10 research outputs found

    An SVM Confidence-Based Approach to Medical Image Annotation

    Get PDF
    This paper presents the algorithms and results of the “idiap” team participation to the ImageCLEFmed annotation task in 2008. On the basis of our successful experience in 2007 we decided to integrate two different local structural and textural descriptors. Cues are com- bined through concatenation of feature vectors and through the Multi- Cue Kernel. The challenge this year was to annotate images coming mainly from classes with only few training examples. We tackled the problem on two fronts: (1) we introduced a further integration strategy using SVM as an opinion maker; (2) we enriched the poorly populated classes adding virtual examples. We submitted several runs considering different combinations of the proposed techniques. The run jointly using the feature concatenation, the confidence-based opinion fusion and the virtual examples ranked first among all submissions

    CLEF2008 Image Annotation Task: an SVM Confidence-Based Approach

    Get PDF
    This paper presents the algorithms and results of our participation to the medi- cal image annotation task of ImageCLEFmed 2008. Our previous experience in the same task in 2007 suggests that combining multiple cues with different SVM-based approaches is very effective in this domain. Moreover it points out that local features are the most discriminative cues for the problem at hand. On these basis we decided to integrate two different local structural and textural descriptors. Cues are combined through simple concatenation of the feature vectors and through the Multi-Cue Ker- nel. The trickiest part of the challenge this year was annotating images coming mainly from classes with only few examples in the training set. We tackled the problem on two fronts: (1) we introduced a further integration strategy using SVM as an opinion maker. It consists in combining the first two opinions on the basis of a technique to evaluate the confidence of the classifier’s decisions. This approach produces class labels with “don’t know” wildcards opportunely placed; (2) we enriched the poorly populated training classes adding virtual examples generated slightly modifying the original images. We submitted several runs considering different combination of the proposed techniques. Our team was called “idiap”. The run using jointly the low cue- integration technique, the confidence-based opinion fusion and the virtual examples, scored 74.92 ranking first among all submissions

    Analysis Of Cross-Layer Optimization Of Facial Recognition In Automated Video Surveillance

    Get PDF
    Interest in automated video surveillance systems has grown dramatically and with that so too has research on the topic. Recent approaches have begun addressing the issues of scalability and cost. One method aimed to utilize cross-layer information for adjusting bandwidth allocated to each video source. Work on this topic focused on using distortion and accuracy for face detection as an adjustment metric, utilizing older, less efficient codecs. The framework was shown to increase accuracy in face detection by interpreting dynamic network conditions in order to manage application rates and transmission opportunities for video sources with the added benefit of reducing overall network load and power consumption. In this thesis, we analyze the effectiveness of an accuracy-based cross-layer bandwidth allocation solution when used in conjunction with facial recognition tasks. In addition, we consider the effectiveness of the optimization when combined with H.264. We perform analysis of the Honda/UCSD face database to characterize the relationship between facial recognition accuracy and bitrate. Utilizing OPNET, we develop a realistic automated video surveillance system that includes a full video streaming and facial recognition implementation. We conduct extensive experimentation that examines the effectiveness of the framework to maximize facial recognition accuracy while utilizing the H.264 video codec. In addition, network load and power consumption characteristics are examined to observe what benefits may exist when using a codec that maintains video quality at lower bitrates more effectively than previously tested codecs. We propose two enhancements to the accuracy-based cross-layer bandwidth optimization solution. In the first enhancement we evaluate the effectiveness of placing a cap on bandwidth to reduce excessive bandwidth usage. The second enhancement explores the effectiveness of distributing computer vision tasks to smart cameras in order to reduce network load. The results show that cross-layer optimization of facial recognition is effective in reducing load and power consumption in automated video surveillance networks. Furthermore, the analysis shows that the solution is effective when using H.264. Additionally, the proposed enhancements demonstrate further reductions to network load and power consumption while also maintaining facial recognition accuracy across larger network sizes

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada

    A new classification approach based on geometrical model for human detection in images

    Get PDF
    In recent years, object detection and classification has gained more attention, thus, there are several human object detection algorithms being used to locate and recognize human objects in images. The research of image processing and analysing based on human shape is a hot topic due to its wide applicability in real applications. In this research, we present a new shape-based classification approach to categorise the detected object as human or non-human in images. The classification in this approach is based on applying a geometrical model which contains a set of parameters related to the object’s upper portion. Based on the result of these geometric parameters, our approach can simply classify the detected object as human or non-human. In general, the classification process of this new approach is based on generating a geometrical model by observing unique geometrical relations between the upper portion shape points (neck, head, shoulders) of humans, this observation is based on analysis of the change in the histogram of the x values coordinates for human upper portion shape. To present the changing of X coordinate values we have used histograms with mathematical smoothing functions to avoid small angles, as the result we observed four parameters for human objects to be used in building the classifier, by applying the four parameters of the geometrical model and based on the four parameters results, our classification approach can classify the human object from another object. The proposed approach has been tested and compared with some of the machine learning approaches such as Artificial Neural Networks (ANN), Support Vector Machine (SVM) Model, and a famous type of decision tree called Random Forest, by using 358 different images for several objects obtained from INRIA dataset (set of human and non-human as an object in digital images). From the comparison and testing result between the proposed approach and the machine learning approaches in term of accuracy performance, we indicate that the proposed approach achieved the highest accuracy rate (93.85%), with the lowest miss detection rate (11.245%) and false discovery rate (9.34%). The result achieved from the testing and comparison shows the efficiency of this presented approach

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore