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Chapter 1  Introduction 

In recent times, interest in video surveillance systems has grown dramatically and with that so too 

has research on the topic. It is projected that the video surveillance market value will reach USD $75.64 

Billion by 2022, up from USD $30.37 Billion in 2016 [1].  In addition, adoption of newer technologies, 

such as IP cameras and wireless video transmission, have created ground for rapid expansion of the market 

[2]. Thus far, much of the research that has been performed has focused on providing accurate and precise 

detection of security threats in a timely manner, but a larger focus is now being placed on advancing these 

topics to improve the recognition of threats in addition to detection [2]. Advances in technology have 

allowed the development of efficient approaches to automatically detecting and monitoring the progress of 

threats in real-time. These systems, referred to as automated video surveillance (AVS) systems, are 

becoming increasingly prevalent, resulting in increased demand for improvements to threat detection 

accuracy.   

 Many studies have been performed that focus on developing better computer vision (CV) 

algorithms for improved detection, tracking, and classification of objects [3-8]. Other studies have focused 

Figure 1.1: An Illustration of an Automated Video Surveillance System 
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on detecting and classifying unusual events [9-14]. All of these studies have focused on the CV aspect of 

the AVS systems, without considering the entire architecture. While these types of studies attempt to tackle 

the problem of object detection at the application level with CV algorithms, these increasingly complex 

algorithms have done little to address other issues that come with the expansion of surveillance systems.  

The complexity of these proposed algorithms is acceptable with smaller network sizes, as current processing 

technology is able to handle the level of computational load required, however, as the scale of AVS 

networks increases these algorithms will have difficultly running in real-time due to their high 

computational requirements. Therefore, new methods for increasing AVS efficiency must be explored to 

address the cost and scalability issue arising in this field.  

The scalability-cost problem becomes a concern as additional video sources are added to a system 

in an effort to increase coverage.  In these situations, a larger strain is placed on the network as the total 

bandwidth required by the video sources increases. Additionally, increasing the number of video sources 

also requires increased computational capability in order to process all of the transmitted video streams. 

This computational cost can even become a concern in distributed processing architectures because video 

encoding, decoding, and CV algorithms are some of the most computationally intensive activities a 

processor can be tasked to perform. Power consumption is another major concern as surveillance systems 

begin to evolve, especially as wireless, battery-powered video sources become more commonplace. Even 

in systems that do not use wireless or battery powered technologies there is financial incentive to reduce 

energy usage in always-on systems, such as surveillance equipment. 

A few studies [15-17] have considered using image distortion as the basis for bandwidth 

optimizations in general streaming systems. While not all of these studies focused on the scalability-cost 

issue, their findings have shown promise in addressing the matter. Though optimizations based off of 

distortion may show some benefit in terms of face detection, network load, and power consumption, it is 

not the best method for use in AVS systems. The ultimate goal in AVS systems is to have high accuracy in 

recognition and thus threat detection. While distortion does have some effect on detection accuracy, it 

makes more sense to characterize an optimization based off the desired output (accuracy). To our 
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knowledge there has only been one Study, [18], that has addressed accuracy-based cross-layer bandwidth 

optimization (ACBO). This study used face detection accuracy as the basis for bandwidth adjustments in 

an AVS network, which directly correlates the desired output to the input values of the model. This study 

showed promising results in improving face detection accuracy while also reducing network load and power 

consumption; however, it does not address the topic of facial recognition accuracy. While face detection is 

an important step in the progress of AVS systems, the goal is for such systems to be able to detect and 

recognize, from a database, threats in an accurate and precise manner. With recognition, in addition to 

detection, increased confidence in threat handling is achieved.  

The ACBO solution considers a system in which conditions in multiple network layers are 

monitored. In the ACBO approach, three layers are considered: physical, link, and application. Using data 

gathered across several network layers provides the ability to perform more accurate and timely calculations 

of the effective airtime of a medium, thus providing more robust control over bandwidth. By utilizing the 

data collected from parameters in each of these layers the optimization solution intends to adjust bandwidth, 

and consequently video quality, in a way that maintains a high level of face recognition accuracy, while 

also reducing overall network load and power consumption.  Logically, face recognition accuracy of a CV 

algorithm directly correlates with video quality, which we intend to show through our experimentation. 

However, as video quality increases, so does the bitrate and thus the required bandwidth. Although 

increasing the video quality does increase accuracy of face recognitions, Study [19] (and references within) 

demonstrates that the sensitivity of a CV algorithm to video quality is much less than that of a person. 

Therefore, by characterizing the accuracy of a database at different levels of video quality (i.e. bitrate) the 

optimization solution should be able to adjust the bitrate to achieve the best possible accuracy. 

Previous work done on the topic of accuracy-based cross-layer optimization [18] (and references 

within) provided a limited scope into the effectiveness of such solutions.  In previous work, face detection 

accuracy was optimized rather than face recognition accuracy. In addition, adjustments to the sending rate 

were done in an indirect fashion, making calculations and controls cumbersome.  The prior work on this 

topic did not use a complete implementation of a video streaming system, instead choosing to simplify the 
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system.  While face detection is a useful first step in an automated video surveillance system, it ultimately 

falls short of the ideal functionality of automated video surveillance.  With face detection only, the system 

is not able to narrow down and identify threats. Instead, every detected face is reported and the managers 

of the AVS system must sift through the data to find the threats and with no identification provided, system 

managers must manually cross-reference a threat database if an identity is needed. The amount of data will 

vary depending on the environment in which the system is placed, however, with face recognition the need 

to examine data is no longer present and threats can be handled in a much quicker manner. With accurate 

face recognition threat identifications can be handled automatically. Face recognition is a much more 

complex and computationally intensive task than face detection. With face recognition, in addition to 

detecting faces, the algorithm must compare the detected face to a database of faces in order to determine 

an identification.  Typically the detected face is processed to reduce data dimensionality before comparing 

to the database.  Depending on the size of the database and the complexity of the dimensionality reduction 

algorithm, facial recognition can be a very computationally intensive and time consuming task. Despite 

shortcomings in current face recognition algorithms, optimizations can be made in a system in order to 

achieve the best possible level of recognition accuracy with current technologies. In addition, the benefits 

of facial recognition to AVS are so great that it has become a necessary member of such systems.  

This thesis analyzes the effectiveness of the ACBO solution to the scalability-cost problem 

proposed in [18] when applied to face recognition. None of the earlier work investigated the efficacy of 

accuracy or distortion-based solutions when applied to face recognition.  We perform extensive work to 

integrate face recognition into the ACBO solution. Using rate-accuracy characterization functions, the 

previously proposed solution intended to optimize face detection accuracy through adjustments to sending 

rates on a per video source basis. In this thesis, we show that the developed model provides an accurate 

characterization of the relationship between video source sending rate and face recognition accuracy in 

addition to face detection accuracy. This thesis intends to address the shortcomings of prior work by 

characterizing the rate-accuracy model for facial recognition accuracy of our selected video set and 

developing a full streaming client to send real video data over the network. This allows enhanced control 
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over sending rate and more closely resembles a real-world AVS implementation than previous work.  

Furthermore, past work used older, less efficient codecs to compress the data sent over the network. This 

thesis delves into the effectiveness of the ACBO solution when used in conjunction with H.264. In addition, 

we analyze the effectiveness of weighting in the ACBO solution, implementing modifications and 

performing experimentation that examines the effect of weighting on several performance metrics. 

This thesis considers a specific AVS system in which multiple video sources, in various locations, 

capture and send video feeds to a central proxy station over a single-hop IEEE 802.11 wireless local area 

network (WLAN).  Figure 1.1 shows an example of an automated video surveillance network.  In the 

system, the medium can be shared by both battery-powered and non-battery-powered wireless video 

sources. A high-bandwidth link connects the proxy station to the access point (AP); this connection is 

assumed to have a high enough bandwidth that it is not a bottleneck. The proxy station runs CV algorithms 

which generate automated alerts whenever suspicious events/objects are detected in the monitored site. 

Large systems may contain multiple of such networks in order to distribute some of the video processing 

load.  

 In addition to the analysis of the ACBO solution, we propose and test two enhancements to the 

solution to provide better bandwidth utilization. The first enhancement proposes limits to bandwidth at 

smaller network sizes to stop the system from choosing an unnecessarily high sending rate. As discussed 

previously, studies have shown that face detection and recognition algorithms are tolerant to changes in 

video quality. While the optimization solution attempts to adjust the bitrate to minimize the network load 

and power consumption, at smaller network sizes where resources are in surplus the solution tends to choose 

a higher sending rate than is necessary. The second enhancement involves partially distributing the less 

intensive CV tasks to the video sources in order to reduce the computational load at the proxy station as 

well as performing manipulations on the sent video frames to reduce the amount of data sent.  

The main unique contributions of this thesis are as follows: (i) analyzing the effectiveness of the 

ACBO solution from [18] when applied to face recognition, (ii) modifying the system to perform training 

and recognition on real-time video, (iii) developing and analyzing a bandwidth capping system to enhance 
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the effectiveness of the ACBO solution, and (iv) developing and analyzing a distributed CV implementation 

for ACBO to provide further reductions to proxy station load and data sent over the network.  

The results are based on extensive simulations using our chosen video dataset.  These simulations 

allow us to assess the effectiveness of the ACBO solution when applied to face recognition.  We perform 

simulations using the OPNET network modeler as it offers robust features for simulating and adjusting 

parameters for the type of network considered in this study. One major feature of the work done in this 

thesis is the sending of real video frame data over the simulated network, mirroring real-world 

implementations exactly, rather than sending abstract bit streams over the network to mimic video streams 

like previous work has done. To implement this system, we created a full video streaming client using 

FFmpeg to encode and decode frames as well as developing a full Real-Time Transport protocol (RTP) 

implementation for transferring video data over the network, effectively creating a streaming server 

implementation. While this is a much more complex implementation, mimicking real-world systems 

exactly with the simulated system gives confidence that our results are valid. Our results show that the 

ACBO solution is effective in improving facial recognition accuracy in the streamed video feeds as well as 

significantly reducing the power consumed by the video sources through considerable reductions in the 

sending rate. We show that the effective airtime algorithm provides an accurate estimation allowing 

convergence to occur quickly even with a high compression video codec. We also show that the proposed 

enhancements to the ACBO solution offer significant and meaningful benefits.  
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Chapter 2  Background Information and Related Work 

This chapter provides a detailed look at topics necessary for understanding the work done in this 

thesis as well as providing a better understanding of the progression of work leading up to this point. The 

topics involved with AVS are vast in their breadth; the sections in this chapter summarize the main topics 

covered in order to provide the scope necessary to sufficiently comprehend the work done for this thesis. 

In the following sections, information is provided that details face recognition, including three algorithms 

that were considered for this work, the benefits of face recognition in AVS systems, and information on 

cross-layer bandwidth optimization solutions. 

2.1 Face Recognition 

The task of recognizing and identifying faces is a common and simple routine for humans, however, 

for machines this is a much more complicated task. Face recognition has become a major area of research 

in CV algorithms since it was first introduced. The importance of this technology can be seen through its 

use in many different applications.  One area in particular that benefits greatly from automated face 

recognition is video surveillance. Utilizing CV algorithms, security systems incorporate the ability to 

automatically recognize faces of people in the video feeds of cameras. This has the benefit of being a passive 

system, where no direct input required by the target of the face recognition, this is unlike other security 

system strategies [20]. In addition, with sufficient accuracy of the system, minimal input is required from 

managers of the surveillance system to provide corrections.  In its beginnings, face recognition started as 

an extension of face detection, attempting to provide a way to characterize facial features in order to 

determine the identifying characteristics of a person [21]. Studies [21-24] (and references within), show 

some of the early methods that were used to identify faces reliably and automatically using CV algorithms. 

These methods have provided a foundation for the field of face recognition and have been expanded upon 

considerably over time.  
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Many methodologies exist for performing face recognition, where most differ is in the specific 

details of classification and feature extraction of faces. However, all systems that we are aware of follow 

the same general steps to perform a recognition. Those tasks are face detection, face normalization, face 

feature extraction, and face matching. Figure 2.1 shows the full process for face recognition. Face detection, 

as has been covered in numerous other studies, is the ability for a CV algorithm to determine if a face exists 

in an image and if so to isolate the face.  Face normalization is necessary for face recognition as it 

standardizes faces based off pose and illumination to match the images in the training database. Face feature 

extraction is a technique used to find distinguishing features in a detected face to match to the features 

Figure 2.1: Process for Performing Face Recognition 
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found in the trained images. Finally, face matching is taking all of the data collected thus far in the process, 

comparing it to images in the training database, and finding its best match [20].  

 Image quality is an important concern when performing any CV task.  Many studies have been 

performed to show the effects of image/video quality on face detection and recognition.  Studies [19, 25, 

26] go into detail of the effects that image quality has on these tasks.  In [19] signal-to-noise ratio quality 

was varied for several common image databases using a JPEG compression algorithm.  The results show 

that the image quality can be decreased to 20% of the original quality without having a negative effect on 

the accuracy of facial recognition, thus showing that CV algorithms are very tolerant to changes in image 

quality.   

The computer vision library, OpenCV [27], provides three algorithms for face recognition. The 

following sections will detail the general approach of these algorithms.  

2.1.1 Principal Component Analysis 

Early methods of face recognition used relative locations and sizes of facial features to perform 

recognition [28]. These systems were found to be inaccurate and difficult to expand upon for further 

improvements.  It was not until Kirby and Sirovich [24] completed their study of human face 

characterization based on the Karhunen-Loève procedure and principal component analysis (PCA) that the 

field began to experience exponential growth. This study provided one of the first methods of applying a 

pattern recognition methodology to faces in order to create a compressed approximation for computer 

algorithms to work with. The method effectively translated a three-dimensional (3-D) object into a two-

dimensional (2-D) representation. The approach utilized the mathematical concept of eigenvectors to create 

representations of images referred to as Eigenpictures. This study showed that by encoding a face using 

mathematical concepts, patterns can emerge that allow the data to be compressed into a more convenient 

format.  This allowed for computational speed ups through simplification of data and reductions in memory 

usage. Thus, allowing computers to be more capable of performing these types of CV operations. There 
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were several limitations to this study as it only considered small image collections and did not apply its 

concepts to face recognition.  

Further expanding upon the PCA method of face approximation, Turk and Pentland [22, 23] came 

to the realization that the concepts from [24] could be applied to face recognition. In this context, the 

eigenvector encoded faces are referred to as Eigenfaces.  The reduction in data size resulting from this 

encoding allowed the use of large image data sets for recognition while taking up less memory than previous 

face recognition implementations.  The process begins by translating the training set to arrays of Eigenfaces. 

When recognizing a face the input image is transformed into an Eigenface and compared to the translated 

data in the training set. The use of facial patterns for recognition, rather than relative face information 

allowed for quicker, more accurate recognition over previous methods. Figure 2.2 shows some example 

Eigenfaces generated from the Honda/UCSD dataset [29, 30] along with the resulting image reconstruction. 

The differences in color in the Eigenfaces result from changes in lighting in the original video. We can see 

that the reconstructed image provides a good representation of a face, with only minor errors. 

 

Figure 2.2: Example Eigenfaces 

The PCA method allowed for significant advances in automated face recognition, however, there 

were several drawbacks that limited its applications. Changes in lighting and facial expressions caused 

accuracy to drop significantly [31, 32]. Lighting changes on a face are exceedingly common in real-world 

systems, especially in AVS systems.  In such systems, a person may be moving between light sources, 

causing cameras to record images with varying lighting directions and intensities.  In such a scenario, the 

accuracy of a PCA reliant system would drop dramatically. 
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2.1.2 Linear Discriminant Analysis 

Advancing the concepts of the PCA Eigenfaces method, a new face recognition algorithm was 

developed utilizing linear discriminant analysis (LDA) techniques. The main concept behind both the PCA 

and LDA techniques is that a reduction in dimensionality of image data can allow CV algorithms to utilize 

the data more efficiently. However, the way in which the data is projected can have drastic effects on the 

resulting ability to recognize faces. With PCA, the projection does not eliminate variations due to lighting 

or facial expression. The LDA method seeks to utilize Fisher’s Linear Discriminant to reduce the 

dimensionality of face data while also reducing the effects of lighting and expression on face recognition. 

In [31], reduction of dimensionality is done by first using PCA to perform an initial reduction in 

dimensionality, LDA is then utilized to reduce the dimensionality further and eliminate scatter based on 

lighting and facial expression. The resulting projections are referred to as Fisherfaces. Study [32] proposes 

a method in which only LDA is used to reduce the dimensionality of an image that face recognition is to be 

performed on. Both studies show significant increases in accuracy over PCA methods of face recognition. 

Figure 2.3 shows example Fisherfaces generated from the Honda/UCSD dataset with the resulting 

reconstructed face. We can see that lighting is completely removed from the variations in the image 

representations, as all of the representations have similar illumination levels.  Interestingly, although LDA 

is typically associated with higher recognition accuracy than PCA, the reconstructed image for LDA has 

much more blur than for PCA.  

 

Figure 2.3: Example Fisherfaces 

2.1.3 Local Binary Patterns Histograms 

While the PCA and LDA methods follow similar approaches to face characterization, new 

paradigms have arisen, challenging the way in which faces are described computationally.  One such 
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method, utilized by OpenCV, is referred to as local binary patterns histograms. Unlike the PCA and LDA 

methods, which attempt to describe patterns of a face through dimensionality reduction utilizing vector 

mathematics, the LBPH approach to face description uses texture analysis to translate the face data into a 

usable format for recognition. This method is computationally more efficient and is more capable of 

handling variance in lighting that previous methodologies [33, 34]. 

Study [33] details, to our knowledge, the first implementation of a local binary pattern (LBP) based 

automated face recognition system. The basic principle of this LBPH face recognition method is to assign 

a binary mask to all of the pixels in an image, upon completion these masks can be reassembled into a 

representation of the original image, which can then be compared to a training database. The first step, 

finding the LBP, is done by dividing an image into N-number of cells, each with a predefined number of 

pixels. The algorithm then sequentially moves through every pixel in a cell and compares its intensity to 

the intensities of each of its nearest neighbors. Simple implementations use a 3 x 3 grid with the pixel under 

test being the center of the grid.  Neighbors with intensities greater than or equal to the intensity of the test 

pixel are assigned a value of 1 and 0 otherwise. The eight values are then assembled into a descriptor byte 

for the test pixel. To perform recognition, a histogram is created from this data, which creates an overall 

description of the image. The generated histogram is compared to the histograms of the images in the 

training database, with the closest match being returned as the prediction. The results from [33] show that 

the recognition accuracy for the LBPH method is significantly higher than for a PCA based method. The 

results also show that small offsets in face detection locality do not have as large of an impact on LBPH as 

they do with PCA face recognition. Figure 2.4 shows several frames of a video from the Honda/UCSD 

dataset represented as local binary patterns. The figure shows that although the frames had varying lighting, 

the LBP images are unaffected. We can also see that the LBP images retain a large amount of detail of the 

faces, while reducing the total data needed to represent those images. The accuracy of LBPH-based facial 

recognition is studied further in [34], corroborating the findings of the previous study. 
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Figure 2.4: Local Binary Pattern Image Representation Examples 

2.2 Automated Facial Recognition for Video Surveillance 

Facial recognition still poses a technological challenge for most computer systems. Modern 

processors have allowed for increases in image processing speeds, however, under various conditions 

bottlenecks are still encountered. While original systems focused on recognition of still-images, where the 

time it takes for recognition is only of minor importance, there has been an increasing push for real-time 

facial recognition applications, especially in the field of AVS.  Numerous studies [35-37] have been 

conducted to find ways to speed up face recognition. Study [36] proposed a hardware-based real-time face 

recognition system, as hardware-based approaches generally execute quicker than software-based 

approaches. The study develops a face classification system referred to as the frequency distribution curve 

(FDC) technique. In this method, image data is translated to the frequency domain and compared against 

training data using a standard variance vector. The FDC algorithm is then implemented using a field-

programmable gate array (FPGA), allowing some customization to the application. The results showed that 

face recognition on a single image could be completed within 0.6 µsec and have an accuracy of up to 98.3%, 

allowing the possibility of highly accurate real-time face recognition. There are several drawbacks to the 

method proposed in [36], most obvious is that hardware implementations are more expensive and less 
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adaptable than software-based solutions. In addition, the method of recognition provided is only tested with 

one image database and recognition with more difficult databases was not explored. Furthermore, although 

the execution time is significantly decreased, the achieved accuracy is worse in most cases than more widely 

adopted face recognition algorithms.  

Many studies [29, 30, 38] (and references within) have been conducted to determine the best 

method of face recognition on video sources. In [38] a method is proposed for increasing face recognition 

accuracy in video-based systems.  Rather than using image sets for training databases and treating input 

video frames as unrelated images, this study places temporal importance on the sequence of video frames 

to provide a more confident match for the test video. This is done by modeling the training videos as a 

linear dynamical system [38]. The implementation of this system was able to achieve 90% accuracy for 

recognitions while using video databases that contain significant 2-D and 3-D variations in subject pose.   

In Study [29] a proposal is made for a face recognition system based on what are referred to as appearance 

manifolds, low-dimensional representations of a person’s appearance. Video frames are compared to this 

manifold with the closest match being assigned the identity of the person in the frame. Temporal 

information from the video is used to adjust recognitions for pose and occlusion variations. While this 

method does not propose the ability to perform face recognitions in real-time, it does offer significant 

improvements to accuracy over previous methods, especially in the case of occlusion. Study [30] expands 

on the previous study by proposing an online training system for the appearance manifold method.  An 

initial training database is created and as video sources are input for training the system uses machine-

learning methods to incrementally adjust the database to provide better recognition accuracy.  An online 

training approach was tested for the facial recognition work proposed in this thesis. Although this type of 

training approach is a feature that provides benefits to surveillance systems, it was ultimately decided that 

for the scenarios being tested an online training database would not be beneficial.   

Video surveillance adds to the challenge of face recognition as such systems are intolerant to many 

of the shortcomings in face recognition. With surveillance systems, dropping frames is extremely undesired 

behavior. In scenarios where frame dropping occurs, possible threats are at risk of going unnoticed.  For 
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this reason, if face recognition is to be continuously run in an AVS system, it must be performed in real-

time. Facial recognition in AVS systems also faces the challenge of uncooperative test subjects. This is an 

obvious conclusion, but as most people are unaware or unconcerned with being under surveillance they do 

not show up in the video frames under optimal conditions for face recognition algorithms. There will be 

significant variances in position, pose, and illumination of the scene when a recognition needs to occur [20].  

Studies [39-43] (and references within) have developed solutions to specific challenges for face 

recognition in video surveillance.  The approach proposed in [39] details a method in which both the 

histogram of oriented gradients (HOG) and local binary pattern (LBP) methods are run in parallel on 

surveillance video. By combining both methods of face recognition, shortcomings in each algorithm (e.g. 

pose, lighting, and emotion variations) are covered by the complementary algorithm and overall accuracy 

increases substantially. However, this study does not run face recognition in real-time as the test system is 

not capable of running both algorithms in parallel in real-time.  Instead, the detected faces are saved and 

recognition is performed later. This can have significant impact on the time to detect a threat. For these 

reasons, the work done in this thesis focuses on only using one recognition algorithm, LBP.  

In [43] a full smart camera system is proposed for surveillance networks. In the study, FPGAs are 

paired with high-resolution image sensors to create custom smart cameras. These cameras are capable of 

performing CV tasks, including face detection.  With face detection implemented at the camera side of the 

system, it is only necessary to send the cropped face data over the network.  The central node is then able 

to perform face recognition on the cropped image data.  In this configuration, the processing of images is 

distributed and the amount of data being sent over the network medium is significantly reduced.  While this 

study makes use of custom-made smart cameras using FPGAs, many modern security cameras have the 

computational capability to perform face detection.  

2.3 Accuracy-Based Cross-Layer Optimization for Video Stream Systems 

Many studies [15-17, 44-47] have been conducted on the topic of cross-layer optimization of video 

streaming in wireless networks.  Most work in this area has taken a distortion-based approach, relying on 
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relative distortions of the video streams to calculate adjustments in bandwidth allocation. Study [18] 

proposes an ACBO solution, with the intent to show that accuracy-based solutions are more effective than 

distortion-based solutions for bandwidth optimization. The study attempts to find the optimal fraction of a 

medium’s effective airtime for each video source in a network such that the sum of weighted detection 

accuracy error is minimized. This sum is given by ∑ 𝑤𝑠 × 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟𝑠(𝑟𝑠)𝑆
𝑠=1 , where S is the network 

size,  ws is the importance for video source s, accuracyErrors is the face detection accuracy error for video 

source s, and  rs is the transfer rate for video source s. Additionally, the optimization solution is constrained 

by the following conditions: the sum of airtimes of all video sources must not be greater than the effective 

airtime of the medium (Aeff), the transfer rate for each video source s is equal to the product of its physical 

rate (ys) and fraction of airtime (fs), and the fraction of airtime for each source must be in the range from 0 

to 1. In order to obtain a solution for this formulated problem, Study [18] proposes two actions: (1) The 

characterization of a rate-accuracy function and (2) accurate estimation of the effective airtime of the 

medium.  

In implementing an optimization solution for the problem formulation, first face detection rate-

accuracy curves were developed for each of the face databases utilized.  The rate-accuracy characterization 

provides a model for the relationship between video frame size and accuracy error of the face detection 

algorithm, therefore it is imperative that these curves be tailored to each database individually. The 

characterization allows the cross-layer optimization algorithm to calculate the expected error for a requested 

bitrate in the network, which in turn makes it possible to adjust the airtime for each node to improve their 

expected accuracy.  The face detection accuracy error for video source s was characterized as 𝑎𝑠(
𝑓𝑠𝑦𝑠

𝜏𝑠
)𝑏𝑠 +

 𝑐𝑠, where fs is the fraction of airtime for video source s, ys is the physical rate for video source s, τs is the 

video frame rate for video source s. The rate-accuracy constants as, bs, and cs are assumed to be equal 

between all video sources as they share the same dataset. 

Effective airtime (EA) estimation is an important part of the study, as the total airtime for all nodes 

cannot exceed the EA of the network.  Estimating the EA with a high degree of accuracy allows better 
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optimization of the fraction of airtime given to each video source. The study implements a proportional-

integral-derivative (PID) controller-based method for calculating the EA, allowing adjustments to EA in 

real-time using the packet dropping rate as the input. The study found that the proposed PID-based EA 

calculation converged quicker on network startup and reacted faster to network disturbances than other 

methods. 

After formulating the rate-accuracy function and finding the effective airtime of the medium, (Aeff), 

the optimization problem was shown to be a convex programming problem and thus can be solved as 

follows: 

𝑓𝑠
∗ =  (

−𝜆∗𝜏𝑠

𝑤𝑠𝑎𝑠𝑏𝑠𝑦𝑠(𝑦𝑠 𝜏𝑠⁄ )(𝑏𝑠−1))
(1/(𝑏𝑠−1)

,                                                       (1) 

      and 

𝜆∗ =  (
𝐴𝑒𝑓𝑓

∑ (
−𝜏𝑠

𝑤𝑠𝑎𝑠𝑏𝑠𝑦𝑠(𝑦𝑠 𝜏𝑠⁄ )(𝑏𝑠−1))
(1 (𝑏𝑠−1)⁄ )

𝑆
𝑠=1

)

(𝑏𝑠−1)

.                                                  (2) 

 Study [18] uses Equations (1) and (2) to determine the fraction of airtime for each video source in 

the network. In the implementation the value for λ* is calculated by the server node. This value is then sent 

to the corresponding video source to allow it to determine its fraction of the effective airtime, thus providing 

the necessary information for adjusting the bitrate of the sent video.  In conjunction with the fraction of 

airtime calculation, the allocation algorithm also uses the link-layer parameter transmission opportunity 

duration limit (TXOP limit) to adjust timing of sent packets.  The TXOP limit is defined as the time required 

to send all of the packets belonging to a single frame over the network, taking into account all of associated 

overhead involved. Study [15] proposes the model for TXOP limit. The formulation of TXOP limit takes 

into account the MAC and physical layer parameters for a more accurate calculation. 

The study also proposed a bandwidth pruning method that is used to reduce network load and power 

consumption in networks. Due to the slope of the rate accuracy curves, at higher frame sizes significant 

reductions in bandwidth can be expected with only small increases in accuracy error.  The study 

experiments with several different percentages to show the effects on face detection accuracy, network load, 
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and power consumption.  The study found that the ACBO solution outperformed prior distortion-based 

methods in every tested metric (accuracy, network load, and power consumption). The proposed bandwidth 

pruning method was found to achieve similar accuracy to distortion-based solutions, but with a 45% 

reduction in network load and power consumption. 

A great deal of work is currently ongoing to advance the topics covered in Study [18]. In addition 

to this thesis, Study [48] developed an experimental AVS system utilizing the cross-layer optimization 

solution from [18].  
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Chapter 3  Proposed Work 

This chapter details the work proposed by this thesis. It covers in detail all of the work that was 

completed to build upon prior studies and provides a discussion on proposed enhancements.  The chapter 

covers the motivation behind this thesis as well as the work done to fit the rate-accuracy characterization to 

the data collected for face recognition. The chapter will discuss the details of the system shown in Figure 

3.1. The chapter also covers, in detail, the implementation of the proposed FFmpeg based streaming solution 

as well as the justification for the chosen video codec.  Finally, this chapter describes proposals for two 

enhancements to the ACBO solution and the details of the work done to implement these enhancements.  

Figure 3.1: Overview of an ACBO Solution Implementation 
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3.1 Motivation and System Description 

3.1.1 Motivation 

Although prior work on the topic of cross-layer optimization provided substantial improvements to 

network load and power consumption, the topic of face recognition was never discussed.  All of the previous 

studies focused making improvements to various other CV tasks, most prominently being face detection. 

Figure 3.2: Detailed Overview of an ACBO Solution Implementation 
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While face detection is a valuable technology to implement within AVS systems, it does not allow the 

identification of threats. The motivation for this thesis comes from the desire to implement and analyze the 

effectiveness of the ACBO solution when applied to face recognition. We also felt that further 

improvements could be made in order to increase the effectiveness of the ACBO solution. 

3.1.2 System Description  

Using the same mathematical model applied in [18], we develop a system that focuses on 

maintaining face recognition accuracy in AVS networks. As such the only changes we make to model are 

the values of the equation constants, which are primarily dependent on the rate-accuracy curve. While the 

basis of the ACBO implementation remains the same, significant changes were made to allow the use of a 

full video streaming client and facial recognition. In addition, extensive work was done to verify that the 

model proposed in previous work was valid for the system tested in this thesis. Figure 3.2 shows the details 

of our implementation of the ACBO solution when applied to facial recognition. In the implementation, the 

tasks are split between the AP/proxy station and the video sources. While the system is in steady-state 

operation the video sources monitor network conditions and send this information to the proxy station in 

the form of a state report packet. The proxy station collects data from state reports, which it uses in the 

calculation of the effective airtime. The effective airtime estimation is sent to the video sources as a beacon 

packet. Each source calculates its share of the airtime and then translates it into a transmission bitrate. If 

this calculated bitrate differs by more than 100 bits per second (bps) from the previous bitrate, the video 

encoding is updated with the new bitrate. The differential of 100 bps was selected as it was small enough 

as to not affect the accuracy of the face recognition, but large enough to stop constant adjustments to the 

encoding rate. Making changes to the encoding rate is a time-consuming task that is best to be avoided 

unless completely necessary. The video sources then encode the captured video frames at the desired rate 

and send them over the network in RTP packets. The AP/proxy station receives the RTP packets, decodes 

them, and performs face recognition. This process repeats as long as the network continues running, with 

beacon and state report packets sent at predefined periodic rates. The previous work on this topic did not 
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consider a rate-accuracy characterization that directly relates bitrate to accuracy; it instead focused on the 

relation between frame size and face detection accuracy. While frame size does affect the bitrate of a stream, 

it is an unnecessary abstraction when the ability to directly control bitrate exists. Given that we are directly 

controlling bitrate, rather than frame size, and are focusing on face recognition, opposed to face detection, 

we detail our method for calculating the new rate-accuracy curve in the below section. 

3.2 Rate-Accuracy Characterization 

The general optimization problem for accuracy has been developed by previous studies [15, 18] 

and is used in its entirety for this study; since the rate-accuracy formulation is the same as previous work 

we only have to obtain accuracy values for our chosen dataset in order to acquire meaningful constants to 

use when calculating the expected rate-accuracy values in our simulated network. The methodology for 

rate-accuracy characterization is covered in more detail in Section 3.2.3. This model characterizes the 

relationship between streaming bitrate and accuracy error in the facial recognition algorithm utilized by the 

proxy station in our network.  As prior work has characterized detection algorithms [18], we build upon 

this work to characterize recognition accuracy.  We also consider the work done in [49] when performing 

our rate-accuracy characterization, in the study the Honda/UCSD database is utilized in full to create a rate-

accuracy curve for dataset. We build upon this by testing the accuracy error for a larger set of bitrates in 

Figure 3.3: Rate-Accuracy Characterization 

Model 

Figure 3.4: Rate-Accuracy Characterization 

Model Zoomed 
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addition to verifying the previous results. We have chosen not to use the full Honda/UCSD dataset for this 

thesis; we remove the videos that have outlying accuracy values.   

3.2.1 Facial Recognition Algorithm Analysis 

This thesis is not focused on the variances in accuracy between different recognition algorithms; 

we only seek to optimize bandwidth in an AVS network, thus any algorithm that provides sufficiently 

reliable accuracy is acceptable.  For this reason, we decided to only characterize one of the face recognition 

algorithms offered by OpenCV, rather than all three. All of the facial recognition algorithms use the Viola-

Jones algorithm [50, 51] to detect the faces for recognition. We perform analysis on the OpenCV facial 

recognition algorithms in order to determine which one best fit for our test system. We consider the three 

face recognition algorithms implemented in OpenCV: Eigenfaces, Fisherfaces, and Local Binary Patterns 

Histograms (LBPH). We consider two metrics for our tests of the algorithms: recognition accuracy and 

training time. Table 3.1 summarizes the results of our analysis on the three algorithms. For our purposes, 

the best algorithm to use is one that provides the highest accuracy possible for our chosen dataset while 

also performing training in a reasonable amount of time. Higher overall accuracy will provide the most 

consistent results when testing the ACBO solution as we can see larger variations in accuracy due to the 

changes in sending rate. In addition, although real-world AVS system implementations may be tolerant to 

long training times since training is only run occasionally, for our simulated method we ran tests frequently, 

each of which required the training to be run. In order to complete the testing in a timely manner we selected 

an algorithm that could quickly generate its training data.  

Of the three algorithms tested, our analysis shows that the Eigenfaces method provided the lowest 

accuracy only achieving 35.57% accuracy with the test dataset. The Fisherfaces algorithm offers the best 

accuracy at 52.42%, with LBPH achieving slightly lower accuracy at 52.03%.  However, our results show 

that although the Fisherfaces algorithm provided slightly better accuracy overall, the LBPH method ran 

significantly faster in both training and recognition. The training took only 59 seconds with LBPH 

compared to approximately eight and a half hours for Fisherfaces. With the accuracy difference between 
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LBPH and Fisherfaces being less than 1% and the training time difference being so great, the LBPH 

algorithm is the best fit in our scenario for characterization and simulation.  

Table 3.1: Comparison of OpenCV Facial Recognition Algorithms 

Algorithm 

Correct 

Recognitions Total Faces Accuracy 

Training Time 

(sec) 

Eigenfaces 4106 11544 35.57% 24407 

Fisherfaces 6051 11544 52.42% 29468 

LBPH 6007 11544 52.03% 59 

 

3.2.2 Codec Choice 

With earlier work a limited set of video codecs were utilized due to the types of face databases 

used.  The previous work utilized image file databases, rather than databases that included video files, which 

made it difficult to use modern video codecs. For this study, we use the Honda/UCSD database, which 

contains sets of RAW video files.  This allows us to utilize modern codecs for encoding the video data 

transmitted over the AVS network. We considered two different codecs, H.264 and H.265. Although H.265 

is a newer standard and provides better compression than H.264, it is much more computationally intensive 

and its development within FFmpeg is still ongoing, meaning we would be unable to test with a full 

implementation of the codec. In addition, adoption of H.265 is much lower at this point than H.264. For 

these reasons, we believe H.264 was the best choice for use as the video codec in our AVS system. 

3.2.3 Characterization Methodology 

We perform our analysis of the rate-accuracy relationship using the Honda/UCSD video database.  

Utilizing the full resolution of the video (640 x 480), we achieve a large range of bitrates to test.  To collect 

the rate-accuracy error data we first create a method for properly training our face recognition algorithm. 

As the OpenCV algorithms do not allow for video as an input to the training session, we devise a strategy 

in which we first run the training videos through the Viola-Jones face detection algorithm. From here we 

get the isolated frames from which we can detect faces. We then crop these images so only the detected 

faces remain; these images are used as inputs to the training algorithm.  One benefit to using the 



25 

 

 
 

Honda/UCSD database is that all video frames should contain at least one face. This gives us many faces 

to train with, even though we are unable to detect every face due to the amount of pose and lighting variation 

of the subjects in the video. We run face recognition on all of the test videos in the database at their original 

bitrate. Using the accuracy results from this test, we acquire the best possible accuracy for each video. We 

remove any of the videos with an outlying accuracy in order to achieve more consistent accuracy results at 

the varying bitrates. 

Table 3.2: Face Recognition Accuracy at Various Bitrates 

Bitrate 

(Kbps) 

Total 

Faces 

Faces 

Recognized Positive Index Negative Index Accuracy Error 

10 11544 60 0.0052 0.9948 1.9896 

20 11544 841 0.0729 0.9271 1.8543 

50 11544 4251 0.3682 0.6318 1.2635 

70 11544 4736 0.4103 0.5897 1.1795 

100 11544 5124 0.4439 0.5561 1.1123 

250 11544 5525 0.4786 0.5214 1.0428 

500 11544 5675 0.4916 0.5084 1.0168 

1000 11544 5824 0.5045 0.4955 0.9910 

1500 11544 5911 0.5120 0.4880 0.9759 

2000 11544 5942 0.5147 0.4853 0.9705 

2500 11544 5980 0.5180 0.4820 0.9640 

3000 11544 6007 0.5204 0.4796 0.9593 

5000 11544 5963 0.5165 0.4835 0.9669 

6000 11544 5972 0.5173 0.4827 0.9653 

7000 11544 5978 0.5178 0.4822 0.9643 

8000 11544 5982 0.5182 0.4818 0.9636 

9000 11544 5929 0.5136 0.4864 0.9728 

 

Utilizing FFmpeg, we encode the videos using the H.264 codec at varying bitrates ranging from 10 

kbps to 9 Mbps. We chose this range as it covers the range of bitrates that are achievable by the video 

sources in the simulated network. We use the same method from studies [15, 18] for determining the rate-

accuracy relationship.  In these studies two metrics are used to calculate the accuracy error, the positive 

index, which is the number of correctly recognized faces divided by the total number of faces, and the 

negative index, which is the total number of incorrectly recognized faces divided by the total number of 

faces. Table 3.2 shows the collected data for face recognition at various bitrates along with the positive and 

negative indexes and the calculated accuracy error. As expected, with increases in bitrate the accuracy error 
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decreases. We can see from the data that accuracy error does not decrease linearly with increases in bitrate. 

The accuracy error decreases dramatically at smaller bitrates and then at about 500 Kbps the error begins 

to level off, with further increases to bitrate having little effect on the error.  

From our accuracy results for each video in the dataset, we are able to determine the average 

accuracy, the positive index, and the negative index. Using this we can calculate the accuracy error as 

follows: accuracyError = (1-positiveIndex) + negativeIndex. Table 3.2 shows the results of our accuracy 

testing. This data is curve fit in order to create a formulaic representation of accuracyError, the rate-

accuracy model is represented as follows:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑟𝑟𝑜𝑟 = 𝑎 × 𝑍𝑏 + 𝑐,     (3) 

In Equation (3), Z represents the bitrate of the video and a, b, and c are constants determined 

through the curve fitting process.  These constants will vary depending on the codec and dataset used. The 

constants used to fit Equation (3) to our real data are shown in Table 3.3. 

Table 3.3: Rate-Accuracy Model Constants 

Constant Value 

a 5.48 

b -0.6845 

c 0.0306 

 

3.2.4 Confirming the Rate-Accuracy Model 

To corroborate the rate-accuracy characterization we measure two more statistics at varying 

bitrates: peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM).  We expect that 

varying the bitrate of a video feed will directly affect video quality and recognition accuracy, as it is the 

basis of the ACBO solution.  While our primary concern is the effect of changes to the bitrate on face 

recognition accuracy, we can use its relationship with video quality to check our rate-accuracy model.  As 

we know from [19], the relationship between video quality and face recognition accuracy follows a 

logarithmic curve, with accuracy initially increasing rapidly and then leveling off after quality reaches a 

critical point. To check that our data follows this same trend we use OpenCV to determine the quality of 
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our videos over the same range of bitrates used in the calculation of our rate-accuracy curve.  We collect 

data for the two quality metrics (PSNR and MMSIM) with the Honda/UCSD dataset. Figure 3.5 shows the 

relationship between PSNR and bitrate.  The figure shows that while the PSNR does not level off in the 

same way as face recognition, the behavior below 1000 Kbps is identical, with quality dropping 

significantly below that point. MSSIM behaves the same, as is shown in Figure 3.6. All three color-channels 

differ significantly in quality from the original video below 1000 Kbps. Above 1000 Kbps the quality 

remains level.  The differences in quality between the red, green, and blue color channels were not a concern 

as the system converts the video frames to grayscale before performing recognition. Thus, our only concern 

is that the qualities of each channel follow the same trend. With this data, we can confirm that the rate-

accuracy model developed for the Honda/UCSD dataset is valid. 

3.3 Face Recognition Implementation 

Paramount to the work done in this thesis is the implementation of an effective face recognition 

system. We develop a system by utilizing the OpenCV library, as it has already has robust implementations 

of several face recognition algorithms. After consideration of the three algorithms offered by OpenCV, we 

have chosen the LBPH algorithm as the best fit for the system we use in this thesis. To perform face 

recognition we first develop a method for creating a training database to compare our input faces against.  

The method for training we use in our simulated AVS system is identical to the approach discussed in 

Figure 3.5: Relationship between PSNR and 

Bitrate for Tested Datasets 

Figure 3.6: Relationship between MSSIM and 

Bitrate for Tested Datasets 
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Section 3.2.3.  As discussed in Section 2.1 there are four main steps for performing face recognition: face 

detection, face normalization, face characterization, and prediction. We perform each of these discrete steps 

manually using OpenCV library functions. Within our implementation, after a frame is sent to the proxy 

station, we perform face detection using the OpenCV implementation of the Viola-Jones algorithm.  This 

gives us unprocessed isolated faces with which we then normalize.  The normalization process is important 

to achieving consistent recognition results. With the normalization process we first convert all face images 

to grayscale. Although it is not necessary to perform this step before using the LBPH recognition algorithm, 

we have found that performing this step results in more consistent recognition results as it removes any 

inconsistencies due to color variances. To further normalize the face images we resize all images to a 

consistent size, in our case we have found that a size of 75 x 75 pixels provides high enough accuracy while 

also executing quick enough that recognition is still able to run in real-time. The face characterization 

process is run using the OpenCV local binary patterns algorithm. The algorithm determines the binary 

patterns and creates a histogram of the data. The predictor then compares the histogram to the histograms 

in the training database. The best match in the training database is found and the identifier the match is 

returned as the prediction for the input face.  

3.4 Video Streaming System 

3.4.1 FFmpeg Implementation 

One focus of this research was to fit prior work into a system that more closely resembles a real 

AVS system. While previous studies mimic the basic networking functionality of an AVS system, they did 

not address real-world conditions for the functionality of the video sources and proxy station. While this is 

useful in testing certain aspects of a network, without a full implementation of an AVS system it is not 

possible to know that the solution works as we expect in all scenarios. While this study does not test on a 

real AVS system, we do create a simulated network that matches real-world systems as close as possible. 

Utilizing FFmpeg, we implement a full video encoding and decoding system in the simulated AVS network. 

With the FFmpeg developer libraries, we are able to encode videos in sim-time at the desired bitrate 
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specified by the network. Table 3.4 summarizes the FFmpeg parameters used for encoding. In a real AVS 

system, the input video feed would come from the video sensor of the associated camera.  In our simulated 

network, we did not have the ability to have a direct input from a sensor; however, to overcome this obstacle 

we use RAW format video from the Honda/UCSD dataset input directly to the video sources in the 

simulated network. From there we can encode the frames in the simulated time domain, place the data in 

packets, and send it to the AP/proxy station. We fully implement the real-time transport protocol in the 

application layer of the video sources and proxy station in order to transmit the video data. In the proxy 

station, we again utilize FFmpeg to decode the data as it is received from each video source before passing 

the decoded video frames to the facial recognition algorithm.  

Table 3.4: Summary of FFmpeg Parameters 

Parameter Value 

Codec Standard H.264 

Bitrate Adjustable based on 

optimization algorithm 

Bitrate Tolerance 1000 bps 

Frame Dimensions 640 x 480 pixels 

Frame Rate 20 frames/sec 

Group of Pictures (GOP) 40 frames 

Maximum B Frames 0 

Pixel Format YUV420P 

Encoding Preset Fast 

 

3.4.2 Bitrate Control 

As mentioned, prior studies did not perform the encoding at run-time; this meant that discrete 

bitrate levels had to be created prior to simulations. In order to achieve the best performance as defined by 

the rate-accuracy characterization, it is necessary to have the ability to perform fine control of bitrate.  What 

can be seen in Figure 3.3 is that a change in bitrate at the lower end of the curve can have drastic effects on 

the achieved accuracy.  The prior study had 100 discrete bitrate levels spread evenly across the full range 

of tested bitrates (10 kbps to 9 Mbps). This coarse level of granularity causes problems when the 

optimization algorithm requests lower bitrates. At the lower end of the rate-accuracy curve, small changes 
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in bitrate can have substantial effects on accuracy. Evenly distributing the levels also has the problem of 

skewing too many levels at the higher bitrates where the need for fine control is not as necessary. Using 

FFmpeg makes it is possible to achieve any bitrate in our range. While FFmpeg does have a tolerance 

associated with its bitrate setting capabilities, it is much more precise in its bitrate adjustments than the 

methods of prior work.   

Table 3.5: FFmpeg Requested Bitrate vs. Actual 

Requested (Kbps) Actual (Kbps) Difference 

10 13.4 34.00% 

20 22 10.00% 

30 30.5 1.67% 

40 41 2.50% 

50 49.5 -1.00% 

70 69.1 -1.29% 

100 98.1 -1.90% 

250 245.2 -1.92% 

500 497.8 -0.44% 

1000 1005 0.50% 

1500 1523 1.53% 

2000 2030 1.50% 

2500 2580 3.20% 

3000 2993 -0.23% 

5000 4990 -0.20% 

6000 5997 -0.05% 

7000 6985 -0.21% 

8000 7995 -0.06% 

9000 8968 -0.36% 

10000 9965 -0.35% 

 

Table 3.5 shows a comparison of requested bitrate values to the actual values that FFmpeg achieves. 

The table shows that even though our bitrate tolerance value is set to 1 Kbps, FFmpeg is unable to achieve 

target values that precise. Although this variance is relatively small at higher bitrates, we can see from the 

table that at lower bitrates the difference between requested and actual is comparatively high. What can 

also be seen in Table 3.5 is that except for very low bitrates FFmpeg tends to achieve a lower bitrate than 

requested; we consider this behavior in our tests, as there is the potential to affect face recognition accuracy 
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if the requested bitrate based on the rate-accuracy curve is not achieved. Even though we see some issues 

with the capability of FFmpeg to achieve desired bitrates, this method is significantly more precise than the 

method used in previous work. The advantages of finer control over bitrate outweigh the negatives of 

increased complexity, as it is very important that the system be able to provide as precise a bitrate as 

possible.  

3.5 Codec Implementation 

With the implementation of full encoding and decoding at the video sources and proxy station, we 

were also afforded the ability to easily utilize available codec implementations in FFmpeg. As H.264 has 

become the de facto standard by which video is encoded in a multitude of applications, it made sense to use 

it as our test codec. Previous work focused on sending MJPEG video over the network due to the limitation 

inherent to choosing image datasets over video datasets. While MJPEG has been a commonly used 

encoding standard for video surveillance systems, this method provides little in the way of compression 

compared to other codec standards. With advancement in wireless technologies for video surveillance, it is 

becoming increasingly important to utilize modern encoding standards that allow video quality to remain 

the same with a greater reduction in bitrate compared to older standards. In addition, with the advancement 

of processors, the computational overhead associated with H.264 over MJPEG has become less of a 

concern.  It is for these reasons that we utilize H.264 as the codec for video data transmitted over our 

simulated network. The change to a more modern codec requires careful consideration of the effects on the 

ACBO solution. As the proposed method for rate-accuracy characterization from [15] is dependent on the 

relationship between accuracy and bitrate, we recalculate the curve fitting constant values due to the 

increased quality of H.264 encoded video at lower bitrates. The rate-accuracy model forms the basis of the 

ACBO solution, for this reason we confirm that the rate-accuracy curve does not resolve in such a way that 

the optimization would no longer provide any benefit in the network. With video quality increased at lower 

bitrates compared to MJPEG, we were unsure if the data would follow the same characterization as 

previously tested encoding methods. What we observe from testing is that although H.264 encoded video 
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has a smaller data size than previous codecs, this does not have an effect on the trend that the rate-accuracy 

curve follows. 

3.6 Proposed Bandwidth Capping Method 

In this thesis, we propose several enhancements to the ACBO solution.  The first enhancement is 

similar in principle to the bandwidth pruning method, referred to as the bandwidth capping method.  We 

develop this method by following the hypotheses tested in studies [25, 26]. These studies focus on the 

relationship between video quality and face recognition and detection. The results from these studies shows 

that a point exists where increases to quality no longer have a significant effect on face detection and 

recognition accuracy. As we have shown in Section 3.2.4 that the quality-accuracy relationship follows a 

similar trend to the rate-accuracy relationship we can deduce that there is also a point on the rate-accuracy 

curve beyond which no significant increases to face recognition accuracy are observed. From the rate-

accuracy curve shown in Figure 3.3 we see this exact scenario, as bitrate increases the accuracy error rapidly 

levels off. Beyond a certain bitrate improvements to error are minimal. This suggests that there is an upper 

limit in terms of video quality when performing face recognition. Beyond this limit, all increases in 

bandwidth are superfluous. 

Figure 3.7: Bandwidth Cap Bitrate Determination 
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Significant reductions can be made in network load and power consumption by imposing a cap on 

the bandwidth of each video source.  It is important to base this value on the characteristics of the rate-

accuracy curve; setting the value too low negatively affects the face recognition accuracy of the system, 

potentially causing threats to go undetected. Setting the limit too high results in unnecessary network load 

and power consumption. Figure 3.7 shows the way in which the capping bitrate is determined for the system 

utilized in this thesis.  The figure shows that the rate-accuracy curve deviates from the real data at higher 

bitrates. The data follows a horizontal trend, whereas the rate-accuracy curve continues trending toward 

zero. Based off of the collected data, we know that the accuracy error does not approach zero as bitrate 

increases.  To determine the best limit to place on the bitrate without affecting the accuracy, we draw the 

horizontal trend line that the data follows at high bitrates. We then observe where the rate-accuracy curve 

crosses that line; the vertical red line in Figure 3.7 denotes this point. For the system under test in this thesis, 

we observe that the rate-accuracy curve crosses the horizontal trend line at 1.5 Mbps, we place our limit at 

this point. As the application rate has an inverse relationship with the number of sources in the network, 

this optimization is only effective with smaller network sizes. Beyond a certain network size the average 

application rate drops below the limit and thus the limit is no longer necessary. 

3.7 Proposed Distributed Face Cropping Method 

The other enhancement we implement in this study is an adaptation of the system detailed in [43]. 

In [43], rather than perform the face detection for all video sources at the proxy station, it is recognized that 

it is possible to distribute these tasks to the video sources. Face detection has relatively low computational 

requirements due to the increasing capability of embedded systems and the efficiency of the Viola-Jones 

algorithm. This allows the possibility of performing these tasks at video sources, which then creates the 

ability to send only the relevant image data (faces) over the network rather than sending the entire captured 

frame. As the system under test already requires the use of “smart” video cameras, sources that have 

advanced processing capability, the jump to performing face detection is not significant. Performing face 

detection at the video source allows for significant enhancement in terms of data being sent over the 
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network. As the AVS system is mainly interested in faces to recognize, it is not necessary to send an entire 

video frame to the proxy station. In the original implementation of the ACBO solution, the proxy station 

looks for faces in received frames and disregards the remaining information in the frame that had been sent. 

Study [43] suggests cropping the video frames so that the data sent to the  centralized server only contains 

face images. The central server then performs face recognition on these cropped images. As face recognition 

is a computationally intensive task it is still necessary to perform at the server.  Figure 3.8 outlines the 

implementation of this distributed face cropping system in the test network for this thesis.  In the network, 

the video source (camera) captures a frame and performs face detection. If a face is found, the smart camera 

crops it from the original frame and encodes, packetizes, and sends the resulting image to the proxy station. 

After receiving all necessary packets, the proxy station reassembles the encoded frame, decodes it, and 

performs face recognition. The expectation of this type of system is that power consumption should remain 

similar to the non-optimized network, as the system still performs face detection, just at a different point in 

Figure 3.8: Distributed Face Cropping System 
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the process. As only the face image data are being sent over the network, the system maintains a higher 

overall image quality because even with the higher quality, the image cropping still results in less data being 

sent overall.  
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Chapter 4  Performance Evaluation Methodology 

This chapter covers the work performed to evaluate the efficacy of the ACBO solution when 

applied to face recognition. It provides details of the evaluation of the effective airtime solution and the 

setup of the simulated test environment. This chapter also describes the development of the video streaming 

system, discussing the rationale behind the necessity of such a system in fully testing the work done. 

Weighted and non-weighted approaches to the ACBO solution are discussed, including how they are 

utilized in the test environment. Finally, this chapter covers the methodology used in choosing performance 

metrics for comparison against previous bandwidth allocation solutions. 

Table 4.1: Test System Summary 

Component Value 

Processor Intel Core i5-3570k, 4-cores @ 3.40 GHz 

Memory 16.0GB DDR3 1333 MHz 

Motherboard Gigabyte Z77X-UD3H 

Storage Samsung 840 Pro 256GB SSD 

Operating System Windows 8.1 

Simulation Software OPNET Modeler 14.5 

 

4.1 System Setup 

The evaluation of the ACBO solution is performed on the system summarized in Table 4.1. This 

system provides sufficient processing ability and memory to perform CV and video encoding tasks in 

conjunction with the modeled network simulations. A graphics card is not necessary for our testing as the 

tasks were run completely on the processor. A solid state drive (SSD) is used to reduce the amount of time 

spent accessing video files, since the files are too large to store in RAM they need to be located on another 

storage medium.  Windows 8.1 is used as it was the latest release of the Windows operating system at the 

time testing and development of this thesis began. We use OPNET Modeler 14.5 as the tool for simulating 

our AVS network models, this version provides all of the functionality that is necessary for evaluating the 

ACBO solution. 
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To evaluate all aspects of the ACBO solution when applied to face recognition effectively, our 

network environment is setup in the OPNET Network Modeler.  OPNET allows us to assess the ACBO 

solution, the effective airtime algorithm, and optimization enhancements across multiple network 

configurations quickly and efficiently. This also allows us to control network conditions that are difficult 

to modify in a real-world network, allowing us the ability to fully test how our optimization solution reacts 

under varying circumstances. Figure 4.1 shows an example of an OPNET network model; it shows a 

network in which there are 40 video sources streaming to the AP/proxy station (node_0). 

We distribute the implementation of the ACBO solution among both the video sources and the 

AP/proxy station. This allows monitoring of parameters from both the clients and server, resulting in a 

higher precision effective airtime calculation. This implementation methodology also provides additional 

benefits by distributing the computational load across many nodes.  As mentioned previously, the H.264 

standard is used to encode video traffic due to its current ubiquity. Previous work utilized image databases 

to create video streams to send over the simulated network.  The method for interacting with video-based 

datasets is more complex to implement and execute than for image-based datasets. As our database for this 

study consists of actual video content we have to implement a method for interaction.  Our investigation 

Figure 4.1: An Example of an OPNET Simulated Network 
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considers several methods for interacting with video streams in order to determine the best approach. In 

one implementation, we attempted to utilize the FFmpeg implementation within OpenCV to create the video 

data for streaming; however, this approach did not give us fine enough control over the encoding 

parameters. We then attempted to utilize the FFmpeg command line externally to the simulation to encode 

videos as input using the system-in-the-loop functionality of OPNET. This method was not effective as 

simulations run much slower than real-time causing a disparity between a simulation and the FFmpeg 

process, resulting in the video sources being unable to receive all of the frames of the video file. This finally 

led to employing the FFmpeg developer library directly in our video sources to encode the video in 

simulation-time, this allows the system to sequentially encode and transmit of all frames from the video 

without the need to interact with multiple programming libraries.  Utilizing the FFmpeg developer library 

was not initially chosen because of the complexity involved with integrating it with the simulated 

environment.  As we were left with no other feasible options, we did extensively modify the OPNET 

simulated network to work with this library. Additionally, as part of application layer of the proxy station 

we implement a realistic video streaming client. The client is able to take RTP packets incoming from the 

video sources, reassemble these packets into video frames, and perform any error concealment necessary 

to mitigate the effects of packet loss. 

4.2 Effective Airtime Estimation Evaluation 

To fully determine if the ACBO solution was a valuable tool in assisting with face recognition we 

have decided to test the entire solution, including the effective airtime estimation. Major changes have been 

made to the implementation of ACBO in order to accommodate our chosen facial recognition algorithm. 

Face recognition algorithms are magnitudes more computationally intensive than face detection algorithms, 

we consider this when looking at effective airtime as computational limits have an effect on the amount of 

data able to be processed and thus the effective airtime. In our scenarios the concern was that the increased 

computational bandwidth usage would cause a larger number of missed packets, requiring the effective 

airtime to be adjusted in response. The previous work on this topic did not fully test scenarios in which high 
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computational loads exist. We test this twofold, in addition to the facial recognition algorithms that place a 

high computational load on the proxy station; we also encode and decode video within the simulated system 

itself. Previous work did not have to perform encoding as the data streamed over the network consisted of 

preselected JPEG images that were sent over the network to simulate a video feed. This scenario results in 

minimal computational load during the simulation, as the video sources need only to point to the correct 

image file and populate packets with the pre-encoded data. The decoding task was performed at the proxy 

station, however, decoding the JPEG images is trivial for a modern processor and this function is already 

built in to OpenCV which was being utilized for face detection, allowing optimizations to be made in the 

process of decoding the data into the correct format for face detection. We, however, have chosen to perform 

all of the encoding tasks during the simulation; this requires much more complex methods for adjusting 

bitrate and packetizing the data.   Although our system is more complex there are major benefits, most 

importantly the simulated system now accurately models a real AVS system. In addition, we now have 

much finer control over the bitrate being sent by the video sources. 

4.3 Video Streaming Implementation 

With this thesis, we focus on creating a more realistic video streaming system compared to previous 

implementations. While previous systems utilize image databases to create streams of simulated video with 

MJPEG encoding, this study utilizes video databases and creates streams with H.264 encoded input videos.  

This decision has led to several challenges in implementing the system successfully in our simulated 

networks.  As we are not using real cameras as inputs, we need a way to simulate the behavior of such 

devices.  While encoding and streaming the video files is straightforward, we found that the method for 

assigning the videos to each source had effects on the consistency of the facial recognition accuracy even 

with sufficiently long simulations. For this reason, we needed to find an assignment method that produced 

repeatable facial recognition accuracy results.   

Through experimentation, we found that the method outlined in Figure 4.2 provided consistent 

recognition accuracy results across multiple simulations.  In this method, we begin by determining the 
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number of video sources in the network and reading the number of videos available, from here we determine 

how many times we can loop through the video file list with the number of sources present. Each video has 

an identifier associated with it, if there are more sources in the network than videos we will assign the 

videos sequentially, looping through the list of videos until we are unable to complete the full list. Once 

this occurs we divide the video list into steps greater than 1 using the remainder value from the division 

calculation. This allows the remaining sources to be evenly distributed across the entire list of videos. This 

situation also occurs when the number of video sources is less than the size of the video list. Once a video 

source finishes streaming a video it moves on to the next video in the sequence. Evenly distributing the 

videos over the entire list allows all videos to be streamed even with small networks, given a sufficiently 

long simulation. 

 

READ Network_Size 

 

READ Number_of_Videos 

 

[LoopsNumber, Remainder] = Network_Size / Number_of_Videos 

 

FOR i < LoopsNumber 

     FOR j < Number_of_Videos 

          ASSIGN video[j] to node(i*j) 

     ENDFOR 

ENDFOR 

 

FOR k <= remaining unassigned nodes 

     multiplier = k * Remainder 

     ASSIGN video[multiplier] to node(k) 

ENDFOR 

           

Figure 4.2: Pseudocode for Video Assignment 

In testing, experiments are conducted on networks that consisted of a combined AP and proxy 

station and a chosen number of video sources. At network initialization, each video source will randomly 

determine a time to begin sending video to the proxy station. The determined time to begin sending must 

be before the first second of network time has passed. The initial sending bitrate is equal to the physical 

rate of the proxy station divided by the number of video sources, irrespective of the physical rate of the 
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video source. Every second each video source sends a status update to the proxy station containing weight, 

physical rate, dropping rate, and local accuracy error information for that specific source. With the data 

from all of the sources, the AP is able to execute the effective airtime estimation algorithm and calculate 

the optimization solution terms. 

 

WHILE RECEIVE Beacon_Pkt 

 

     READ Beacon_Pkt.Fraction_of_Airtime 

      

     CALCULATE Bitrate USING Beacon_Pkt.Fraction_of_Airtime 

 

     IF Bitrate > PreviousBitrate + 100 OR Bitrate < PreviousBitrate – 100 THEN 

          UPDATE Encoding Bitrate 

     ENDIF 

 

     PreviousBitrate = Bitrate; 

 

ENDWHILE 

 

Figure 4.3: Pseudocode for Encoding Bitrate Hysteresis   

Choosing H.264 as our encoding standard allowed us to use a full video dataset as the content of 

our in-network video streams.  As many face recognition datasets are comprised of individual images, it 

creates an added step in compiling these images into a video feed before encoding them with the proper 

codec.  Using the Honda/UCSD dataset, we were able to eliminate this step in the process while also having 

the added benefit of having continuous video feeds in our network, as would exist in a real-world scenario.    

Each video source takes an input value for a frame rate and a desired bitrate.  We set the frame rate to a 

constant 20 frames per second and the bitrate is adjustable based off the network conditions.  We implement 

a simple hysteresis to the bitrate input to ensure that the video sources are not caught in a loop of changing 

the stream bitrate, this algorithm is shown in Figure 4.3.  We view that in most cases relatively small 

changes to bitrate (≤ 100 bps) do not affect the overall facial recognition accuracy. 
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4.4 Weighted vs. Non-Weighted Configurations 

An additional approach was added to the testing to show the possible benefits of weighting. This 

was not explored in previous work, as it was assumed that weighting would always be performed. The 

weight values, or importance factors, are used to designate priority of video sources in the network. These 

values can be pre-assigned or dynamically assigned as the network operates. For the testing purposes in this 

thesis and since all videos streaming in the network contain similar content, there was no metric to base the 

weights on. Therefore, for this thesis the weighted optimization solution assigns randomly generated 

weights to each video source in the network before running. This approach is consistent across all network 

configurations and experiments.  We test two variants of the ACBO solution in this thesis: unweighted and 

weighted. We refer to the unweighted variant as the Accuracy Optimization without Weighting (AO) 

method. For this solution, the weight values of all sources are equal. To determine the weight value, we 

divide 1 by the number of video sources in the network. This effectively ensures that there is no weighting 

as all video sources have the same importance when calculating the share of effective airtime. In the 

weighted variant, referred to as the Weighted Accuracy Optimization (WAO), five different levels of weight 

values exist; the weight of each video source is randomly chosen from this list. In both solutions the weight 

values range from 0 to 1, with the sum of all weights used being equal to 1. We assign the physical rates 

for each video source by creating an even distribution of the 6 possible physical rates of the 802.11g 

standard (12, 18, 24, 36, 48, and 54 Mb/s) [52] and randomly assigning the rates to each video source. Table 

4.2Error! Reference source not found. summarizes the main simulation parameters. 

4.5 Performance Metrics 

We compare the two variants of the ACBO solution, AO and WAO, with the following solutions. 

(1) The enhanced distributed channel access (EDCA) solution, which provides no accuracy-based 

optimization, only giving benefits through reduction in network contention, and (2) Adaptive EDCA [15], 

a hypothetical method that utilizes the same framework as EDCA, but also takes into account the physical 

rate of each video source and the number of sources in the network when allocating bandwidth. In order to 
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provide useful comparisons to prior studies we select several main performance metrics. The primary 

performance metrics we analyze are facial recognition accuracy, overall network load, and power 

consumption. Facial recognition accuracy was an obvious choice as the ACBO solution intends to optimize 

bandwidth to improve or maintain accuracy. Network load and power consumption are important metrics 

to monitor, as they have implications on the cost and scalability of an AVS system. The facial recognition 

accuracy for AO, EDCA and Adaptive-EDCA is calculated as the average accuracy across all video sources 

in a network. For WAO the accuracy is determined as the sum of the weight-adjusted accuracy for each 

video source, shown in Equation (4), where S is the network size, w is the weight of a source, and A is the 

accuracy of the source. In each solution, the accuracy for each source is determined as the facial recognition 

accuracy for all received frames. The system assigns a value of zero for the accuracy of dropped frames.  

The overall network load is defined as the total load sent by the application layers of all video sources. 

Finally, power consumption is the average power consumption of the wireless interfaces of the video 

sources and is determined using the power consumption model in [53]. 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑎𝑙 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 𝑤𝑖 × 𝑆
𝑖=1 𝐴𝑖 ,    (4)  

Table 4.2: Simulation Parameters 
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Chapter 5  Result Presentation and Analysis 

This chapter will present and analyze the results of the tests performed on the OPNET simulated 

AVS networks focusing primarily on the performance metrics discussed in the previous chapter. It will 

discuss the efficiency of the effective airtime estimation algorithm when used in conjunction with H.264 

encoded data packets. Furthermore, the chapter presents the results for our main performance metrics for 

testing of the ACBO solution applied to face recognition. The effectiveness of the enhancements to the 

ACBO solution (bandwidth pruning, bandwidth capping, and distributed face cropping) are analyzed 

thoroughly. 

5.1 Analysis of Effective Airtime Estimation Method Applied to H.264 

Encoding 

A major part of the ACBO solution is the improvement to the effective airtime estimation through 

the use of a PID controller. Without a properly working PID controller we would not observe correct 

adjustments to the effective airtime, causing a loss in performance of the optimization. Utilizing the PID 

controller from [18], we perform experiments to determine the best values for the PID parameters, KP, KI, 

and KD. Our findings show that as with the previous study, varying the value of Athresh had the largest impact 

on the effective airtime. Table 5.1 shows the results of our experimentation.  

Table 5.1: Summary of PID Parameters 

Parameter Value 

Athresh 0.01 

KP 6.25 

KI 5.25 

KD 0.75 

 

These results deviate from those found in [18] and can be attributed to the differences in workloads 

between MJPEG and H.264 data. A main benefit to H.264 is being able to maintain the same video quality 

at a much lower bitrate than previously tested codecs. Consequently, when we utilize H.264 as our codec, 
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the observed dropping rate remains low due to the lower necessary sending rate, thus allowing the use of 

more aggressive PID parameters. The previous implementation converges at around 70 seconds of 

simulated time, whereas with our parameters the convergence happens at around 40 seconds, with only 

minor adjustments due to network conditions after that.  In this figure we use an Athresh value of 0.005 in 

order to have a direct comparison, although for our main testing we do not use this value for Athresh. Although 

this is not the value normally tested with, the convergence times are similar over multiple different values 

and as such are not shown in our results. 

Figure 5.1 shows the average effective airtime versus the number of video sources in the network 

for the two bandwidth allocation variants. From the results, we see that as the number of video sources in 

Figure 5.2: Facial Recognition Accuracy at 

Various Athresh Values 
Figure 5.3: Power Consumption at Various 

Athresh Values 

Figure 5.1: Average Effective Airtime for WAO and AO 
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the network increases so does the effective airtime up to a point, after which the effective airtime decreases 

gradually as source number increases.  We observe that with H.264 encoded data packets the effective 

airtime peaks with a network size of four. This lines up with the hypothesis in [18], as the sending rate for 

the H.264 encoded video is much more aggressive than the sending rates for the tested encoding methods 

in that work.  We observe that the average values for effective airtime are much larger in this study than in 

previous work.  This has to do with the structure of the packets sent over the network.  In previous studies, 

MJPEG data was sent over the network, with that encoding method all frames at any giving time are of 

similar sizes, making the traffic much more consistent.  With H.264, the use of a mix of I, P, and B frames 

causes the size of the packets being sent over the network to be much more inconsistent at a specific time. 

This has a benefit though, with MJPEG this network is at its maximum stress at all times, however, with 

H.264 the stress on the network fluctuates but remains lower overall. While H.264 encoding would maintain 

the same overall bitrate, the different sizes of the three frame types makes the load on a network variable. 

There is rarely a time where only the largest frame type (I-frame) is sent over the network. This situation 

causes the largest stress on the network resulting in the highest observable dropping rate, but since this is a 

rare occurrence, dropping remains lower with H.264.  This allows the bitrate to be increased in order to hit 

the level of allowable dropping defined by Athresh, which is why a higher average effective airtime is 

observed with H.264 encoding.  We also see in Figure 5.1 that the average effective airtime is very close 

Figure 5.4: WAO vs. AO Comparison of 

Network Load 
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between the two ACBO variants; this is expected, as there are only small differences in overall network 

load between the two methods. 

We will now look at the impact that Athresh has on the optimization calculations. With the Athresh 

value we control the amount of packet dropping that is allowable in the network, changing this value has a 

direct effect on the facial recognition accuracy and power consumption of the network. In Figure 5.2 we 

show the relationship between Athresh and facial recognition accuracy.  This figure shows that at very low 

Athresh values there is a negative effect on accuracy. This can be attributed to the lower bitrate required to 

meet the dropping limit imposed by Athresh. As we expect, as Athresh increases we see an increase in accuracy 

to a point, after which we see accuracy decrease.  This is due to the methodology chosen for calculating 

accuracy, in which a dropped packet is equal to an incorrect face recognition. With higher allowable 

dropping rates, the system is able to increase the bitrate for each video source; however, the effects of 

packet dropping on the accuracy offset any benefits that may have been provided. We see that in this system 

the accuracy peaks with an Athresh value equal to 0.1, with smaller values there is a gradual drop-off in 

accuracy and with larger values there is a sharp decline in accuracy.  Figure 5.3 shows that the power 

consumption increases with Athresh. This is due to the higher achievable sending rate that occurs when more 

dropping is allowed. Athresh selection depends on the application and should be chosen by analyzing the 

tradeoff between power consumption and desired accuracy. 

Figure 5.5: Comparison of Face Recognition 

Accuracy with Different Allocation Solutions 

Figure 5.6: Comparison of Network Load with 

Different Allocation Solutions 
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5.2 Effectiveness of the Proposed Bandwidth Allocation Solution for Face 

Recognition 

In Figure 5.5, Figure 5.6, and Figure 5.7 we show a comparison overall facial recognition accuracy, 

network load, and power consumption of several bandwidth allocation solutions using the Honda/UCSD 

dataset. The results show that with the AO solution we achieve significant increases in facial recognition 

accuracy over EDCA.  Figure 5.5 shows that the accuracy ranges from a 5-65% increase when comparing 

AO to EDCA.  With WAO, we see the range change to a 7-66% increase over EDCA. Comparing this to 

Adaptive EDCA, however, the increase in accuracy is not as significant. With AO, we see an increase in 

accuracy of 2-10% over Adaptive EDCA; with WAO, we see an increase of 3.5-13% over the Adaptive 

EDCA method.  As we randomly assign the weighting in our testing, the implementation can be considered 

non-optimized. With optimization of the weights of the video sources based off individual conditions, we 

expect this range to further increase over EDCA.   

We see in Figure 5.5 that with smaller network sizes AO and WAO both compare favorably to 

EDCA and Adaptive EDCA. The data shows that for the EDCA and Adaptive EDCA solutions there is an 

initial ramp up until a peak accuracy is reached.  This peak occurs at a network size of 10 for EDCA and a 

network size of four for Adaptive EDCA. In smaller networks using EDCA, we attribute the lower accuracy 

to the requested sending rate reaching the maximum physical rate possible for those nodes, which results 

Figure 5.7: Comparison of Power Consumption 

with Different Allocation Solutions 

Figure 5.8: WAO vs. AO Comparison of Power 

Consumption  
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in a higher degree of packet loss. In our testing, we observe that although Adaptive EDCA is better overall 

at assigning bandwidth than EDCA, increased packet dropping still occurs with very small network sizes.  

This is interesting because by definition the assigned bandwidth should never exceed the physical rate of 

the connection when using the Adaptive EDCA solution. In our analysis, we observe that in these scenarios 

large amounts of contention in the network cause the elevated level of packet dropping.  The sending time 

adjustments are not capable of overcoming the contention when few video sources exist in the network. 

This is also an issue with the standard EDCA implementation when used with smaller network sizes.  As 

the WAO and AO methods are much better at distributing bandwidth, we do not observe the same accuracy 

trend for these methods, the smaller network sizes exhibit the peak accuracy and we see a downward trend 

as the network size increases. The initial positive slope seen with EDCA and Adaptive EDCA is not present.  

With EDCA we observe a large drop-off in accuracy between networks sizes of 20 and 32 video 

sources. Observing the data for these simulations shows that there is a significant increase in the number of 

frames missed by the proxy station. As we can see in the network load data in Figure 5.6, the physical 

bandwidth limit of the medium is reached at 10 nodes with the EDCA solution, after which we observe 

increased contention in the network. Looking back at the accuracy data, we can see that the slope of the 

accuracy is much lower from 10 to 20 sources than from 32 to 72 sources. At 32 sources, we believe the 

network reaches a tipping point in the balance between data being sent over the network and data able to 

be processed by the proxy station. We do not observe this large drop-off with AO, WAO, or Adaptive 

EDCA.  The data collected shows that none of these implementations reach the bandwidth limit of the 

medium, supporting our hypothesis. 

In Figure 5.5, we can also see that the application of weights to each of the video sources provides 

the ability to tune the accuracy, allowing for further increases in recognition. In our testing, we randomly 

assign weights to each of the video sources. In these tests, we attain a 5% increase in facial recognition 

accuracy over the non-weighted solution; with more analysis of the activity from the video sources the 

weights could be adjusted to achieve even greater increases in accuracy.  
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In addition to the facial recognition accuracy benefits from the AO and WAO bandwidth allocation 

variants, we also see a significant decrease in network load and power consumption in the tested networks, 

this data is shown in Figure 5.6 and Figure 5.7 respectively.  The non-weighted optimization solution 

provides up to a 70% decrease in network load and power consumption from EDCA. Adding weights to 

the sources provides up to an additional 4% decrease in both metrics. Comparing AO to Adaptive EDCA, 

we see a reduction in network load and power consumption of up to 51%; with the weighted solution, we 

see up to an additional 2% reduction in both metrics. Figure 5.4 and Figure 5.8 show direct comparisons of 

the AO and WAO methods to more effectively display the differences in network load and power 

consumption between the two solutions. The figures show that the differences in network load and power 

consumption between the weighted and non-weighted variants are minimal in our implementation. 

5.3 Analysis of the Bandwidth Pruning Mechanism 

In this section, we discuss the effectiveness of the bandwidth pruning method when used with the 

AO bandwidth allocation variant. We analyze pruning at four different levels: 95%, 90%, 80%, and 70%. 

The pruning level specifies the expected percentage of the original accuracy achieved by the system when 

using the AO method. The decision to not test this mechanism with the WAO method was made because 

initial testing indicated that the results would closely match those of the AO method.  The decreases in 

Figure 5.9: Comparison of Facial Recognition 

Accuracy at Various Pruning Levels 

Figure 5.10: Comparison of Network Load at 

Various Pruning Levels 
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sending rate in order to achieve the desired accuracy reductions matched closely between the two variants, 

as they did when testing the methods without pruning. The only differences seen in accuracy were related 

to the effects of weighting, which follows the same trend as the non-pruned tests. The observed network 

load and power consumption were nearly identical between the two variants when pruning was applied. 

The results of our pruning analysis with the AO method show that with the bandwidth pruning mechanism 

applied we are able to significantly reduce the network load and power consumption of a network with only 

relatively small decreases to accuracy. 

Figure 5.9 shows the accuracy for all four levels of pruning plotted against the same results for the 

AO variant without pruning.  From the figure, we see that the accuracy follows the expected trend and 

decreases as the number of video sources in the network increases. This is attributed to the per source 

sending rate decreasing as the source number increases which, as expected, causes a decrease in the face 

recognition accuracy. With the overall network load and power consumption, shown in Figure 5.10 and 

Figure 5.11 respectively, we see a different trend. For this data, we observe that as the number of video 

sources increases in the pruned networks the load and power consumption increases, unlike the non-pruned 

network where both of these parameters are inversely proportional to the number of sources in the network 

beyond a certain network size. What we observe in these scenarios is that the reduction in sending rate 

required to meet the desired accuracy is greater in the smaller networks.  In small networks, individual 

Figure 5.11: Comparison of Normalized Power 

Consumption at Various Pruning Levels 
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video sources start out at much higher sending rates than in larger networks. Due to the rate-accuracy curve 

leveling out at a relatively low bitrate, to achieve even a small reduction in accuracy the sending rate of the 

sources must be reduced significantly, thus providing a large benefit to smaller networks.  This is not the 

case with the larger network sizes as the individual sending rate for each node is already at the low end of 

the rate-accuracy curve. In this situation the reduction in sending rate to achieve the desired accuracy is 

much less.  This has the effect of normalizing the sending rates across differing network sizes and we 

consider this ideal behavior. The original sending rates for the video sources in smaller networks are 

significantly higher than they need to be to maximize the face recognition accuracy, creating unnecessary 

load on the network. With larger network sizes, we see the benefits decrease as the original sending rates 

for these video sources are already close to the transition point in the rate-accuracy curve where the accuracy 

drops off quickly.  We can deduce that at a network size larger than those tested in this study the original 

sending rates will be such that the pruning provides little to no benefit to the network. However, this network 

size would be sufficiently large that computational limits of the proxy station would have become the main 

limiting factor. In addition, networks of this size with the configuration we examine in this thesis would be 

uncommon in real world scenarios due to cost of implementation and limits in the computational and 

network mediums. From the data shown in Figure 5.11, we see that the power consumption follows the 

same trend as the network load. This is expected, as power consumption is directly proportional to sending 

rate as previously mentioned. 

Figure 5.12: Expected vs. Actual Facial 

Recognition Accuracy at 80% Pruning 

Accuracy, Expected vs. Actual 

Figure 5.13: Expected vs. Actual Facial 

Recognition Accuracy at 70% Pruning 
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From the data, we see that with 95% and 90% pruning the achieved accuracy matches the desired 

accuracy closely, once we drop to 80% and 70% pruning the achieved accuracy begins to vary largely from 

the desired accuracy, especially with the smaller network sizes. Figure 5.12 and Figure 5.13 show the 

expected accuracy after pruning against the actual value obtained for both 80% and 70% pruning 

respectively; the AO curve is included for reference. There are several causes for this type of behavior; the 

leading cause can be attributed to the tolerances of FFmpeg encoding when assigning bitrates.  For the 

bitrate assignment with FFmpeg we observe that there is some variance between the achieved bitrate and 

the assigned bitrate. This is expected, since the achieved bitrate is highly dependent on the video source 

being encoded. We observe that in general with our selected video set the achieved bitrate tends to be lower 

Figure 5.14: Facial Recognition Accuracy with 

95% Pruning Compared to Other Solutions 
Figure 5.15: Network Load with 95% Pruning 

Compared to Other Solutions 

Figure 5.16: Comparison of Network Load with 

95% Pruning vs. WAO vs. AO 
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than the specified bitrate. Further exacerbating the issue is that toward the lower end of our accuracy model 

small variances in bitrate result in large variances in face recognition accuracy. This can be seen in the 

zoomed view of the rate-accuracy model in Figure 3.4. When trying to prune a larger percentage of the 

original accuracy the desired bitrates begin to fall into this region of our rate-accuracy model and with 

FFmpeg unable to achieve an exact bitrate, it can lead to large differences between the achieved and desired 

accuracy. We see a larger discrepancy between the expected and achieved accuracy in smaller networks 

because they start out at a much higher initial sending rate, meaning there needs to be a large decrease in 

sending rate in order to achieve the desired pruning according to the rate-accuracy curve.  In addition, with 

less video sources in the network, even a single source missing its sending rate target will have a large 

effect on the average accuracy of the network. In larger networks, this error is masked due to the number 

of video sources streaming as well as their lower initial starting rate. 

Figure 5.14 shows the comparison of the average accuracy for AO with 95% pruning results with 

the results of the other bandwidth allocation methods tested. From the figure, we see that the accuracy of 

AO with 95% pruning follows the same trend as WAO, AO, and Adaptive EDCA. In addition, it shows 

that the accuracy achieved by the 95% pruning method is about 2% lower than the Adaptive EDCA method 

at all network sizes. With smaller numbers of video sources, the pruning method is also lower than EDCA; 

however, with larger network sizes we still see a significant increase in accuracy over EDCA. While these 

Figure 5.18: Comparison of Power 

Consumption with 95% Pruning vs. Other 

Solutions 

Figure 5.17: Comparison of Power 

Consumption with 95% Pruning vs. WAO vs. 

AO 
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accuracy data might not give optimal results in terms of face recognition accuracy, we see in the data shown 

in Figure 5.15 and Figure 5.18 that a substantial decrease in overall network load and power consumption 

is achieved with pruning. Figure 5.16 and Figure 5.17 show a direct comparison of the 95% pruning with 

AO and WAO to better show the behavior compared to the solutions under test. With the pruning method, 

we see up to a 95% reduction in network load and power consumption compared to EDCA. In addition, we 

see up to an 86% decrease in network load and power consumption when compared to Adaptive EDCA. 

As discussed previously, Adaptive EDCA performs exceptionally well in our scenarios while requiring 

little overhead, however, the network load and power consumption are still significantly higher than the 

ACBO-based methods. While there is a slight trade off in accuracy, the pruning method performs 

exceptionally well in regards to network load and power consumption. This method should be of strong 

consideration in situations where power consumption is an important factor.  

5.4 Effectiveness of Proposed Bandwidth Capping Method 

With the proposed bandwidth capping method, we expect to see a significant decrease in network 

load and power consumption in the simulated networks. It is also predicted that the effects of bandwidth 

capping would diminish as the network size grew, since it only makes sense to cap bandwidth to a value 

that does not adversely affect the performance of the face recognition accuracy. As network size grows the 

Figure 5.19: Bandwidth Capped vs. Non-Capped 

vs. Pruned Comparison of Facial Recognition 

Accuracy  

Figure 5.20: Bandwidth Capped vs. Non-Capped 

vs. Pruned Comparison of Network Load 
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average bitrate for each video source decreases gradually to values below the bandwidth cap, thus 

disregarding the cap. For the testing in this thesis a cap of 1.5 Mbps is chosen based off the rate-accuracy 

curve generated for the face recognition database under test. We see in Figure 5.20 and Figure 5.21 that the 

results follow the expected behavior for both network load and power consumption. For configurations of 

2 and 4 video sources, we observe a reduction in network load and power consumption of 73% and 62% 

respectively.  For the 10 video source network configuration, we observe a smaller, but still significant, 

decrease of 25%. Beyond 14 sources, the average bitrate of the video sources decreases below the 

bandwidth cap and the benefit is no longer present. As expected the bandwidth capping did not negatively 

affect the face recognition accuracy; in fact, as Figure 5.19 shows, there is a small increase in accuracy over 

all configurations tested in which the bandwidth capping was imposed. We observe a 1% increase in face 

recognition accuracy for the 2, 4, and 10 video source configurations. This result is similar in magnitude to 

the increase in accuracy observed when implementing a weighting system in the network. While this 

proposed enhancement only works with smaller network sizes, this method is much simpler to implement 

and requires much less input from outside sources than a weighting system. 

 Compared to the pruning method, the bandwidth capping method provides several benefits. In 

networks with up to 14 video sources we see an increase in accuracy over both the AO-only and AO with 

pruning variants even though we are still able to reduce the network load and power consumption. Although 

Figure 5.21: Bandwidth Capped vs. Non-Capped 

vs. Pruned Comparison of Power Consumption 



57 

 

 
 

the reductions in these two metrics are not as great as with the bandwidth pruning method, they are still 

significant. The bandwidth capping method is also less computationally intensive than the bandwidth 

pruning method. With the pruning method an initial bitrate is determined, then calculations are performed 

to determine the expected accuracy at that initial bitrate and the bitrate necessary to result in a specified 

percentage of that accuracy. The bandwidth capping method only requires a predetermined cap to be used 

during the initial bitrate calculation. The main disadvantage of the bandwidth capping method compared to 

the bandwidth pruning method is that once networks reach a certain size the capping no longer takes place, 

whereas the pruning method is able to work for all ranges of network sizes.  

5.5 Effectiveness of Proposed Distributed Face Cropping Method 

 We evaluate the proposed distributed face cropping method using the same performance metrics as 

previous tests in this thesis. We monitor the facial recognition accuracy, overall network load, and power 

consumption. The results for accuracy are shown in Figure 5.22, with the results for network load and power 

consumption being shown in Figure 5.23 and Figure 5.24 respectively. What we observe is that there is a 

substantial increase in facial recognition accuracy compared to the AO bandwidth allocation variant.  We 

observe that with smaller network sizes the facial recognition accuracy increases by about 5.5%, this 

attained accuracy comes within 1% of the maximum possible accuracy of 52% that we observe with the 

Honda/UCSD database. While this is a significant improvement over the non-enhanced solution, the 

Figure 5.22: Distributed Face Cropping vs. AO 

Comparison of Facial Recognition Accuracy 
Figure 5.23: Distributed Face Cropping vs. AO 

Comparison of Network Load 
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enhancement really begins to show its effectiveness as the network size increases. As the number of video 

sources in the network increases, the accuracy value stays close to the observed maximum for much longer 

than without this enhancement.  We see that with the AO solution, the accuracy begins to drop rapidly in 

networks with greater than 10 video sources. Over the range of network sizes tested in this thesis the 

accuracy drops 40% with only AO implemented. With the distributed face cropping method, the decrease 

in accuracy over that same range is only 4.2%. There are several reasons that can be attributed to the 

observed increase in accuracy. The main reason being the ability to use high quality video for all network 

sizes tested. In the tests run, the system was able to send face images at full quality, as even with that level 

of quality the reduction in data compared to sending the full frames results in the dropped packet rate staying 

close to zero. Figure 5.23 backs up this claim, as we see the network load at each network size is orders of 

magnitude lower than with just AO implemented. As the system counts a dropped packet as zero for the 

instantaneous accuracy, having effectively no packet dropping in the network helps significantly by 

reducing the likelihood of such an occurrence.  

The proposed distributed face cropping method also has a large impact on the network load. In 

Figure 5.23, it can be seen that with smaller network sizes there is a 99% reduction in load, with larger 

network sizes this decreases to an 83.5% reduction in network load. The network load trend for the 

distributed face cropping method does not follow the same trend as AO by itself. This is because all video 

sources in each network configuration are effectively streaming at the same rate after cropping the faces, 

Figure 5.24: Distributed Face Cropping vs. AO Comparison 

of Normalized Transmission Power Consumption 
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due to there being no need to reduce the image quality.  To stream at full quality with cropped videos the 

necessary bandwidth is only 23Kbps. As video sources are added the network load increases linearly.  We 

expect that if video sources were to continue to increase the network would reach a saturation point and a 

reduction in the video quality would needed. However, network sizes large enough saturate the medium 

would have hit computational processing limits well before reaching that point.  With 72 video sources we 

already observe limits due to the computation power of the proxy station, with the station missing packets 

due to the time needed to perform facial recognition for that number of video feeds.  

Power consumption due to transmission sees similar gains as network load with the distributed face 

cropping method.  Figure 5.24 shows that as with network load, with smaller network sizes we observe a 

99% decrease in transmission power consumption and with larger network sizes the reduction is around 

83.5%.  There was no work done to re-characterize the power consumption model of the system, we used 

the same model from [53]. We assume that as the face detection is still being performed, although now at 

the video sources, the power consumption model would not change significantly.  Therefore, we expect that 

the primary change in power usage is from the transmission of data from the video sources to the proxy 

station. With the large reduction in sending rate, the model shows that there should be a similarly large 

reduction in transmission power consumption. As the processor architectures of video sources may not have 

the same level of efficiency at performing CV tasks as the proxy station, more work needs to be done to 

characterize the power consumption of smart cameras when performing image manipulation tasks.    
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Chapter 6  Conclusions and Future Work 

6.1 Conclusions 

We have analyzed the accuracy-based cross-layer bandwidth optimization solution (ACBO) for 

automated video surveillance (AVS) systems when applied to face recognition. Through our testing we 

have shown that the ACBO solution can successfully manage bandwidth even when an efficient codec like 

H.264 is used. We have developed effective facial recognition and video streaming implementations for 

use with AVS systems addressing the shortcomings of previous work. We have proposed two effective 

enhancements to the ACBO solution: bandwidth capping and distributed face cropping.  With bandwidth 

capping we have developed an enhancement that is able to reduce excessive bandwidth usage. The 

distributed face cropping enhancement provides improvements to network load through the distribution of 

computer vision (CV) tasks, allowing image manipulations, such as face detection, to be performed at video 

sources, resulting in a reduction of data sent over the network. The systems we have designed closely match 

real-world implementations and are able to be performed in real-time. Through our experimentation we 

have demonstrated the effectiveness of the framework under differing conditions. We have performed 

extensive work to implement a face recognition system into an OPNET simulated network, including the 

implementation of a full video transcoding system using FFmpeg and a full video training system for the 

recognition algorithm. Using OPNET-simulated wireless networks of varying sizes, we have extensively 

tested the application facial recognition to the ACBO solution. The main findings of our evaluations can be 

summarized as follows:  

(1) Face recognition accuracy follows a similar trend to face detection, allowing the use of the 

same model for the rate-accuracy curve. Consequently, the ACBO solution requires only minor 

modifications to work with a face recognition system. We believe that this should hold true for 

most CV algorithms. As we have discussed, CV algorithms are tolerant to changes in video 
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quality and thus accuracy will remain at a consistent level until a critical point in quality is 

reached, after which the accuracy begins to decrease significantly.  

(2) Face recognition accuracy, network load, and power consumption are significantly enhanced 

with ACBO-based solutions when compared to the enhanced distributed channel access 

(EDCA) and Adaptive-EDCA frameworks. Using the rate-accuracy model, the system is able 

to considerably reduce network load while also maximizing recognition accuracy. The 

reduction in power consumption and increase in recognition accuracy can be partially attributed 

to lower dropping rates in networks utilizing the ACBO framework.   

(3) Even with a high compression codec like H.264, the ACBO solution is still able to provide 

significant benefits over EDCA and Adaptive-EDCA. No significant changes were needed in 

the calculation of the rate-accuracy curve when H.264 was used, as the data still follows the 

same rate-accuracy model function. 

(4) The bandwidth pruning method is able to significantly reduce network load and power 

consumption across all tested network sizes. These results were viewed across several different 

pruning percentages. With the 95% pruning level the ACBO-based solutions achieve better 

face recognition accuracy than both the EDCA and Adaptive-EDCA solutions in the majority 

of situations while also reducing the network load and power consumption by up to 75%, 

demonstrating that bandwidth pruning is still effective in a system running facial recognition. 

(5) The proposed bandwidth capping method results in significant reductions in network load and 

power consumption in small AVS networks. Interestingly, this enhancement also results in a 

slight increase in facial recognition accuracy. This 1% increase can be attributed to the 

reduction in packet loss exhibited when the network is not under full load. As this is a simple 

enhancement to implement and it does not negatively affect large networks, we recommend 

that it be used in all future implementations of the accuracy-based cross-layer bandwidth 

allocation solution. 
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(6) The proposed distributed face cropping method substantially reduces network load in the 

system under test while also resulting in an overall increase in facial recognition accuracy.  

Gains in facial recognition accuracy were up to 40% and the accuracy remained consistent as 

network size increased. Up to 99% reductions in network load were observed with this 

optimization. While this enhancement requires significant restructuring of the architecture of 

an AVS system, if the resources are available it provides dramatic gains to the performance of 

the system. 

6.2 Future Work 

For future work, we plan to test cross-layer optimization approaches over a variety of different 

network protocols. Due to limitations in our simulation software, we were only able to test using the 802.11g 

protocol. We plan to evaluate the ACBO solution in the newer 802.11n and 802.11ac protocols to see if we 

achieve the same benefits.  As 802.11g is an older protocol, it would be beneficial to obtain results with a 

newer protocol. Our findings thus far indicate that the ACBO solution applied to face recognition would be 

beneficial with newer protocols as the largest difference between our tested protocol and newer 

technologies is the bandwidth available in the medium. We have already performed tests varying the 

physical rate of video sources, which have displayed the benefit of the allocation solutions. In addition, 

with more bandwidth available we plan to use simulations to test with larger network sizes to determine 

how well the solution scales. We also plan to test the effects of channel noise on the recognition accuracy-

based optimizations, with our current model noise is left at the default setting in OPNET. With more work 

we will characterize different channel noise scenarios and further develop the solution so that it can react 

more effectively in these situations. It would also be beneficial to test the system on real hardware to 

understand if there are any intricacies present in a physical system. With H.265 in its nascence, it would be 

proactive to evaluate an accuracy model as well as testing the behavior of the ACBO solution when utilizing 

this protocol. As shown with the enhancements proposed in this thesis, there is still much work to be done 

that can result in further reductions in network usage and power consumption. Additional work is planned 



63 

 

 
 

to be done to characterize the power consumption when the face detection task is distributed among the 

network. With future work we intend to explore the proposed enhancements further.  
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ABSTRACT 

ANALYSIS OF CROSS-LAYER OPTIMIZATION OF FACIAL RECOGNITION IN 
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Interest in automated video surveillance systems has grown dramatically and with that so too has 

research on the topic. Recent approaches have begun addressing the issues of scalability and cost. One 

method aimed to utilize cross-layer information for adjusting bandwidth allocated to each video source. 

Work on this topic focused on using distortion and accuracy for face detection as an adjustment metric, 

utilizing older, less efficient codecs. The framework was shown to increase accuracy in face detection by 

interpreting dynamic network conditions in order to manage application rates and transmission 

opportunities for video sources with the added benefit of reducing overall network load and power 

consumption.  

In this thesis, we analyze the effectiveness of an accuracy-based cross-layer bandwidth allocation 

solution when used in conjunction with facial recognition tasks. In addition, we consider the effectiveness 

of the optimization when combined with H.264. We perform analysis of the Honda/UCSD face database to 

characterize the relationship between facial recognition accuracy and bitrate. Utilizing OPNET, we develop 

a realistic automated video surveillance system that includes a full video streaming and facial recognition 

implementation.  We conduct extensive experimentation that examines the effectiveness of the framework 

to maximize facial recognition accuracy while utilizing the H.264 video codec. In addition, network load 
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and power consumption characteristics are examined to observe what benefits may exist when using a codec 

that maintains video quality at lower bitrates more effectively than previously tested codecs. We propose 

two enhancements to the accuracy-based cross-layer bandwidth optimization solution. In the first 

enhancement we evaluate the effectiveness of placing a cap on bandwidth to reduce excessive bandwidth 

usage. The second enhancement explores the effectiveness of distributing computer vision tasks to smart 

cameras in order to reduce network load. 

The results show that cross-layer optimization of facial recognition is effective in reducing load 

and power consumption in automated video surveillance networks. Furthermore, the analysis shows that 

the solution is effective when using H.264. Additionally, the proposed enhancements demonstrate further 

reductions to network load and power consumption while also maintaining facial recognition accuracy 

across larger network sizes.  
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