identify which client the action is to be applied on. The action ID is a

local initiated ID from the originating client that help with synchronization later

when server replies. As soon as the request is made, the preview client will

assume the server validation will pass and execute the “Start Action” as the

preview client. If the server validation passes, the message is relayed out to all

69

clients which is when the action is executed on other clients. As previously

explained, the host client‟s true actions will be hidden by the preview client until

the third Buffer. If the action has an “in progress” phase like drawing a line, offset

line segments are also requested at a set intervals. These requests are referred as

“Action Updates”, which notify alteration of the currently executing action. Once

the user ends the action or the server decides to end the action, an “End Action”

message is requested or received. If the user initiates the “End Action”, the

preview client will assume the validation passes and push the action down to the

second Buffer. When a client receives any “End Action” message from the server

and the client ID is its own, the Buffer will try to find the preview client‟s action

inside the first Buffer or the second Buffer using the action ID as reference. Once

this action is found, the data of the action ended by the server will overwrite the

preview client‟s action‟s data. This means when it comes to displaying the

preview client‟s action, it will be completely synchronized with the server action.

If the preview action is found inside the first Buffer, this means that the preview

client‟s action is still in progress and the server has force ended the action. The

completed server reply action is then pushed down from the first Buffer to the

second like all actions. When a client‟s action is about to be rasterized to the third

Buffer and the preview client is bind to the same ID, the preview client action is

then removed.

70

Chapter 9: Client Side and User Interface

The front-end development focused on incremental development from project

artists‟ feedback. Almost every function addressing towards the requirements

would have comments stated from project artists testing it. The process started

with getting the transformed canvas displaying correctly, then implemented a

suitable general interface system. Implementations addressing the requirements

are then attempted.

9.1 Overall structure

As previously stated, the client front-end interaction and the client back-end is

written in Javascript that runs through web browsers. The overall structure of the

front-end is similar to a computer game; the visual updates are time based,

independent of backend or the server. Line segments can appear at a rate of

hundreds per second, it is important to use time based rendering so the visuals can

perform at a consistent rate no matter if the back-end or server is under heavy

stress. As previously mentioned, the only Canvas element that the user sees is

composed from multiple hidden Canvas elements. This Canvas element is referred

as the View Canvas. It acts like a camera view to the main drawing. Because the

main drawing canvas is separated, this allows graphical user interface or

additional aids to be drawn on without affecting the real Canvas that users draw

on. By making use of Canvas element‟s transformation functions, the real Canvas

can be Rotated, Translated, and Scaled. This gives the effect of rotating, panning

and zooming on the view. Note the View Canvas is local, so transformations and

drawn graphical aids do not affect other clients. The HTML5 Canvas

transformation functions works like a “setting” on the Canvas, once the values are

defined, everything drawn on will have the transformation applied. Even the co-

ordinate system does not change. There are individual functions of Rotate,

Translate, and Scale; or all transformations can be set with one

71

SetTransformations function. Because this project needs to achieve transformation

based on the view centre which requires transforming from various origins.

Individual transformation functions are therefore used in preference to

SetTransformation. The View Canvas transformation for this project is as follows:

Translate the draw space to half of the view area width and height, this will allow

the rotation function to rotate the draw space about the centre of the view. Rotate

to the user set angle value. Scale the draw space by the user set zoom value.

Translate the draw space to the user set X and Y value. Finally the real Final

Display Canvas is drawn on. The newly set transformations will take effect and

display it correspondingly. As explained previously, the Final Display Canvas is

composed from the multiple Canvases inside each Buffer. Once the Final Display

Canvas is drawn, the transformations are reset to default so all other GUI elements

can be drawn without being transformed.

One GUI requirement of this project is to see which user is currently performing

which action. This is achieved by drawing name tags on the View Canvas above

each users‟ current Action.

72

A freely transformable canvas; able to Pan, Rotate, and Zoom.

User‟s name tag is shown when they are performing a action.

The project artist observed that the appearance of the application will heavily

affect the attitudes of its users; the more casual or child-like the application seems,

the less likely people will be to put serious effort in using it. For overall user

interface design, a floating panel system was implemented. Floating controls are a

common approach to many tool applications. Controls are separated from the

main interactive space and can be repositioned freely. The biggest strength of this

system is that users can create a personalized work environment for themselves by

showing, hiding and positioning controls of their own choice. This approach to the

interface gives the application a more professional sense and freedom in

73

interaction style. The panels system are created by manipulating HTML Div

elements and their CSS specification through Javascript. Panels can be shown,

hidden, pinned, and freely positioned around inside the browser view. A menu bar

is placed along the top of the web page to control the display state of each panel.

When each menu button is clicked, their respective panel will show or hide

depending on the display state. If a panel is set to show, it will show below its

menu button, or display at the pinned position. The interface and menus are

intentionally setup with controls categorised similar to a stand-alone applications

drop-down menus such as File, Edit, View…etc.

Panels allows custom interface layout.

74

9.2 Mini-map and Layers UI

As a requirement to match popular online drawing applications, a mini-map is

implemented. The mini-map is basically achieved by drawing another copy of the

Final Display Canvas on a smaller Canvas element. As an expected behaviour of

mini-maps, the size of the mini-map should be consistent regardless of size or

ratio of the drawing paper. This means the Final Display Canvas will need to be

stretch to the edges of the mini-map while maintaining its own display aspect ratio.

To help accommodate all ratios, the mini-map size is set to a square of 200px. To

achieve the correct display a series of calculations are needed. The system needs

to first determine which of the height or the width of the drawing canvas is the

greater and dominant. This dominant value will be used to determine a scale for

the Final Display Canvas inside the mini-map‟s Canvas element. The dominant

axis will be stretch to completely fill one dimension of the mini-map and the other

axis will be padded and centred inside the mini-map. A rectangular visual guide of

the current view is added on top of the mini-map. The rectangle is achieved by

reversing all transformations and incorporated scale ratios. The mini-map is

interactive; if a user clicks or drags mouse on a position inside the mini-map, the

pan position will be moved to that position immediately.

75

Mini-map for overview, camera state and interaction.

The view controls can be expanded or hidden.

Below the mini-map is the layers control. It displays the current layer the user is

on and also provides the controls available for the layer. The layers can be locally

hidden or shown in order for the user to get visual information. Because the three

layers are a given set, each is given a name and colour as a identifier. The layer

order can be globally repositioned and renamed by the administrator. The reason

for allowing renaming of layers is to allow the administrator to indicate to other

user the use of the layer. The main reason for allowing the layers to be reordered

76

is to allow layers to be reused. Artists often draw drafts or sketches on the bottom-

most layer, but once a cleaner version is drawn at a higher layer, the draft layer is

useless; movable layers will allow the draft layer to be cleared and further re-used

for further drawing work. Following the same method used by iScribble, a thin

coloured border is placed around the View Canvas to prevent people accidently

drawing on the wrong layer. This colour is also applied on other GUI displays

such as the pen radius or transformation visual aids that will be discussed later.

The coloured border is visible regardless of the pan, orientation or zoom of the

drawing canvas. Merging of layers can be achieved under the project‟s system

structure, but it will have a great effect on all user‟s actions and the back-end

structure. After discussion with the project artist, we concluded that the risk and

time required to implement a suitable layer merge function was too great and

therefore considered to be outside the scope of this project.

77

Users can locally hide and show layers

9.3 Tools

Many common tools and functions have been implemented to provide better

experience in the application. All these tools have their own interface, built using

Javascript, available HTML elements, and CSS. At the time of development , the

HTML5 “Range” input element was not available in Firefox, only in Google

Chrome and some other web browsers. In order to keep the experience consistent,

custom sliders were built using Javascript. All adjustable options have a slider

with matching text input. This gives the user multiple options for adjustments;

being precise with text input or rough with sliders.

Furthermore the “Color” input element was only available in Chrome and Opera;

other browsers‟ versions were still in beta or not yet released. This element

prompts the user to pick a colour from a browser dependent colour selection

dialogue. However these dialogue do not have alpha control and the user cannot

interact with other parts of the browser until the dialogue is closed. Therefore this

element was not used and the project resorted to custom made colour selection

tools to insure consistent experience across browsers.

78

The “File” panel contains major canvas or project controls. Users can clear and

restart a new drawing with custom height and width. This “New Canvas” function

also clears the history cache on the server. There is also a “Show Image” function

that displays the current drawing in actual size, in a different window. This

function is for when the user wants save the canvas. The Show Image function

converts the Final Display Canvas to a PNG file using the Canvas‟s

getImageData() function, then puts that image into a newly opened window.

New Canvas function: Creating a new canvas with a new background colour.

79

Show Image function: Showing canvas as an image in actual size in a window.

The Pen tool is implemented using the HTML5 Canvas‟s inherit functions. To

make the line smoother, the sample points are connected using the

quadraticCurveTo() function instead of basic lineTo() function. All sample points

in an action are stored in an array. When the action is called to redraw or execute,

the sample points are looped through with the quadratiCurve() function using the

previous two points as start and control point for the curve. The lineTo() function

is used when rendering less than three points. The eraser tool, before the layers

system was added, was achieved by using a stroke with the same colour as the

originally-set background. Later the eraser effect was achieved by setting the

80

Canvas‟s globalCompositionOperation to “destination-out” with same code as Pen.

“destination-out” makes all pixels within the stroke area “empty”, which allows

other layers to show through. Pen and eraser tool have their own size control

slider that will appear when the tool is selected.

Examples of the Pen tool.

81

Examples of the Eraser tool.

The colour selection tool is implemented as a separate panel. Colours can be

adjusted using ARGB channel sliders, text input or HEX input. As previously

stated in the requirements, there are 2 facilities for choosing colours; a colour

selections tool for precise colours and a colour wheel launched by a hotkey for

quick colour selection. As an addition, colour slots are implemented for

remembering colours and acting as a live preview while changing colours. The

colour preview slots are created using small canvases to show accurate colours.

Four colour slots are made available in the current version. A colour sampler tool

is also implemented for convenience. As recommended by the artists, the sampler

82

will sample the exact pixel colour seen on the canvas, which might be the result of

layering colours with alpha. The project artists states that the value of colour slots

varies between artists. This is due to habits gained from using other commercial

drawing applications; even though modern commercial drawing applications have

two colour slots, some artist have built a habit purely using colour selection and

colour sampling when they need to reuse colours. Another alternative way to keep

track of used colours is by drawing patches of colours in a spare space on the

canvas. This way is very common in collaborative environments said the project

artists; it is beneficial because colours are seen by all users and can be sampled

from easily. Saving frequently used colours in slots may be important to some

artists, but not for the project artists.

83

Colour selection panel: for precise colour selection.

9.4 Hotkeys

One of the crucial issue with a tool-based application is efficiency of interaction.

Hotkeys for tools and functions help increase speed of interaction and make the

overall experience friendlier. With help and suggestion from artists, pan, rotate,

and zoom all have hotkeys and graphical information displays when their hotkey

is held. As previously mentioned in the requirements, most interaction behaviours

were influenced from Clip Studio as suggested by the project artists. Pan will

show the centre of the view, this helps positioning any other view transformations.

Rotate will show the origin and angle rotated in degrees. Zoom will show the

transformation centre and zoom level. Pan can be done by holding the hotkey and

dragging with the cursor. Zoom by holding the hotkey and cursor dragging out or

in. Rotation can be achieved by holding the hotkey and mouse dragging in circular

motion. Double-tap functions are also implemented to quickly reset each of the

transformations. Whenever any hotkey is active, a small piece of text is drawn in

the view canvas indicating a change of state. This helps notify the user that a

change of interaction is in progress.

Achieving these interaction required many additional calculations to match the

84

transformation function input of the HTML5 Canvas element. All transformation

inputs are based on data from HTML DOM mouseMove events. The Pan effect is

achieved by first calculating the vector of the movement using the current mouse

position and subtracting the previous mouse position. Because the co-ordinate

space in the Canvas is also transformed by any transformation functions, the

global mouse movement vector needs to be rotated to the local space inside the

Canvas element. Also the scale of the pan movement is dependent on the scale of

the Canvas; the larger the Canvas and view, the smaller the scale of the movement

in local space and vice versa. To achieve this task, a formula for rotating 2D

vectors about the origin is used.

Rotate 2D vector about (0,0) formula:

X‟ = x*Cos(θ) – y*Sin(θ)

Y‟ = x*Sin(θ) + y*Cos(θ)

Where x and y is the original vector; θ is the rotation; X‟ and Y‟ is the result

vector.

Formula used for paning the Canvas element in project:

X‟ = (dX/z)*Cos(r) – (dY/z)*Sin(r)

Y‟ = (dX/z)*Sin(r) + (dY/z)*Cos(r)

Where dX and dY is the 2D global vector derived from the difference between

current and previous cursor position; z is the current scale of the Canvas; r is the

current rotation of the Canvas in radians; X‟ and Y‟ is the result vector.

The resultant vector is then added onto the Position variable of the Canvas. The

Position variable is the translated position used when rendering the transformed

Canvas. As a result, the user can pan the view freely in one-to-one pixel ratio

because canvas scale and rotation are accounted for.

85

When the Pan hotkey is held down, „pan‟ is displayed on the mouse cursor to give

feedback on the key held.

Panning view to the right.

Canvas rotation interaction is achieved by making the previous and current mouse

input points into vectors coming from the centre of the view. The angle between

the two vectors is calculated. Lastly, a direction of rotation is calculated using the

cross product of the vectors. The direction can be determined by calculating the

third component of the cross product between the vector, from view centre to

previous input point, and vector, from previous input point to the current input

86

point.

Cross product formula for vector U(u1,u2,u3) and V(v1,v2,v3) under axis of i, j, k:

U = u1i + u2j + u3k

V = v1i + v2j + v3k

U x V = (u2*v3 – u3*v2)i + (u3*v1 – u1*v3)j + (u1*v2 – u2*v1)k

From the above formula, if the third component of both vector U and V is taken as

0 because we only have 2D mouse input, the formula can be simplified to:

U x V = (u1*v2 – u2*v1)k

As shown, the third component is naturally left as the result of the cross product.

The cross product helps determine the direction in which the canvas needs to

rotate. If the cross product of those two vector is greater than 0, canvas should

rotate clockwise and if less than zero, anticlockwise.

Rotate hotkey is held; display „rotate‟, current canvas angle and line towards

centre of rotation to the user.

87

Rotating view by dragging the cursor down.

Canvas scaling is implemented using trigonometry and the dot product. The

direction vector of the change in mouse position determines the direction of

scaling. The distance between prior and current mouse points determines the

magnitude of the change. If the dot product between the vector towards centre of

view and the vector of mouse movement is greater than 0, then the canvas scales

down, otherwise up. The magnitude of the scaling is determined by the magnitude

of the mouse movement vector through using Pythagoras‟ theorem and then

dividing by the current scale.

88

Zoom key is held down, display „zoom‟ and the zoom level on top of cursor.

Zooming out by dragging towards the centre of the view.

The project artist states that having a clean, unobstructed work view is more

important than features and functions that are rarely used. Following examples

from existing software, all tools, except for the default pen, are given a held-down

hotkey function. This means while the hotkey is held down, a tool is selected and

used. However once the hotkey is released, the tool that was been previously

selected(most likely the pen tool because it is default) will be re-selected

automatically. This gives the user the ability to quickly use different tools without

the need to explicitly switch back. An example might be to quickly switch

between the pen and sampler tool by holding the hotkey for the sampler, sample,

then when the hotkey was released, the pen is automatically re-selected, ready to

draw straightaway.

Aside from selecting tools, common adjustments to the tools itself is as frequently

used. The adjustments to pen size is given a hotkey interaction similar to Clip

Studio‟s. When its hotkey is held, the size of the current tool is shown with the

cursor at the edge of its radius. The user can then drag in or out adjusting the size

of the tool freely until the hotkey is released. The eraser size can also be adjusted

the same way with that same hotkey while the eraser is selected or while the

89

eraser hotkey is also held.

By default, the pen radius is displayed around the cursor to give a preview of the

current stroke size.

When hotkey for size change is held, the pen radius visual will move to top left

with the edge of the circle touching the cursor. The current size is also displayed.

The user can click and drag in or out to a desired radius.

90

Once the hotkey is released, the new size is set and drawing can resume.

As specified in the requirements, a custom colour wheel bind to a hotkey was

implemented as an alternative quick method of colour selection. The goal of the

colour wheel is to speed up colour selection by allowing the user to make less

actions. The colour wheel would need a maximum of three actions to select a

colour; selecting colour hue, saturation with luminosity, and alpha. Traditional

sliders would need a maximum of four actions; adjusting each of the three colour

component channels and alpha. Therefore a colour wheel is a faster method for

selecting colours, but with sacrifice of selecting precise values. The implemented

colour wheel has an colour preview area at the top right and a vertical slider for

alpha channel below that. When the colour wheel hotkey is held down, it will pop

up where the cursor is for interaction. This allows the user to change colours

without having to move the mouse too far. The floating colour wheel is created

using combination of HTML DIV elements, CSS, and Javascript. The colour

wheel, centre colour mask, and colour preview are just background images that

get their background colours modified through CSS. The vertical slider is a

modified version of the custom slider made for other panels. The colours are

calculated in Javascript rather than sampled from the image. This structure allows

freedom for modification if the colour wheel needs to be re-scaled in the future.

91

Custom floating colour wheel

As an experiment, a radial menu for the four colour slots was implemented. The

idea of a radial menu is that all selectable objects are placed evenly in a circular

format; when the user is trying to select an object, only the angle of motion of the

mouse from the centre of the circle is relevant to deciding what object is going to

be selected. This allows the user to quickly swing the mouse at a vague position

and still be able to make their selection. The major limitation of a radial menu is,

if too many selectable objects exist, the finer the margin of selection becomes, and

the closer it is to a normal menu in usage because exact position becomes more

important. This limitation however is not an issue with four options. One notable

92

property is that the radial menu is purely drawn in the View Canvas, it has the

potential to interact with the Canvas in the background if needed. This effect is

obvious when the line from the centre of the Radial Menu is drawn out towards

the cursor. Potential benefits from this type of GUI could be further explored in

the future. As previously mentioned colour slots might not be used as frequently

depending on the user‟s habit. Hopefully with colours slots being more accessible

with the radial menu, colour slots might increase in usage.

Floating radial menu for quickly choosing colour slots.

93

9.5 Social Functions

With any social interactive application, the ability to communicate with text is

required. A custom chat system was implemented. The chat system allows users

to see other users, communicate with text, change their name, and see any

important system events that happened. As a privacy measure, chat messages are

not recorded in the server history. Each user is given a unique colour connection,

so even if they have the same name, they can still be identified. This colour is also

consistent with the name tag that is displayed when they are performing actions on

the canvas. Following from example of Pixiv Chat, a “chat hint” system is

implemented. It allows the convenience of “listening in” in on conversations

without the need of having a full chat system interface displayed. The hints will

show up for ten seconds before disappearing or until it is showing the tenth oldest

message. If a hint is clicked, the chat panel will display at that position for the

user to interact with.

The chat system inside its own panel.

94

Chat panel view can be simplified to just the chat log.

95

Temporary message alert will appear in canvas without the need of keeping the

chat log open. These messages will disappear in 10 seconds or stack to maximum

of 10.

Temporary messages can be clicked to initiate chat.

As a requirement, functions to prevent negative social interactions are addressed.

As discussed previously, one of the biggest threats is one user with ill intent

erasing or ruining other users‟ drawing. As a solution, an administrator system

and a set of administrator-only actions has been implemented. The room

administrator is initially chosen to be the first user connecting to the room. The

96

administrator has the right to start a new drawing, hence wipe the history and

canvas clean. The administrator can disable and enable users from drawing on the

canvas. A “Lock All” button is also available to quickly disable all users from

interacting with the canvas. This button can be used as a “panic pause“ function

for everyone to stop and observe the situation. If a user is in the middle of

performing an action when the disable command is sent, the action will be

cancelled. While users drawing is disabled, they can still interact through the chat

system. The administrator also has the right to request Undo or Redo on every

users‟ actions. Undo and Redo from the administrator can still be requested to

server even if a user is disabled; this allows the administrator to pick and roll back

on any recent actions made. The administrative rights can also be passed on to

another user if the current administrator chooses to. Mass public user testing is

outside the scope of this project, so some of these functions or user interface may

require future modifications. The project artists claim that having these functions

available is already a step towards a better collaborative drawing experience.

Administrator panel, Admin right can be given away, Undo, Redo, Lock drawing.

97

Chapter 10: Final Testing Sessions and

Evaluations

Throughout the development process of implementing required features, small

testing sessions were held between the project artists and the researcher. These

sessions were used to test and evaluate the artists satisfaction with features

addressing each requirement. The small testing sessions were generally informal

and only used whichever project artist was free at the time. Once all requirements

were addressed and evaluated on individual basis, larger testing sessions were

held to evaluate the overall experience. These sessions involved both project

artists collaborating on a given drawing task. The task were either drawing a

reference photograph or drawing an agreed topics. Earlier sessions results were

mainly about fixing odd bugs and minor interface issues. Later sessions evaluated

major issues with the overall implementation of the application.

Below are some time lapse screen recordings of an early larger test session.

Collaboration task given: draw an image of a knight. Duration: 26 minutes.

98

99

Below is a time lapse screen recording of a larger test session. Collaboration task

given: Reference drawing from a given scenic photograph. Duration: 29 minutes.

Photograph that was referenced from.

Result drawing after the given time.

100

Below is some screen recordings of one of the project artist during the session.

One interesting observation was the project artist preferred not opening any panels.

101

Below is the same collaboration from another project artist‟s screen recordings.

This project artist had most frequently used panels all stacked to one side when

drawing.

102

All requirements set out were satisfied by the final prototype. The prototype is

built in HTML5 and Javascript, therefore no plug-ins required. A robust client-

server network model was implemented with good network synchronization, this

allowed multiple users to draw and chat in a shared environment. Users were able

to connect at any time, and get the latest drawing. Limited steps of undo and redo

was achieved from a hybrid vector-raster Buffer system. The prototype was able

to support three layers and Mini-map support. Users could enter custom canvas

sizes. All common tools listed were implemented. All hotkey interactions

specified where achieved with additional features like radial menu. A room-

administrative system was implemented to address negative social behaviours.

The prototype back-end structure supports history playback because all drawing

packets were saved in the server.

As a result, the project artists were pleased with the availability of many functions

thought to be impossible in a collaborative environment. The application provided

a much more comfortable environment compared to other systems because of

canvas transformations and undo functions. Multiple layers allowed them to

experiment and draft work without affecting the final drawing. The fear of

committing to all actions as in other collaborative drawing applications has been

greatly reduced. The simple hotkeys and interaction makes workflow more

efficient and the application more enjoyable to use. Everything is working,

103

smooth, and synchronized while under WAN connection.

Even though the project artists were impressed with the overall result, there are

still many important issues that will need to be addressed before any public

release or testing. Some issues discussed could be due to preferences of the

project artists and some are overall issues that could impact on all users.

As previously said, HTML5 is still at an early stage of implementation in all

browsers. Throughout project development, the system ran smoothly with no

visual delays in Mozilla Firefox(version: 28.0). Internet Explorer(version: 11.0)

also performs very well when tested. However Google Chrome(version: 33.0) and

Apple Safari(5.1) showed serious signs of consistent visual performance delay.

Opera(version: 20.0) also has similar consistent delay but to a lesser extent. These

delays are not dependent on the number of actions, they can be observed from the

start from doing canvas transformations. After some researching on various

forums most web developers are suggesting it is mainly due the way which

different browsers manage their resources. Different browsers have different

priorities given to different functions and hence resources regarding HTML5

Canvas elements can be capped or restricted. The most likely cause of delay on

some browsers are suggested to be storing and accessing large off-screen Canvas

elements; this structure cannot be avoided in this project due to the requirements

of layering and canvas transformation. Achieving more optimized code on the

client side Javascript might reduce some performance cost, but the serious visual

lag on Chrome and Safari suggests that major front-end structure changes or

browser specific modifications are needed. It can be theorised that Chrome, Safari,

and Opera have similar back-end management as do Firefox and Internet Explorer.

It is unfortunate that the project could not fully achieve browser independence for

these issues. Further experiments will be needed to pinpoint the causes and find

solutions.

One notable issue with the Buffer system is the order of actions. Although, as the

project artists expects, actions between different users do not often overlap, but

there are still times where they do. The Buffer system is layered such a way that

rasterized actions will always appear below undoable ones, and rasterization of

104

users‟ actions are invoked by themselves. Users who perform more actions faster

will rasterize actions more often. This means, even though order of events are

synchronized across the network, the action orders might not be fully preserved

because different users perform actions at different rate. This problem has caused

some confusion during testing sessions; where one artist drew a large stroke but

stop for a while, the other artist drew over the stroke with many small strokes

eventually hitting the rasterization phase; the small strokes ended up on the other

side of the large stroke unexpectedly. This is not a problem with network

synchronization, as stated, order of events are synchronized across network by the

server. The issue is in the design of the Buffer system currently not fully

preserving action order. To fully preserve the order of actions globally,

rasterization phase will need to be delayed until the older actions are rasterized

first. A solution could be that whenever an action is to rasterized, it will be

flagged. When the oldest action in the Buffer is ready to be rasterized, it will also

check upwards and rasterize any other flagged actions. This method will risk one

action blocking other actions, so a count-down timer should be used to force

rasterize any blocking actions. Therefore when an action is ready to be rasterized

and finds that the previous action is not, a timer of five seconds will start ticking

for the action to be either undone and removed or be rasterized. As a result, this

method will preserve all actions order but will force rasterize old actions slowly

removing the undo history of the slowest user. Worst case scenario is the other

artist is constantly performing five actions ahead of a slow user and forcing all the

slow user‟s actions to rasterize every five seconds. After a discussion with the

project artists, they said the timer would not be likely pose any problems because,

as mentioned, people most often use undo for very recent mistakes, even in the

worst case scenario, rarely does an artist take five seconds to realise they have

made a mistake. The validity of this method could not be tested given the time of

this project, but knowing the order of events are still synchronized, there should

be no problem implementing this method.

Below is a time lapse of screen recordings of another larger testing session. Task

given: Draw a picture of two people side by side. Duration 50 minutes.

105

The project artists line drafts at the second layer.

The right project artist painted a semi transparent white over his draft then started

putting clean line work on the top layer . The left project artist decided to not have

line work and started shading on the top layer.

The right project artist put his shading on the second layer; under the clean line art.

106

Both project artists spent the rest of the time shading the drawing.

Finished drawing

One issue discovered in testing was an issue with the overall interface approach.

The floating panels allow much freedom and flexibility to the user‟s workspace,

however they also takes time to setup at the beginning. A default start position for

every panel can be used to reduce the time of setting up for new users but familiar

users will need to close all unnecessary panels at the start, which is still a setup

time cost. Unless an account system or cookies are used to save preferences, this

setup time will always be there. Also the more panels exist, the more time it takes

to setup. This lead to the conclusion that some panels could be merged. A good

basis for merging seems to be grouping panels with similar frequency of use. For

example the File, Edit, and Admin panels obviously all have low frequency of use,

so they can all be built as one panel. Note, the reason that the Edit panel has low

frequency of use is because users will naturally use hotkeys only. The tools and

107

colour panel have similar frequency of use so can be merged together too. The

project artist suggested that if there are only few panels then it would be better to

stack them up on the sides of the window as collapsible menus. This is a similar

approach to how Pixiv Chat dealt with their main menu; the whole menu can

collapse and pop up.

The new proposed solution to the interface is to have collapsible menus on three

sides of the window. The bottom is the chat system and where the admin panel

will be merged to the side of the chat system. The right hand side is where the

most frequently used panels will be stacked; these are the mini-map, the colour

selection, and the tools panel. The right hand side will be where all the least used

panels are stacked; the File panel and the Edit panel. The least used area should

also have a complete list of hotkeys available. By having this setup, all areas can

be collapsed with one hotkey or individually with three. This reduces the amount

of setup time to maximum of pressing one key to collapse all menus compared to

the original of closing individual panels or moving each around. Of course like

many HCI scenarios, user interface could risk coming down to purely a matter of

preference rather than functionality. Because of this risk, this problem was not

addressed after being discovered from testing.

Proposed new interface layout/system drawn from the prototype by one of the

108

project artists.

A minor issue with the current system is the stroke function of the HTML5

Canvas element. The given stroke function has an anti-alias effect by default and

does not have an option to remove it. This became an issue to the artist because

additional colours and blurriness are added at all edges. The only way to achieve a

proper binary stroke is to create a custom brush engine. This could risk increasing

the performance cost of the system but will be a necessary action.

Below is a time lapse screen recording of another larger test session. Task given:

Draw a collaborative image of a cat/cats. Duration 20 minutes.

109

110

Chapter 11: Future Considerations

The result showed great potential for this application but it is still an early

prototype. There are other notable features that could not be implemented with the

given time. As mentioned in the user testing with project artists, there are issues

that will require further experiments before any public release. This project could

only focus on the drawing experience of online collaborative drawing, but as

demonstrated in existing applications, drawing is only part of the overall

experience. Collaborations rely heavily on social interaction and social services;

the more functions available to make certain social interactions more convenient,

the better the experience overall.

From the study of existing applications, many important social oriented features

that were identified will have to be considered before public release. One feature

that exists in many online collaborative drawing applications is the history

playback. As evaluated, the structure of this prototype allows implementation of

this feature being added. In order to implement this feature, a custom HTML5

Canvas-base player that can simulate instructions sent from the server will need to

be built. However this will only achieve one directional playback. To support

other time controls for playback, one proposal is to have the server save anchor

points and images of a room periodically. This would allow playbacks to jump to

different points of time by sending the raster image of that anchor and start

streaming all packets from that time. This feature could also be further used as a

roll-back function for rooms. As demonstrated in /f/lockdraw, the administrator

could request roll-backs to reverse any unwanted events on the canvas.

A lobby system or room display system will need to be considered. This means

the Node.js server needs to be modified to manage multiple rooms. This can be

achieved by remembering which clients are connected to which rooms, so

broadcasts are made to the right group of clients along with managing shared and

property variables for each room. Display and interaction of the lobby system will

111

be an important consideration. A robust system will need to show a considerable

amount of information; canvas preview, tags, rules, descriptions, users…etc.

Providing different room services will naturally be expected by users; public and

private rooms, allow spectators or spectator chat; administrative right controls or

moderations…etc. To achieve the best experience those functions would require a

lot of large public sample experiments and feedback.

If this service is to be taken to public mass, considerations of network

performance and maintenance will be an important issue. The current prototype

uses encoded strings separated by commas to communicate. This is because it is

easier to debug. However this means there are a lot of comma characters sent that

are only used as separators. As pointed out by Niko‟s Paint Chat community,

network bandwidth usage is a serious matter and is expensive with real-time

network applications. It is important to reduce the amount of data transferred to

keep the cost low. The prototype communication method can be easily improved

by defining a communication protocol and sending binary data. Many Instruction

Headers, ID Numbers, or Tool Indices can be represented in a byte and co-

ordinates can be represented in few more. This should cut the current prototype

bandwidth usage by half.

112

Chapter 12: Conclusion

HTML5 is still a young technology but with many great potentials and

possibilities. Its cross-platform and no-install nature will always make it

preferable to other solutions. This project took the opportunity provided by the

HTML5 Canvas element and Websocket to improve on online collaborative

drawing experience. With help from two experienced artists, problems were

accurately identified from an end-user perspective. The problems with current

web-based collaborative drawing applications mainly came down to the need to

bridge the core interaction gap with stand-alone drawing software. Functions like

undo, free canvas transformation, or hotkeys did not really exist. Many functions

could not previously be achieved due to various difficulties of networking

applications and browser limitations. But with new opportunities given by the

HTML5 Canvas element and Websockets, this project has strived to achieve these

functions. The biggest achievement in this project is accomplishing a robust

system that can achieve network synchronization and good performance with all

the implemented features. Limited steps of undo was achieved by creating a

vector-raster hybrid buffer system. The buffer system made use of advantages

from both vector and raster graphics system; objects could be modified and re-

drawn like in vector graphics, yet old objects would be rasterized to save

processing time. As a result the Buffer system could perform efficiently in a web-

browser, provide limited steps of undo, and could be expanded to support multiple

interactive drawing layers. Network latency was hidden by implementing network

prediction techniques with re-synchronization capabilities from a authoritative

server.

This research used an incremental development methodology with the two project

artists throughout the research; for both requirements and implementation,

discussion and evaluation sessions were held to validate them. This relationship

was particularly important in helping to make decisions where compromise

between functionality and performance was required. With suggestions and

113

examples given by the project artists, better hotkeys and interface interactions

were developed in contrast to the basic buttons that most collaborative drawing

applications provide. The prototype has floating panel interface, free canvas

transformation, basic tools, two colour selection tools, a chat system, and a room-

administrator system. The combination of all these features removed many of

usage barriers that may have prevented new artists from participating in online

drawing and provided new efficiency in the drawing experience.

While much was achieved on the technical aspects of the collaborative drawing

experience, some socially focused functions were only lightly addressed with the

given time of the project. As pointed out, HTML5 has not been fully finalised;

different web browsers still have different implementations for each feature. This

cause some performance issues in certain browsers; however there are browsers

that can run this prototype with smooth performance. Hopefully as HTML5

becomes more standardized and computers become more powerful, all browsers

will have a more satisfactory performance and result. Modifications and fixes will

be required before public release, but the project artists were very pleased with the

outcome of the project and hope to see it continue. The availability of functions

that were originally thought to be impossible because none had existed in previous

online collaborative drawing applications for a good past 4 years. The existence of

numerous examples in online collaborative drawing applications clearly shows a

demand and interest in this area of service. This project have demonstrated new

possibilities and showed how to advance in collaborative web applications more

than just small experiments. The knowledge and solutions provided hope to help

future web-based collaborative drawing applications and HTML5 interactive

networking applications to provide better functions and interactivity to the world.

The prototype is available at: http://drawtooltest-yh184.rhcloud.com/

This website will remain operational for at least one year. Use Firefox version 28

or above for best result.

http://drawtooltest-yh184.rhcloud.com/

114

References

AlRamahi, M., & Gramoll, K. (2004). Online Collaborative Drawing Board for

Real-time Student-Instructor Interaction and Lecture Creation. ASEE Conference.

Salt Lake City: The University of Oklahoma.

CELSYS Inc. (2014). CLIP STUDIO PAINT. Retrieved 04 09, 2014, from Clip

Studio: http://www.clipstudio.net/en/

Chen, D., & Sun, C. (2001). Undoing Any Operation in Collaborative Graphics

Editing. Brisbane, Australia: Griffith University.

CoSketch. (2014). cosketch. Retrieved 04 09, 2014, from cosketch:

http://cosketch.com/

Google. (2014). Chrome Experiments. Retrieved 04 09, 2014, from Chrome

Experiments: http://www.chromeexperiments.com/

Gutwin, C., Lippold, M., & Graham, T. C. (2011). Real-Time Groupware in the

Browser: Testing the Performance of Web-Based Networking. CSCW. Saskatoon

& Kingston: University of Saskatchewan & Queen's University.

iScribble. (2014). iScribble. Retrieved 04 09, 2014, from iScribble:

http://www.iscribble.net/

Jones, K. (2011). Chrome Experiments- "Paint With Me" by Kyle Jones. Retrieved

04 09, 2014, from Chrome Experiments:

http://www.chromeexperiments.com/detail/paint-with-me/?f=

Joynet. (2009). node.js. Retrieved 04 09, 2014, from node.js: http://nodejs.org/

Khronos Group. (2011). WebGL Specification. Retrieved 04 09, 2014, from

Khronos Group: https://www.khronos.org/registry/webgl/specs/1.0/

Marion, C., & Jomier, J. (2012). Real-time Collaborative Scientific WebGL

Visualization with WebSocket. Web3D 2012. Los Angeles, CA: Association for

Computing Machinery, Inc.

Mixart New Media LLC. (2010). Rate My Drawings - DrawChat. Retrieved 04 09,

2014, from Rate My Drawings: http://www.ratemydrawings.com/chat/

Moelker, R. R., & Wijbrandi, W. E. (2012). HTML5 data visualization

capabilities of mobile devices. SC@RUG (pp. 23-28). University of Groningen.

Mr.doob. (2010). Chrome Experiments- "Multiuser Sketchpad" by Mr.doob.

Retrieved 04 09, 2014, from

http://www.chromeexperiments.com/detail/multiuser-sketchpad/?f=

115

Niko. (2009). Nikos Paintchat. Retrieved 04 09, 2014, from Nikos Paintchat:

http://pchat.mine.nu/

Pixiv. (2009, 12 05). Pixiv Chat. Retrieved 04 09, 2014, from Pixiv Chat:

http://chat.pixiv.net/

Queeky. (2010). Queeky's MultiDraw HTML5. Retrieved 04 09, 2014, from

Queeky: http://www.queeky.com/multidraw

Red Hat Enterprise. (2013). Open Shift. Retrieved 04 09, 2014, from Open Shift:

https://www.openshift.com/

Sangiogi, U. B., Beuvens, F., & Vanderdonckt, J. (2012). User Interface Design

by Collaborative Sketching. In the Wild. Newcastle, UK: Louvain Interaction

Laboratory, Université catholique de Louvain.

Skycow. (2011). /f/lowckdraw. Retrieved 04 09, 2014, from /f/lowckdraw:

http://skycow.us/whiteboard.swf

W3C. (2008). HTML5. Retrieved 04 09, 2014, from W3C:

http://www.w3.org/TR/html5/

Wang, X., Bu, J., & Chen, C. (2002). Achieving Undo in Bitmap-based

Collaborative Graphics. CSCW. New Orleans, Louisiana, USA: Zhejiang

University, Hangzhou, Zhejiang, China.

WDF. (2010). DoodleToo. Retrieved 04 09, 2014, from DoodleToo:

http://www.doodletoo.com/

116

Appendix A

University of Waikato Ethics Consent Approval

