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Abstract

This paper presents the algorithms and results of our participation to the medi-
cal image annotation task of ImageCLEFmed 2008. Our previous experience in the
same task in 2007 suggests that combining multiple cues with different SVM-based
approaches is very effective in this domain. Moreover it points out that local features
are the most discriminative cues for the problem at hand. On these basis we decided
to integrate two different local structural and textural descriptors. Cues are combined
through simple concatenation of the feature vectors and through the Multi-Cue Ker-
nel. The trickiest part of the challenge this year was annotating images coming mainly
from classes with only few examples in the training set. We tackled the problem on
two fronts: (1) we introduced a further integration strategy using SVM as an opinion
maker. It consists in combining the first two opinions on the basis of a technique
to evaluate the confidence of the classifier’s decisions. This approach produces class
labels with “don’t know” wildcards opportunely placed; (2) we enriched the poorly
populated training classes adding virtual examples generated slightly modifying the
original images. We submitted several runs considering different combination of the
proposed techniques. Our team was called “idiap”. The run using jointly the low cue-
integration technique, the confidence-based opinion fusion and the virtual examples,
scored 74.92 ranking first among all submissions.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries; H.2.3 [Database
Managment]: Languages—Query Languages

General Terms

Measurement, Performance, Experimentation

Keywords

Automatic Image Annotation, Cue Integration, Confidence Estimation, Virtual Examples, Sup-
port Vector Machines, Kernel Methods



1 Introduction

The rapid development of new medical image acquisition techniques and the widespread of com-
puterized equipment to save transfer and store medical imagery in digital format have led to the
need for new methods to manage and archive this data. Average-sized radiology departments
produce nowadays several tera-bytes of data annually. Automatic image annotation systems turn
out to be important tools to manage big databases, in avoiding manual classification errors and
helping in image retrieval. The ImageCLEFmed challenge is an international event which gives
the possibility to different research groups to benchmark their image annotation approaches. The
aim is to find out how well current techniques can identify image modality, body orientation, body
region and biological system examined based on the images.

In 2008 the ImageCLEFmed annotation task provided participants with 12076 x-ray images as
training data spread across 197 classes. The task consisted in assigning the correct label to 1000
test images. To recognize these images, an automatic annotation system have to face two major
problems: the intra-class variability vs inter-class similarity, and the data unbalance. The first
problem arises from the fact that images belonging to the same visual class might look very different
while images that belong to different visual classes might look very similar. The second one is
connected to the natural disposition of organs in the human body and the frequency of diseases,
which causes that some parts of the body are more likely to be object of image acquisition. The
ImageCLEFmed organizers decided to focus on this second problem introducing in the training
set 82 classes with a maximum of 6 images each and preparing a test set mainly with images from
this low populated classes.

This paper describes the algorithms submitted by the “idiap” team as its second participation
to the CLEF benchmark competition1. Last year we proposed different cue-integration approaches
based on Support Vector Machine (SVM, [2]), using global and local features. They proved robust
and able to tackle the inter-vs-intra class variability problem. Our run based on the use of the
Multi-Cue Kernel (MCK, [18]) ranked first in 2007. After the competition we compared the results
obtained by MCK with a scheme consistent in concatenating the different feature vectors. Results
showed that the two methods do not produce significatively different results [18].

This year we decided to reuse both the above described methods changing the selected features
into two different types of local descriptors: Scale Invariant Feature Transform (SIFT, [8]) and
Local Binary Pattern (LBP, [11]). We also propose two strategies to tackle the unbalancing
problem. On one hand we explore a technique to estimate the confidence of the classifier’s decision
and when it is not considered reliable, a soft decision is made using SVM as an opinion maker and
combining its first two opinions to produce a less specific label. This approach was derived from
the label hierarchical structure and the possibility to insert a “don’t know” in some point in it.
On the other hand we created examples for the classes with few images to enrich them. The new
images were produced as slightly modified copies of the original ones through translation, rotation
and brightness changes.

We submitted several runs, the results show that the classification performance increases pass-
ing from the use of a single cue (idiap-LBP score 128.58; idiap-SIFTnew score 100.27) to that of
multiple cues (LOW lbp siftnew score 93.20), from the use of a hard decision (idiap-MCK pix sift
score 313.01; LOW lbp siftnew score 93.20) to a soft decision through confidence based opinion
fusion (idiap-MCK pix sift 2MARG score 227.82; LOW 2MARG score 83.79) and gets even better
adding virtual examples in low populated classes (idiap-LOW MULT 2MARG score 74.92).

The rest of the paper is organized as follows: section 2 describes the feature extracted from
images and the two methods used to combine them. Section 3 gives details on the confidence
based opinion fusion, while section 4 explains how we multiplied images to create virtual examples.
Section 5 reports the experimental procedure adopted and the results obtained. Conclusions and
outlook are given in Section 6.

1In 2007 the name was “BLOOM” due to our sponsors.



2 Cue Integration

The aim of the automatic image annotation task is to classify images into a set of classes based
on the hierarchical IRMA code [7]. This code distinguishes images along the modality, body
orientation, body region and biological system axis and errors in the annotation are counted
depending on the level at which the mistake is made. Greater penalty is applied for incorrect
classification then for a less specific one in the hierarchy. For each image the error ranges from 0
to 1 respectively if the image is correctly classified or if the predicted label is completely wrong.
The error is normalized axis wise so that each axis contributes with a maximum of 0.25 to the
score. It is also possible to assign a “don’t know” label that counts half respect to an error.

We propose to extract a set of features from each image and to use then SVM to classify them.
In the previous editions of the challenge, top-performing methods were based on the assumption
that images consist of parts which can be modelled more or less independently. That methods used
local features which thus seem to be the most discriminative cues for medical image annotation
[16, 9]. Our past experience confirms this assumption, so this year we decided to explore two local
approaches using SIFT and LBP based descriptors. We considered them separated and combined
through two different integration schemes.

2.1 Feature Extraction

In 2007 for the medical annotation task we defined and used a modified version of the classical
SIFT descriptor that we called modSIFT [18]. Patches were randomly sampled from images and
the descriptor considered points at only one octave, discarding rotation invariance. We explored
the “bag of words” approach for classification. This is based on the idea that it is possible to
transform the images into a set of prespecified visual words, and to classify the images using
the statistics of appearance of each word as feature vectors. We built the vocabulary randomly
sampling 30 points from each training image and extracting a modSIFT in each point. The visual
words were created using an unsupervised K-means clustering algorithm with K=500, that means
considering a vocabulary with 500 elements. The feature vector for each image was then defined
dividing the image in four parts, randomly extracting 1500 modSIFTs in each subimage, quantizing
the resulting distribution of descriptors in the vocabulary and converting it into four histogram of
votes that were then put in a row to build the feature vector of 2000 elements.

The two runs based on this feature ranked third and fourth in 2007, so we decided to reuse
it doing only a slight modification, inspired by the approach in [6]. We added to the original
feature vector the histogram obtained extracting modSIFT from the entire image. Actually we
obtained this new part of the feature simply adding the four original histograms together and
then concatenating the obtained values to the starting vector producing a vector of 2500 elements.
We can say that doing this we are considering the image at two different space levels and in our
preliminary tests this simple method brought a gain of about 2 score points.

Another approach that we explored was considering local texture features. As the x-ray images
do not contain any color information, texture features play an important role for this task and in
the past challenge editions they were used by several groups [3, 9]. We chose the Local Binary
Pattern operator, a powerful method well known for its successes in face recognition and object
classification [1, 20] and which recently achieved good results also in the medical area [19, 12]. The
LBP basic idea is to build a a binary code that describes the local texture pattern in a circular
region thresholding each neighborhood on the circle by the gray value of its center. After choosing
the dimension of the radius R and the number of points P to be considered on each circle, the
images are scanned with the LBP operator pixel by pixel and the outputs are accumulated into a
discrete histogram. The operator is gray-scale invariant, moreover we used the rotational invariant
LBP version which considers the uniform patterns (LBPriu2

P,R , see Figure 1).
Our preliminary results on a validation set showed that the best way to use LBP on the medical

image database at hand was combining in a two dimensional histogram LBPriu2
8,8 together with

LBPriu2
16,12 and concatenating it with the two dimensional histogram made by LBPriu2

16,18 together
with LBPriu2

24,22. In this way a feature vector of 648 elements is obtained. Each image is divided in



Figure 1: a) The basic LBP operator. b) Circularly symmetric neighbor set with radius of 1
pixel and 8 points on the circle. Samples that do not exactly match the pixel grid are obtained
via interpolation. c) The rotation invariant (ri) binary patterns that can occur in the circular
symmetric neighbor set of LBP ri

8,1 are 36. Here we show just 9 of them corresponding to the
uniform patterns with 2 spatial transition i.e. bitwise 0/1 changes (riu2). In the figure black and
white circles correspond to the bit values of 0 and 1 in the 8-bit output of the LBP operator [11].

four parts, one vector is extracted from each subimage and from the central area and then they
are concatenated producing a vector of 3240 elements (see Figure 2).

2.2 Low and Mid Level Integration Schemes

In the computer vision and pattern recognition literature some authors have suggested different
methods to combine information derived from different cues. They can all be reconducted to
one of these three approaches: high-level, mid-level and low-level integration [13]. In the low-
level integration scheme, image data or the corresponding features are combined together before
classification; in the mid-level integration the different feature descriptors are kept separated
but they are integrated in a single classifier generating the final hypothesis; finally a high-level
cue integration starts from the output of two or more classifiers dealing with complementary
information. The hypothesis are then combined together to achieve a consensus decision.

Considered our results in the ImageCLEF 2007 [18], we decided to use again the Multi-Cue
Kernel as mid-level integration scheme and the concatenation of feature vectors as low-level inte-
gration.

The Multi-Cue Kernel is a linear combination of kernels each dealing with a single feature.

Figure 2: A schematic drawing which shows how we built the texture feature vector combining
the 1-dimensional histograms produced by the LBP operators in 2-dimensional histograms.



Suppose that for each image Ii, we extract a set of P different cues, Tp(Ii), p = 1 . . . P . Hence we
have P different training sets and a corresponding set of P kernels Kp, p = 1 . . . P . The Multi-Cue
Kernel between two images, Ii and Ij , is defined as

KMC(Ii, Ij) =
P∑

p=1

apKp(Tp(Ii), Tp(Ij)) . (1)

where ap ∈ <+ are weighting factors found through cross validation while determining the optimal
separating hyperplane.

On the other hand, in the low-level scheme, the single features vectors are combined in a unique
vector, that is normalized to have sum equal to one.

2.3 Classification

For the classification step we used an SVM with an exponential χ2 as kernel, for both the local
structural and textural approaches and the cue-integration methods:

K(X, Y ) = exp

(
−γ

N∑
i=1

(Xi − Yi)2

Xi + Yi

)
. (2)

The parameter γ was tuned through cross-validation. This kernel has been successfully applied
for histogram comparison and it has been demonstrated to be positive definite [4], thus it is a
valid kernel. In our experiments we used also the linear, RBF and histogram intersection kernel
but all of them gave worse results than the χ2.

Even if the labels are hierarchical, we have chosen to use the standard multi-class approaches.
This choice is motivated by the finding that, with our features, the error score was higher using
an axis-wise classification.

3 Confidence Based Opinion Fusion

As previously described, the evaluation scheme for the medical image annotation task addresses
the hierarchical structure of the IRMA code by allowing the classifier to decide a “don’t know” at
any level of the code, independently for each of the four axes. To effectively support this scheme,
models which estimate the classifier’s confidence in its decision could be useful, a fortiori if we
consider the high unbalancing of the classes in the training set.

Discriminative classifiers usually do not provide any out-of-the-box solution for estimating
confidence of the decision, but in some cases they can be transformed in opinion makers on the
basis of the value of the used discriminative function. This gives the possibility to derive confidence
information and hypothesis ranking from the produced opinions. In case of SVM, it can be done
considering the distances between the test samples and the hyperplanes. The evaluation results
very efficient due to the use of kernel functions and does not require additional processing in the
training phase.

In the One-vs-All multiclass extension of SVM, if M is the number of classes, M SVMs are
trained each separating a single class from all remaining ones. The decision is then based on the
distances of the test sample, x, to the M hyperplanes, Dj(x), j = 1 . . .M . The final output is
the class corresponding to the hyperplane for which the distance is largest:

j∗ = argmax
j=1...M

Dj(x) . (3)

If now we think of the confidence as a measure of unambiguity of the decision, we can define it as
the difference between the maximal and the next largest distance:

C(x) = Dj∗(x)− max
j=1...M,j 6=j∗

Dj(x) . (4)



The value C(x) can be thresholded for obtaining a binary confidence information. Confidence is
then assumed if C(x) > τ for threshold τ .

Hence what we did was considering the first two margins produced by SVM corresponding to
the distances of the test samples from the two closest hyperplanes. If the decision is not confident,
that is C(x) < τ , then the label corresponding to the first two opinions are compared and where
they differ we put a “don’t know” term. We looked for the best threshold considering the results
obtained in the preliminary validation phase and we adopt that for the subsequent experiments.

4 Adding Virtual Examples

To achieve good results in machine learning based classification, it is important to use training
data which are sufficient not only in quality but also in quantity. For an SVM, working with
classes very sparsely populated means that during the training phase, it is forced to individuate
the best hyperplane which separate classes with few examples, to all the rest of the training set.
Obviously the work done by the classifier in that condition can’t be considered really reliable.
To improve the reliability of the classification, we thought to enrich the poorly populated classes.
Using virtual examples, i.e. artificially created images, is a well known method to expand the
training data in an automatic way on the basis of a prior knowledge [10, 14, 15].

In one of their publications [5], people who collected and organized the IRMA database suggest
that reasonably small transformations of certain image objects do not affect the class membership.
So we produced modified copies of the released images in the subsequent way:

• each side increased of 100 pixels;

• each side increased of 50 pixels;

• each side decreased of 50 pixels;

• left rotation of 40 degrees;

• right rotation of 40 degrees;

• left rotation of 20 degrees;

• right rotation of 20 degrees;

• left shift of 50 pixels;

• right shift of 50 pixels;

• up shift of 50 pixels;

• down shift of 50 pixels;

• left (50 pixels) + up (50 pixels) shift;

• left (50 pixels) + down (50 pixels) shift;

• right (50 pixels) + up (50 pixels) shift;

• right (50 pixels) + down (50 pixels) shift;

• brightness increased (gray scale enhanced adding 20 to the original gray level and putting
to 255 values higher than 255);

• brightness decreased (gray scale lowered subtracting 20 to the original gray level and putting
to 0 the obtained negative values).

Thus for each of the images belonging to poorly populated classes we produced 17 copies using
matlab scripts.



5 Experiments

Before starting our validation experiments, we studied in-depth how to divide the released database
to consider the high unbalancing between classes. We decided to separate the training images in:

• rich set: images belonging to classes with more than 10 elements. A total of 11947 images
divided in 115 classes;

• poor set: images belonging to classes with less than 10 elements. A total of 129 images
divided in 82 classes.

From the first group we built 5 disjoint sets, rich traini/rich testi, each with of 11372/575 images,
where the test sets were created randomly extracting five images for each of the 115 classes. On
the other hand, we used the whole poor set as a second test set. In this way, although the classes
with few images are not considered in the training phase, we can evaluate the performance of the
classifier to assign to that images the corresponding nearest class in the hierarchy. So we trained
the classifier on the rich traini set and tested both on the rich testi and on the poor set, for each
of the 5 splits. The error score was evaluated using the program released by the ImageCLEF
organizers. The score values were normalized by the number of images in the corresponding test
set, producing two average error scores. They were then multiplied by 500 and summed together
to produce the value of the score on the test set of the challenge hypothesizing that it would have
been constituted half by images from the rich set and half by images form the poor set. The
expected value of the score is then defined as the average of the scores obtained on the 5 splits.
Each parameter in our methods was found optimizing this expected score.

Our validation experiments started considering the local structural and textural approaches
separately, applying the proposed experimental setup. We used the above procedure to select the
best kernel parameters for the single-cue SVMs, giving the lowest combined error score described
above. We adopted the same procedure for our validation experiments with the two cue-integration
schemes.

On top of these experiments we applied, as second step, the confidence based opinion fusion
technique described in Section 3. Both the single-cue and the multiple-cue runs were executed
using the One-vs-All SVM multiclass extension and saving a file containing for each test image
the values of the distances from the separating hyperplanes. We considered these files related
to the rich and poor test sets produced by the classification with the best parameters found in
the previous phase. The first two higher margins for every test images were subtracted and the
difference compared to the threshold τ varying in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The best
threshold was considered that producing the lowest expected score, using the procedure described
above.

To evaluate the effect of introducing virtual examples in the classes belonging to the poor set
we divided it in two parts:

• poor one: images belonging to classes with only one element. A total of 53 images from 53
classes;

• poor more: images belonging to classes with more than one element. A total of 76 images
from 29 classes.

We only considered the second group and created 6 poor more traini/poor more testi splits of
29/47 images, where the train sets were defined extracting one image from each of the 29 classes.
We also introduced virtual examples as described in Section 4 such that each poor more train
set was enriched with 29*17=493 images. Then we combined these sets joining rich traini and
poor more trainj to build the training set and testing separately on rich testi and poor more testj

with i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5, 6. We executed experiments with this setup and the best
kernel parameters obtained form the previous single and multiple-cue experiments. The described
procedure, for each i, j couple produced again two classification outputs. The error scores were
normalized and combined as described above. We also repeated this group of experiments without



Rank Name Score Gain
1 idiap-LOW MULT 2MARG 74.92 30.83
2 idiap-LOW MULT 83.45 22.30
3 idiap-LOW 2MARG 83.79 21.96
4 idiap-MCK MULT 2MARG 85.91 19.84
5 idiap-LOW lbp siftnew 93.20 12.55
6 idiap-SIFTnew 100.27 5.48
7 TAU-BIOMED-svm full 105.75 0
11 idiap-LBP 128.58 −22.83
19 idiap-MCK pix sift 2MARG 227.82 −122.07
24 idiap-MCK pix sift 313.01 −207.26

Table 1: Ranking of our submitted runs, name, score and gain respect to the best run of the
other participants. The extension MULT stands for image multiplication, that isthe use of virtual
examples. 2MARG stands for the combination of the first two SVM margins for the confidence
based opinion fusion.

introducing the virtual examples and the score resulted lower of about 4 points on average showing
that the addition of virtual elements is useful for the classification task.

Finally we applied the confidence based decision fusion on the output of the just presented
experiments with the virtual examples in the training set. In this way we obtained our lowest
expected score both for the single-cue and the multiple-cue approaches. Note that, independently
of the selected feature or combination of features, applying together our two proposed methods
always improves the score.

All the parameters of the validation phase were then used to run our submission experiments
on the 1000 unlabelled images of the challenge test set using all the 12076 images of the original
dataset as training. We submitted 9 runs. One of them (idiap-MCK pix sift) consisted simply in
repeating our 2007 winner run, that is combining modSIFT and pixel features through MCK using
exactly the same parameters of last year [17]. As expected, this run ranked last this year, due to
the fact that the dataset varied a lot respect of 2007 and a new search for all the parameters was
needed. It is interesting to note that simply applying the confidence based opinion fusion on the
this run (idiap-MCK pix sift 2MARG) we have a gain in score of 85.19.

Considering that our validation results did not show great differences between the low-level
and the mid-level integration scheme we decided to use just the low-level cue-integration scheme
for sake of simplicity. We submitted only one MCK run using both the confidence based opinion
fusion and the virtual examples. Hence the remaining runs consisted in:

• using the two new cues separately (idiap-SIFTnew, idiap-LBP);

• applying cue-integration (idiap-LOW lbp siftnew);

• combining cue-integration with the confidence based opinion fusion (idiap-LOW 2MARG);

• combining cue-integration with the introduction of virtual examples in the training set (idiap-
LOW MULT);

• combining cue-integration with the confidence based opinion fusion and the introduction of
virtual examples in the training set (idiap-LOW MULT 2MARG, idiap-MCK MULT 2MARG).

The ranking, name and score of our submitted runs together with the score gain respect to the
best run of other participants are listed in Table 1.

6 Conclusions

This paper presents a combination of three different strategies to face the medical image annotation
in a highly unbalanced database with great inter-vs-intra class variability. The first consists in



combining cues through two different SVM approaches corresponding to a low-level and a mid-level
integration scheme. The second allows to estimate the confidence of the classifier decision and,
on this basis, to assign to a test image the class label corresponding to the hard decision of the
classifier, or to a combination of the labels related to the first two produced opinions. The third
consists in enlarging the training set through virtual examples defined as modified copies of the
images in the less populated classes. The method obtained combining the low-level cue-integration
scheme together with the confidence based opinion fusion and the introduction of virtual examples
obtained a score of 74.92 ranking first among all submissions.

This work can be extended in many ways. First, it could be interesting to understand if the
low-level cue-integration scheme results still better then the mid-level one when the number of
combined cues grows. We could for example analyze what happens adding to the two presented
local features a global one. Second, we would like to integrate the confidence estimation and the
cue integration in a unique strategy. The classifier should measure its own level of confidence and,
in case of uncertainty, to seek for extra information considering multiple cues, so to increase its
own knowledge only when necessary. Third, here we have introduced virtual examples modifying
the original images through translation, rotation and brightness changes. The results prove the
effectiveness of this strategy, but we wonder if it is possible to avoid this passage. A solution
could be to design different features which are able to capture the information coming from all
the modified copies. This would make the classification accurate even working with few images.
Finally, in this work we used the hierarchical structure of the data only to put in the image label
some “don’t know” terms. Moreover our preliminary results using the axis-wise classification did
not produce good results. We want to study more deeply the hierarchical structure to understand
if it is possible to exploit it to produce better classification performance. Future work will explore
these directions.
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